
Exploring Genetic-histologic Relationships in Breast Cancer

by

Ruchi Chauhan, Vinod P K, C V Jawahar

in

International Symposium of Biomedical Imaging
: 1
-4

Nice, France

Report No: IIIT/TR/2021/-1

Centre for Computational Natural Sciences and Bioinformatics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
April 2021



Exploring Genetic-histologic Relationships in Breast Cancer

Ruchi Chauhan1,2, PK Vinod1, CV Jawahar2

1Center for Computational Natural Sciences & Bioinformatics (CCNSB)
2Center for Visual Information Technology (CVIT)

International Institute of Information Technology, Hyderabad, India

ABSTRACT

The advent of digital pathology presents opportunities for computer
vision for fast, accurate, and objective solutions for histopatholog-
ical images and aid in knowledge discovery. This work uses deep
learning to predict genomic biomarkers - TP53 mutation, PIK3CA
mutation, ER status, PR status, HER2 status, and intrinsic subtypes,
from breast cancer histopathology images. Furthermore, we attempt
to understand the underlying morphology as to how these genomic
biomarkers manifest in images. Since gene sequencing is expensive,
not always available, or even feasible, predicting these biomarkers
from images would help in diagnosis, prognosis, and effective treat-
ment planning. We outperform the existing works with a minimum
improvement of 0.02 and a maximum of 0.13 AUROC scores across
all tasks. We also gain insights that can serve as hypotheses for fur-
ther experimentations, including the presence of lymphocytes and
karyorrhexis. Moreover, our fully automated workflow can be ex-
tended to other tasks across other cancer subtypes.

Index Terms— Genomic Biomarkers, Cancer, Imaging Ge-
nomics, Mutation Prediction, Histopathology images

1. INTRODUCTION
Histopathological evaluation involving microscopic examination of
Hematoxylin & Eosin (H&E) stained specimen on the glass slide
is considered a gold standard for cancer diagnosis. However, the
manual assessment may be subjected to error, human bias, inter-
intra pathologist variability, and low throughput. There have been
remarkable advances through deep learning in cancer detection, mi-
tosis detection [1], cancer metastasis detection [2], etc. These works
focus on developing automated, fast, and accurate solutions for anal-
ysis routinely performed by pathologists.

There have been significant developments in individualized
diagnosis, prognosis, and treatment planning based on genomic
biomarkers. However, despite the plummeting cost of genome se-
quencing, it can still be inaccessible, time-consuming, expensive,
or infeasible due to the tissue being insufficient for excision. The
association of histopathology findings from Whole Slide Images
(WSI) and genomic alterations remains mostly unknown in different
cancers. It is based on the hypothesis that image features encode
the tumor’s underlying genotype. It is a challenging problem since
genetic changes can manifest as subtle patterns in the images that
are undetectable in an unaided approach to histopathology. Deep
learning has shown promise in this aspect [3, 4].

We endeavor to improve classification and get insights into mor-
phological features associated with genomic biomarkers. We seek
to explore the histological influence of mutation on the nuclei shape
and size at the cellular level vs. its impact on the tumor microenvi-
ronment involving spatial aspects. Moreover, we examine any visual

differences in terms of staining that could potentially be used by
pathologists.

This work focuses on breast cancer, the most common cancer
in women worldwide. Breast cancer is characterized by molecular
features, therapeutic responses, disease progression, and preferential
organ sites of metastases [5]. Cancer can be caused by unrepaired
alterations known as a mutation in the DNA sequences that encode
for genes. These mutations occur due to DNA replication errors or
environmental factors. TP53 is a tumor suppressor gene that reg-
ulates uncontrolled growth and cell division. It is mutated across
cancer types and is an independent risk factor for determining sur-
vival. Mutations in PIK3CA oncogene leads to increased signaling
for cell proliferation, which may result in a tumor. Further, the pres-
ence of Estrogen Receptor (ER) and Progesterone Receptor (PR) is
examined in the cancer cells. These hormone biomarkers [6] are pre-
dictive of the efficacy of hormone therapy- the treatment strategy of
modifying the tumor’s hormonal milieu. HER2 proto-oncogene en-
codes for a growth-promoting protein in the breast cells whose over-
expression may lead to a tumor. Such HER2 positive cases respond
to therapies targetting HER2 protein.

There has been a rising interest in classifying histopathology im-
ages with biomarkers in lung cancer, bladder cancer, prostate cancer,
and breast cancer [7, 8, 9, 10, 11]. While these works establish that
phenotype is predictive of the genotypic features using deep learn-
ing, they do not explore the features that were or could be used for
classification.

2. METHODS
This work classifies the WSIs according to six biomarkers: muta-
tions in TP53, PIK3CA, ER status, PR status, HER2 status, and in-
trinsic subtypes - Basal vs. non-Basal. The discriminative patches
from these classifications were further analyzed to understand their
distinguishing features in terms of intensity, morphology, spatial ar-
rangement, and cell types. Random forest classification, nuclei an-
notations, and statistical analysis on gene expressions were used for
this purpose. Fig 1 shows the workflow in detail.

Data Preparation: The data used in this work is taken from
TP53 [12], which has a repository of 1054 anonymized WSI of breast
invasive carcinoma patients with their genomic, pathologic, and de-
identified clinical information. Images with highlighters or other ar-
tifacts were excluded, resulting in 708 cancer and 100 normal slides.
For patients with multiple slides, the last biopsy slide was used. The
standard practice of patch extraction resulted in an average of 3,000
patches per WSI of size 512 × 512 pixels at 20× resolution. Color
normalization using [13] accounted for the variations due to staining
reagents and scanners by different manufacturers, protocols for slide
preparation, etc.

Classification: Our work used InceptionNet-v3 pretrained on
ImageNet, which by design, processes the images using multiple



Fig. 1: Workflow: The whole slide image is segmented to identify the tissue regions and divided into patches. The patches undergo colour
normalization and augmentation to be used for cancer detection. The discriminative patches are converted to a higher resolution and used for
biomarker prediction. The biomarker discriminative patches are analyzed by extracting features at the nuclei level and aggregated at the patch
level. The features are tested using statistical analysis and random forest classifier.

kernel filter sizes. Such architecture helps process pathology images
from multiple fields of view, capturing the cellular along with glan-
dular structures, befitting for our tasks. To handle the class imbal-
ance (18-48% in our dataset), we used random undersampling (with
replacement) followed by random augmentation. Once a patch was
sampled, a random augmentation was chosen with a random value
and then inputted into the model. This approach introduced am-
ple variation in the training dataset without multiplying its size and
provided the desired robustness at the expense of convergence time.
Colour normalization with stain augmentation is proven effective by
a systematic analysis [14]. We used light HSV transformation, HED
transformation, additive Gaussian noise, flip, and rotations. Test-
time augmentation (without randomness) and mixed-precision train-
ing were used. 1

It must be noted that the labels for the data are available at the
patient level, i.e., for slides, and may not be true for the individ-
ual patches. The tumor within a slide may be localized, and not all
patches from a slide may be cancerous containing the genomic in-
formation. Hence there is a mislabelling in the training set that can
deteriorate the performance. To overcome this, we identify diagnos-
tically salient regions on the WSI. To keep our workflow fully au-
tomated, we obtain machine-generated annotations employing deep
learning instead of pathologists’ annotations. Moreover, manual an-
notation on a slide is not viable for mutations as the pathologists do
not look for mutations in the histopathological images. To that end,
cancer detection - a binary classification of cancer versus normal
patches was used to find the discriminative patches. This task used
all the available normal (non-cancer) slides and an equal number of
Cancer slides. The remaining cancer slides were kept as an external
test set, later used for biomarker prediction. The model gets uncor-
rupted labels from the normal slides and can understand a non-cancer
patch. This seems to be sufficient even though the problem men-
tioned above persists for the cancer slides, i.e., not all cancer slide
patches are cancerous. The cancer detection is done at 20× resolu-
tion, and the discriminative patches are translated to 40× resolution,
the highest magnification, to capture finer level details. This transla-

1All implementation details & data summary can be found at:
https://github.com/theRuchiChauhan. Codes will be made available upon
publication.

tion is done by zooming using Lanczos interpolation, and cropping
giving four 40× patches for every 20× patch. These discriminative
patches are used for the main tasks of genomic biomarker prediction.
Roughly 150,000 patches were obtained at 40× resolution.

Discriminative patches are the patches that were correctly clas-
sified by the model with high confidence. The softmax probabilities
of the predictions from the classification model were used to obtain
the confidence scores. Despite achieving better performance, mod-
ern neural networks tend to be overconfident. This can be attributed
to the increase in width and depth compared to the older neural net-
works like LeNet, and methods like batch normalization and weight
decay. Thus, the probabilities of prediction are not representative of
the true correctness likelihood and calls for a calibrated confidence
score. To this end, we use a straightforward calibration technique:
Temperature Scaling [15]. The confidence score is calculated as

q̂ = σSM (z/T ) (1)

where σSM is softmax operation, z refers to the logits, and T is
the temperature computed by logistic regression. These confidence
scores were thresholded at 0.9, above which the patch is deemed
‘discriminative’. Filtering discriminative patches from the cancer
detection model reduced the dataset to roughly 45%. These patches
are termed as Cancer Discriminative (CD) patches and used for
biomarker classification tasks. The discriminative patches from
each biomarker classification model are called Biomarker Discrimi-
native (BD) patches.

Feature Analysis: Nuclei segmentation [16] followed by el-
lipse fitting on each nucleus was used to examine the discriminative
patches. For each of the nuclei, the following features were com-
puted: Morphological features: minor axis, major axis, ratio of ma-
jor axis to minor axis, area, perimeter, circularity, eccentricity, and
solidity. Intensity Features: mean pixel value for red, green, and
blue channels. Note that the patches are colour normalized. Spatial
Features: For each patch, a Delaunay triangulation graph connect-
ing the centroids of the nuclei as nodes were constructed. From this
graph, the following were calculated for each nucleus: minimum dis-
tance from a neighbor, the maximum distance from a neighbor, the
average of distances with all neighbors, and the number of neighbors
(node degree). All these features calculated for nuclei were aggre-
gated at the patch level. The distribution statistics: mean, standard



Fig. 2: Classification Results of Genomic Biomarkers using InceptionNet. [L-R] MCC-F1 curve, Receiver Operating Characteristic Curve,
Precision-Recall Curve. Overall, ER performed the best, while PIK3CA performed the worst

deviation, entropy, skewness, and kurtosis were taken for each patch
using a ten-binned histogram. The histogram was L1 normalized to
mitigate the effects of an unequal number of nuclei across patches.
Thus, we obtained a total of 75 features.

To analyze the features characteristic of a biomarker class, we
classify the patches using Random Forest. To further explore the rel-
ative importance of features, an ablation study was performed using
combinations of features. The classification is done on biomarker
discriminative patches and also on the cancer discriminative patches
for each task. The complete pipeline is shown in Fig. 1. To further
explore the tumor microenvironment at the cellular level, nuclei an-
notation was done using the tool provided by [17], which employs
mask-RCNN for nuclei segmentation.

3. RESULTS AND DISCUSSION

The model achieved slide level 0.99 AUROC for Cancer vs. Normal
classification, comparable to that reported in the literature on the
TCGA dataset [18]. Our models outperform the results reported
elsewhere in the literature for biomarker prediction Table 1. The
slide level results are calculated by aggregation using the average
of probabilities. We observed an expected improvement in the
biomarker classification by training only on our cancerous discrim-
inative patches. The baseline approach used all the patches from
the WSIS. AUROC has been tabulated for benchmarking. Additional
metrics - AUPRC, MCC-F1 are shown in Fig. 2. The MCC-F1 curve
reported is more appropriate for unbalanced datasets than other met-
rics as it provides a complete summary of the confusion matrix [19].
Qualitative results are shown in Fig. 3

Fig. 3: Top Biomarker Discriminative patches. a: ER status, b: PR
status, c: HER2 status, d: TP53, e: PIK3CA, f: Intrinsic Subtype.
Green Box: positive/mutated/Basal subtype, Red Box: negative/not-
mutated/non-basal subtypes

Table 2 presents the results of the biomarker classification on
biomarker and cancer discriminative patches using random forest.

Table 1: Classification Results of Genomic Biomarkers using Incep-
tionNet: † : [4], ‡ : [10], § : [11]

AUROC Level TP53 PIK3CA ER PR HER2 Subtype

Ours
patch 0.829 0.721 0.866 0.820 0.798 0.877
slide 0.875 0.765 0.910 0.839 0.811 0.909

Baseline
patch 0.677 0.565 0.665 0.614 0.666 0.703
slide 0.643 0.541 0.632 0.578 0.622 0.685

Best slide 0.75† 0.63† 0.89‡ 0.81‡ 0.79‡ 0.826§

The same set of features did not work as well on all cancer discrim-
inative patches compared to biomarker discriminative patches. This
substantiates our claim that the generated patches are indeed dis-
criminative of the genomic information. It might be possible that
not all cancer regions contain the manifestation of biomarkers.

We observe that for TP53, the intensity features alone outper-
form morphological and spatial features combined. Moreover, in-
tensity and spatial features together perform comparably to all fea-
tures taken together. This contrasts with other biomarkers, where
the spatial features do not seem to be contributing much. Morphol-
ogy features worked reasonably well for almost all the tasks except
TP53.

Interestingly, we observed a large number of lymphocyte nuclei
in TP53 mutated discriminative patches. Lymphocytes are the white
blood cells whose presence indicates an immunological response.
Further investigation using gene expression and immune scores ob-
tained from ESTIMATE [20] suggest the correlation between TP53
mutation and increased immunologic activities. The immune scores
signify the infiltration of immune cells in tumor tissues. A P-value
of 1.76e-05 was obtained from the Mann Whitney U test between
the immune scores of TP53 mutated and nonmutated gene expres-
sion samples (Fig. 5). These observations go along with the demon-
strated involvement of TP53 in crucial aspects of tumor immunol-
ogy and the homeostatic regulation of the immune responses [21].
Moreover, we found cells undergoing karyorrhexis, nuclei fragmen-
tation during a stage of cell death, in PIK3CA mutated discriminative
patches, as shown in Fig. 4.

4. CONCLUSION
This work presented the classification of breast cancer genomic
biomarkers from histopathological images. Conventionally, such
classification is performed using gene expression data. Automated
pipelines such as ours aim to augment pathological workflow while
the pathologists may handle higher-level decisions. Despite the re-
markable performance of deep learning solutions in computer-aided



Table 2: Results from random forest classifier on Biomarker Discriminative (BD) & Cancer Discriminative (CD) Patches.
Best performance in bold and next best underlined.

AUPRC
TP53 PIK3CA ER PR HER2 Subtype

BD CD BD CD BD CD BD CD BD CD BD CD
All Features (n=75) 0.934 0.657 0.882 0.618 0.837 0.655 0.862 0.640 0.927 0.584 0.828 0.696

Intensity Features (n=15) 0.877 0.611 0.821 0.585 0.733 0.613 0.729 0.587 0.865 0.569 0.763 0.661
Spatial Features (n=20) 0.838 0.592 0.741 0.571 0.674 0.590 0.681 0.577 0.799 0.541 0.690 0.629

Morphology Features (n=40) 0.799 0.581 0.828 0.605 0.74 0.599 0.832 0.612 0.909 0.558 0.742 0.635
Morphology + Spatial Features (n=60) 0.866 0.623 0.851 0.603 0.768 0.622 0.845 0.613 0.904 0.561 0.765 0.662

Spatial + Intensity Features (n=35) 0.933 0.654 0.840 0.601 0.788 0.640 0.773 0.601 0.891 0.555 0.797 0.676
Morphology + Intensity Features (n=55) 0.922 0.624 0.883 0.617 0.820 0.648 0.864 0.642 0.929 0.588 0.825 0.683

diagnosis, there is still legitimate skepticism for widespread clinical
adoption. Hence, there is a need for understanding the classification
done by a deep neural network into human interpretable features to
help reduce the opacity of the black box models and generate knowl-
edge. It is worth noting that the characteristic features are from the
network’s perspective and the biological significance derived herein
warrants further validation.

Fig. 4: Prevalence of lymphocytic nuclei in TP53 mutated [Top-left,
green] vs TP53 non-mutated [Top-right, red] patches. Presence of
Karyorrhexis in PIK3CA mutated [Bottom-left, green] vs PIK3CA
non-mutated [Bottom-right, red] patches. Tumor nuclei can be ob-
served in both TP53 & PIK3CA.

5. COMPLIANCE WITH ETHICAL STANDARDS
This study used data from TCGA following the data access policies.
Ethical approval was not required.

6. ACKNOWLEDGMENTS
No funding was received for this work, and the authors have no rel-
evant financial or non-financial interests to disclose.

Fig. 5: Immune Scores indicating immune infiltration of the TP53
mutated gene expression samples are significantly higher than that
of non-mutated genes. P-value from Mann Whitney U test.
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