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Abstract—In this paper, we propose beamformed energy
detection (BFED) spectrum sensing schemes for a single
secondary user (SU) or a cognitive radio to detect a primary
user (PU) transmission in the presence of an interferer. In the
millimeter wave (mmWave) band, due to high attenuation,
there are fewer multipaths, and the channel is sparse, giving
rise to fewer directions of arrivals (DoAs). Sensing in only
these paths instead of blind energy detection can reap
significant benefits. An analog beamforming weight vector is
designed such that the beamforming gain in the true DoAs
of the PU signal is maximized while minimizing interference
from the interferer. To demonstrate the bound on the system
performance, the proposed sensing scheme is designed under
the knowledge of full channel state information (CSI) at the
SU for the PU-SU and Interferer-SU channels. However, as
the CSI may not be available at the SU, another BFED
sensing scheme is proposed, which only utilizes the estimate
the DoAs. To model the estimates of DoAs, perturbations
are added to the true DoAs. The distribution of the test
statistic for BFED with full CSI schemes is derived under
the null hypothesis so that the threshold of the Neyman-
Pearson detector can be found analytically. The performance
of both schemes is also compared with the traditional energy
detector for multi-antenna systems.

Index Terms—Beamforming, direction of arrival (DoA),
energy detection, mmWave, spectrum sensing.

I. INTRODUCTION

With an exponential increase in the number of wireless
devices, services, and data usage, the availability of high-
quality spectrum has become a bottleneck for the next-
generation wireless system. To address these requirements,
millimeter wave (mmWave) bands from 30 GHz to 300
GHz with huge bandwidths have been proposed to be
a key enabler for 5G [1], [2]. It is most likely that a
mmWave network including that of 5G is going to be a
heterogeneous network [3]–[5]. Also, spectrum sharing is
proposed in [4] for different operators in the 5G network
on the same frequency. There may also be existing incum-
bents in mmWave bands such as satellite communications,
research, military, and unlicensed operations [3]–[5]. In-
terference coming from heterogeneous mmWave networks
sharing the same band can have a negative impact on the
achieved throughput and reliability due to the interference
even with narrow beams [4]–[6]. Cognitive radio (CR) is
a potential technology that can address the problem of
interference among the coexisting heterogeneous mmWave
wireless systems and improve their performance [5], [7].

Spectrum sensing is an important CR technology that
provides spectrum awareness and managing interference
among heterogeneous mmWave networks in 5G. Several
types of spectrum sensing techniques have been proposed
in cognitive radio paradigm: energy, feature, and matched

filter-based [8]. However, energy detection (ED) has been
widely adopted under fading channel due to its simplicity
since the primary user (PU) information is not required.
Traditionally, most of the work on spectrum sensing,
including ED, has assumed using one or more omni-
directional antennas [8]. However, beamforming based
sensing can improve the detection performance over omni-
directional sensing [9]. The use of beamforming for data
transmission is imperative at mmWave frequencies, where
the signal undergoes severe propagation loss and travel in a
highly directional manner leading to fewer multipaths [1].
Given that a massive number of antennas can be packed in
a small form factor at mmWave frequencies, beamforming
can be extremely fruitful for spectrum sensing as well.

The existing literature has limited works that are fo-
cused on receiver beamforming for sensing [9]–[11]. An
eigenvalue-based spectrum sensing algorithm is proposed
in [10] using a beamformed received signal. In [11], the
angular domain is divided into sectors, and these sectors
are then sensed serially using beamforming. Most of the
spectrum sensing schemes in the literature, including ED,
only assume additive noise at the receiver and ignore any
interference caused by a non-cooperating secondary user
or unregulated transmission. The presence of interfering
node can significantly degrade the detection performance.
This issue is even more aggravated in mmWave networks,
which are heterogeneous, as explained before. In this
context, the works in [12], [13] address spectrum sensing
of a PU in the presence of an interferer . In [12], the
performance of a sensing node is analyzed in a multi-
user environment with the presence of interference from
unlicensed users of a non-cooperating secondary network.
In [13], several compressive spectrum sensing schemes are
compared for detecting PU frequencies in the presence
of interference from low-regulated transmissions from
unlicensed systems. However, both the sensing algorithms
have been suggested for traditional cognitive networks and
not for the cognitive mmWave networks. Also, no receiver
beamforming is assumed in both sensing schemes. Beam-
formed energy detection (BFED) in the cognitive mmWave
network was recently proposed in [14] to improve the
sensing performance over clustered Rician fading channel.
However, the impact of interferer is not considered while
analyzing the sensing performance.

In this paper, we propose BFED1 spectrum sensing

1Although the results of this paper may be extended to other sensing
schemes such as maximum eigenvalue detection, maximum to minimum
eigenvalue detection [15], we limit ourselves to the ED for convenience.



schemes in the presence of an interferer for cognitive
mmWave networks. The multipath channel considered
in this paper is the extended Saleh-Valenzuela channel
model [16], which is suitable to model mmWave channels
as most of the traditional fading distributions do not
work for the mmWave channel. The test statistic at the
receiver is the energy of the signal received using analog
beamforming. For this BFED test statistic, we employ the
Neyman-Pearson detector, which maximizes the probabil-
ity of detection for a given false alarm. To improve the
detection performance, it is important to choose optimal
beamforming weights such that the probability of detection
is maximized. However, such optimization will be non-
linear and non-trivial in terms of the weight vector. This
is true even for optimizing SINR. Therefore, we attempt to
solve a multi-objective function that tries to maximize the
beamforming gain along the direction of arrivals (DoAs)
corresponding to the PU while creating a null along the
DoAs of the interference signal. Note that the proposed
sensing scheme is designed under the knowledge of full
CSI at the SU for the PU-SU and Interferer-SU channels
to demonstrate the bound on the system performance. As
the channel information may not be available at the SU, a
second sensing scheme is also proposed that does not re-
quire CSI. In this case, the focus is only on estimating the
DoAs as estimating full CSI may be difficult or infeasible.
In this paper, we abstract out the DoA estimation schemes
by adding an error or perturbation to the actual angles,
which is modeled as Gaussian distributed with mean zero
and variance linked to the Cramer Rao Lower Bound
(CRLB) for the problem [17]. For both the proposed BFED
schemes, the distribution of the test statistic is derived
under the null hypothesis under the assumption of knowing
noise and interference powers so that the threshold for a
Neyman-Pearson detector can be found analytically. The
performance of both the proposed BFED schemes is also
compared to a simple ED.

The rest of the paper is structured as follows. Section
II describes the system model. Section III and IV present
the proposed BFED with perfect CSI and estimated or
perturbed DoAs. Section V presents simulation results
while concluding remarks are given in Section VI.

II. SYSTEM MODEL

Fig. 1 shows the schematic diagram of the CR based
mmWave network considering a PU, a SU, and an inter-
ferer in the scenario. The presence of a PU is detected
using SU in the presence of an interferer. It is assumed
that the SU has M antennas arranged as uniform linear
array (ULA) with the separation between the antennas as
d = λ/2, where λ is the wavelength of the transmitted PU
signal. Both the interferer and PU are assumed to have a
single antenna for simplicity. This assumption is valid for
simple IoT nodes with low-power consumption due to one
RF chain. In spectrum sensing, PU signal is detected by
deciding between the two hypotheses H0 and H1, where
H0 denote the absence of PU signal and H1 denote the
presence of PU signal. Under the two hypotheses, the
received signal x[n] ∈ CM×1 for n = 1, 2, . . . , N , where

N is the number of snap shots, is given by

H0 : x[n] = hi[n]si[n] + v[n],

H1 : x[n] = hp[n]sp[n] + hi[n]si[n] + v[n],
(1)

where sp[n] and si[n] represent the PU and the interferer
signals, respectively. The quantity v[n] ∈ CM×1 denotes
the AWGN noise vector, which comprises of entries
vm[n],m = 1, 2, · · · ,M , where vm[n] is the AWGN noise
sample at mth antenna. Note that each of the terms follows
complex Gaussian distribution as sp[n] ∼ CN (0, σ2

sp),
si[n] ∼ CN (0, σ2

si) and vm[n] ∼ CN (0, σ2
v) respectively.

The vector h ∈ CM×1 (referring to either hi or hp), is
assumed to be the sum of signals from Nc clusters each of
which have Nr rays. In this work, we utilize the extended
Saleh-Valenzuela mmWave channel model [17]. Under the
model, the narrow-band channel h can be described as [16]

h = Γ

Nc∑
c=1

Nr∑
r=1

αcrar(θcr)), (2)

where

• αcr = complex fading coefficient of the rth ray in the
cth scattering cluster,

• θcr = azimuth DoA of the rth ray in the cth scattering
cluster at the receiver,

• Γ=
√

M
NcNr

is a normalization constant.

Here, the complex fading coefficient αcr follows complex
Gaussian distribution as αcr ∼ CN (0, 1). The mean DoAs
of the different clusters at the receiver follow a uniform
distribution, and the DoAs of the rays within an individual
cluster are distributed according to the Laplacian distribu-
tion function. The antenna array response vector at the
receiver is given by

ar(θcr) =
1√
M

[
1,e−jkd sin(θcr), ...,

e−(M−1)jkd sin(θcr)
]T
. (3)

Under H0, the received signal at mth antenna is given as

xm[n] = him[n]si[n] + vm[n]. (4)

The conditional mean and variance of the received
signal xm[n] conditioned on the two hypotheses can be
derived as

E{xm[n] |H0} = 0, (5)
E{xm[n] |H1} = 0, (6)

E{var[xm[n]] |H0} = E{|him[n]|2}σ2
si + σ2

v

= σ2
si + σ2

v , (7)

E{var[xm[n]] |H1} = E{|hpm[n]|2}σ2
sp

+ E{|him[n]|2}σ2
si + σ2

v

= σ2
sp + σ2

si + σ2
v . (8)

Therefore, the distributions of xm[n] under the two hy-
potheses are given by

H0 : xm[n] ∼ CN
(
0, σ2

si + σ2
v

)
,

H1 : xm[n] ∼ CN
(
0, σ2

sp + σ2
si + σ2

v

)
.

(9)
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Figure 1. Schematic diagram of the CR based mmWave network considering the presence of a PU, a SU and an interferer.

III. BFED SPECTRUM SENSING SCHEME WITH FULL
CSI

In this section, we assume the channels between PU →
SU and interferer → SU are perfectly known at the SU to
demonstrate the bound on the system performance. Note
that the receive beamforming is achieved by multiplying
the received signal with a analog beamforming weight
vector w. While designing the weight vector w, two
factors are considered:

(i) minimize the interference from the interferer and
(ii) maximize the beamforming gain in the PU direction.

First we consider designing the weight vector to minimize
the interference. To do this, the interference matrix Hi is
constructed using the interferer → SU channel consisting
of array steering vectors corresponding to all DoAs of
interferer and their path gains so that

Hi =
[
αi1a(θi1), αi2a(θi2), · · · , αiKa(θiK)

]H
, (10)

where K = NcNr. The beamforming weight vector w
has to be chosen such that it lies in the null space of
interference matrix. Apply singular value decomposition
(SVD) to obtain the null space of Hi. It is given as

Hi = UΣ[V1V0]H , (11)

where V1 holds the first K right singular vectors and V0

holds the last M −K right singular vectors of Hi. Note
that M > K is a valid assumption as mmWave channels
have fewer multipaths because of limited scattering. Now,
using the last M−K right singular vectors, the projection
vector wh from w to the null space of Hi can be obtained
as [18]

wh = V0V0
Hw. (12)

Here, for simplicity, we maximize the square norm of wh

which is given by

||wh||2 = wHV0V0
Hw. (13)

Now considering the second factor for designing the
weight vector so that beamforming gain in the PU direc-
tion is maximized. Tuning to the DoA corresponding to
the PU gives beamforming gain which is given in [18] by

BG = wHHpH
H
p w, (14)

where Hp = [αp1a (θp1) , αp2a (θp2) , · · · , αpKa (θpK)]
H

matrix consists of steering vectors corresponding to the
DoAs from PU and their channel gains.

Next, we need to combine these two objective functions
(13) and (14) together so that the analog beamforming
weight vector can be designed to maximize the beam-
forming gain while minimizing the interference from the
interferer by projecting onto the null space. It is a multi
objective optimization problem with a constraint that the
magnitude of each element in the weight vector should
be constant, which is a non-convex constraint. It is worth
noting that the Pareto optimality is usually used to describe
solution of a multi-objective problem. Here, we have
used weighted-sum method which can provide a sufficient
condition for Pareto optimality assuming all the weights
are positive and the summation of the weights is equal to
one [18]. The multi-objective problem can now be written
as

w = argmax
w

{
λwHV0V

H
0 w

+(1− λ)wHHpH
H
p w

}
s.t. w ∈ F

(15)

where 0 < λ < 1 and F is a set of all vectors, where
each element in the vector has constant magnitude. Note
that solving the above problem is difficult because of
non-convex constraint. However, after transforming the
problem into semi definite programming through algebraic
transformation, this problem can be simplified as

W1 = argmax
W

{
Tr
(
(λV0V

H
0

+ (1− λ) HpH
H
p )W

)}
,

s.t. [W]kk =
1

M
∀k = 1, · · · ,M,

W ≥ 0, Rank(W) = 1,

(16)

where W = wwH and [W]kk is the kth diagonal element
of W. Here, Tr(.) refers to trace of a matrix. However, the
rank one constraint in the above optimization problem is
hard to solve. To deal with this, the optimization problem



is modified by dropping rank one constraint [18]. It is
given as

W2 = argmax
W

{
Tr
(
(λV0V

H
0

+ (1− λ) HpH
H
p

)
W)

}
,

s.t. [W]kk =
1

M
∀k = 1, · · · ,M,

W ≥ 0.

(17)

Let w2 be the first column of W2. Now the analog
beamforming weight vector w∗ is taken to be scaled
version of w2, given by

w∗ =
√
Mw2. (18)

Now, each element in the weight vector calculated from
the optimization problem may not always be of constant
magnitude 1√

M
as rank one constraint is ignored. To deal

with this problem, we choose a sub-optimal solution in
which each element in the weight vector is divided by its
magnitude. The weight vector after normalization is

wCSI [k] =
w∗[k]√
M |w∗[k]|

, ∀k = 1, · · · ,M. (19)

Next, the received signal is multiplied by the weight
vector so that the beamformed received signal is given by

z[n] = wH
CSIx[n], (20)

while the energy ECSI can be calculated from beam-
formed received signal by

ECSI =

N∑
n=1

|z[n]|2. (21)

The distribution of ECSI under the H0 hypothesis is chi-
square distributed with 2N degrees of freedom and is
given by

2ECSI

||wH
CSIh[n]||2σ2

si + ||wH
CSI ||2σ2

v

∼ χ2
2N . (22)

Based on ECSI , the decision is taken as

ECSI
H1

≷
H0

ηCSI , (23)

Using the statistics under H0 given in (22), the threshold
for Neyman-Pearson detector is calculated. In this case
with a constraint on the false alarm probability Pfa [19]
threshold is evaluated by

ηCSI

=
||wH

CSIh[n]||2σ2
si + ||wH

CSI ||2σ2
v

2
Q−1
χ2
2N

(Pfa) . (24)

IV. BFED SPECTRUM SENSING SCHEME WITH
PERTURBED DOAS

In practical scenario, the DoAs are not known aprior. To
estimate DoAs several methods such as MUSIC algorithm,
ESPRIT algorithm, etc [20] are used in existing literature.
In a multipath channel as different paths are correlated
these methods fail to identify DoAs [21]. Thus, techniques
like spatial smoothing are used to de-correlate the signals
and then the above mentioned methods can be used to

estimate the DoAs. In this paper, we abstract out the DoAs
estimation schemes by adding an error or perturbation
to the actual angles. Error is assumed to be zero mean
Gaussian random variable and the error variance is derived
using the CRLB. In this case, the CRLB is given by [17]

var(θ̂) =
6

|αil|2M3NSNR sin2 θ
, (25)

where θ̂ = θ+ ∆θ with θ referring to the true angle. Here
the assumption is that θ̂ is unbiased estimator of θ.

var(θ̂) = var(∆θ) ≥ CRLB(θ). (26)

Based on these estimates, the interference matrix is con-
structed using the array steering vectors corresponding to
all DoAs of interferer. It is given as

Ii = [a(θ̂i1), a(θ̂i2), . . . a(θ̂iK)]H , (27)

where K=NcNr. Now, applying the SVD to obtain the
null space, the matrix Ii can be rewritten as

Ii = U1Σ1[V2V3]H , (28)

where V2 holds the first K right singular vectors and V3

holds the last M −K right singular vectors. The square
norm of projection matrix is given as

||wi||2 = wHV3V3
Hw. (29)

Further, beamforming gain is calculated as

BGF = wHAAHw, (30)

where A = [a(θ̂p1), a(θ̂p2), . . . a(θ̂pK)] is the matrix
consisting of array steering vectors corresponding to the
DoAs from PU. Similar to the full CSI case, here also
we take the weighted sum of both the beamforming gain
and the square norm of projection to formulate the multi-
objective optimization problem as

W3 = argmax
W

{
Tr
(
(λV3V3

H

+ 1− λ) AAH
)
W)

}
,

s.t. [W]kk =
1

M
, W ≥ 0.

(31)

Using W3, the analog beamforming weight vector wd is
taken to be the scaled first column of the matrix W3 (given
as w3),

wd =
√
Mw3. (32)

Now similar to (19) wd is transformed to wp. The received
signal is then multiplied by the weight vector given as

yp[n] = wH
p x[n] (33)

while the energy Ep is

Ep =

N∑
n=1

|yp[n]|2. (34)

The decision is taken based on

Ep
H1

≷
H0

ηp. (35)

The energy Ep is compared with the threshold ηp. The
threshold is calculated empirically2 under H0 because it
is dependent on the CSI of the interfering channel.

2Threshold is calculated empirically by taking CDF of energy values
under H0 and picking the energy value corresponding to the chosen Pfa



Figure 2. Pd vs SINR (dB) plot for different values of λ.

V. SIMULATION RESULTS

In this section, simulation results are provided to show
the detection performance of various methods. The number
of Monte Carlo realizations for estimating the probability
of detection (Pd) is considered as 1000. Moreover, the
various parameters are set as: the noise variance as σ2

v = 1,
the sample size as N = 200, and the number of antennas
as M = 16 unless specified otherwise. For all the methods,
the probability of false alarm is set to Pfa = 0.1, whereas
the interference power σ2

si is set to 5 dB. Note that these
values are chosen for simulation purposes. However, the
analysis presented in this paper is valid for any arbitrary
values of system parameters. The optimization problem to
find the weight vector is solved in Matlab using the CVX
package.

A. Optimal Value of λ

To obtain the value of λ, which maximizes the proba-
bility of detection for the proposed BFED (with estimated
DoAs) in the considered scenario, the algorithm was run
for varying SINR as well as λ in steps of 0.1 from
0 to 1. Fig. 2 shows the detection performance as a
function of SINR (in dB) and λ. It can be seen that for a
given λ, the detection probability increases with increasing
SINR as expected. Also, for a given SINR, the detection
probability increases as λ increases with an exception at
λ = 1. At λ = 1, the objective function completely favors
beamforming gain ignoring interference, which results in
deterioration of detection performance. For a given SINR,
Pd is maximized at λ = 0.9 for the considered scenario.
This is expected as the interference power is higher than
the PU signal power at low SNRs. Thus, in the rest of the
simulations, λ is considered as 0.9.

B. Pd vs SINR and ROC curves

Fig. 3 shows the probability of detection (Pd) vs SINR
plots with M = 16 , Nc = 2 and Nr = 2 for four methods:
(i) simple energy detection, (ii) BFED with full CSI, (iii)
BFED with perfect DoAs (iv) BFED with perturbed DoAs.
In case of simple ED, the received signal energy Es is
compared with a threshold ηs =

(
σ2
v+σ

2
si

2

)
Q−1
χ2
2MN

(Pfa).

using Neyman-Pearson detector [19]. BFED with perfect
DoAs serves as an upper bound for BFED with perturbed
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Figure 3. Pd vs SINR (dB) plot for N = 200 for simple ED and the
proposed BFED algorithms with different degrees of CSI information.
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Figure 4. Pd vs Pfa plots for SINR = -5 (dB).

DoAs. The first observation is that the BFED schemes
give significant gain as compared to simple energy detec-
tion. The second observation is that BFED with full CSI
(both DoAs and fading coefficients completely known)
performs the best among the compared schemes. The
third observation is that the performance degradation going
from full CSI to only knowing or estimating DoAs is
minor even though the weight vector is chosen from
a restricted set of vectors in which the magnitude of
each element is constant. The fourth observation is that
there is no significant difference in performance between
DoAs perfectly known and perturbed DoAs cases for the
considered scenario. The similar observations can also be
seen in ROC curves presented in Fig. 4.

Fig. 5 shows the detection performances of BFED
schemes with full CSI and perturbed DoAs for the dif-
ferent number of receiver antennas. The first observation
is that as the number of antennas is increased, there is
a significant improvement in the detection performance.
The second observation is that the gap in between the
performances of BFED schemes with full CSI and with
perturbed DoAs increases with an increase in the number
of antennas. This is because the beamwidth decreases with
the increase in antennas, and a small error in DoA results
in a significant performance decrease.

Fig. 6 shows the performance comparison between the
BFED schemes with perturbed DoAs and full CSI for
different values of clusters and rays. It can be observed
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from the figure, as the number of clusters increases, the
detection performance degrades in general. This happens
because the power is now split into many rays and clusters,
and with the constant magnitude constraint on the weight
vector, the received power decreases that in turn decreases
the detection probability.

VI. CONCLUSION

In this paper, two BFED schemes have been proposed
to detect a PU in the presence of an interferer in a cogni-
tive mmWave network. The first beamforming scheme is
designed under the assumption of full CSI to demonstrate
the bound on the system performance. The second scheme
is designed with no CSI assumption and works with per-
turbed DoAs. In both cases, the beamforming weights are
found by solving the optimization problem for maximizing
beamforming gain towards the intended PU and reducing
interference from the interferer. The distribution of the
test statistics has been derived under the null hypothesis,
and the threshold of a Neyman-Pearson detector found
analytically for full CSI case. However, the threshold for
perturbed DoAs case was obtained empirically since the
threshold under null hypothesis is dependent on the CSI of
the interfering channel. The proposed schemes have shown
significant improvement in the detection performance as
compared to the traditional ED. Also, the performance
degradation from full CSI to perturbed DoAs scheme is
minimal for the considered scenario. In future, we plan to

extend this work using real measurements based mmWave
channel model along with multiple antennas at the PU and
interferer.
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[13] E. Lagunas and M. Nájar, “Compressed spectrum sensing in the
presence of interference: Comparison of sparse recovery strategies,”
in Eur. Signal Process. Conf. (EUSIPCO), 2014, pp. 1721–1725.

[14] M. Latha, S. Dara, and S. Chaudhari, “Beamformed sensing using
dominant doa in cognitive mmwave network,” in IEEE Int. Conf.
Advanced Netw. Telecommun. Syst. (ANTS), 2020, pp. 1–6.

[15] F. Awin, E. Abdel-Raheem, and K. Tepe, “Blind spectrum sensing
approaches for interweaved cognitive radio system: A tutorial and
short course,” IEEE Commun. Surveys Tut., vol. 21, no. 1, pp. 238–
259, 2019.

[16] O. E. Ayach et al., “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3,
pp. 1499–1513, 2014.

[17] D. Fan et al., “Angle domain channel estimation in hybrid millime-
ter wave massive MIMO systems,” IEEE Trans. Wireless Commun.,
vol. 17, no. 12, pp. 8165–8179, 2018.

[18] L. Jiang and H. Jafarkhani, “Multi-user analog beamforming in
millimeter wave MIMO systems based on path angle information,”
IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 608–619, 2019.

[19] S. Kay, Fundamental of Statistical Signal Processing: Volume II
Detection Theory. Prentice Hall, 1998.

[20] C. Balanis, Introduction to Smart Antennas. Morgan and Claypool,
2007.

[21] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Trans. Acoust.,
Speech, Signal Pro, vol. 37, no. 1, pp. 8–15, 1989.


