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Abstract— Parametric models that represent layout in terms
of scene attributes are an attractive avenue for road scene
understanding in autonomous navigation. Prior works that rely
only on ground imagery are limited by the narrow field of view
of the camera, occlusions and perspective foreshortening. In this
paper, we demonstrate the effectiveness of using aerial imagery
as an additional modality to overcome the above challenges. We
propose a novel architecture, Unified, that combines features
from both aerial and ground imagery to infer scene attributes.
We quantitatively evaluate on the KITTI dataset and show
that our Unified model outperforms prior works. Since this
dataset is limited to road scenes close to the vehicle, we
supplement the publicly available Argoverse dataset with scene
attribute annotations and evaluate on far-away scenes. We show
both quantitatively and qualitatively, the importance of aerial
imagery in understanding road scenes, especially in regions
farther away from the ego-vehicle. All code, models, and data,
including scene attribute annotations on the Argoverse dataset
along with collected and processed aerial imagery, are available
at https://bit.ly/2QsKNeR.

I. INTRODUCTION

The ability to understand complex road scenes plays a
crucial role in autonomous navigation and is an active area of
research. Semantic understanding of the world can be obtained
with non-parametric methods like semantic segmentation [1],
[2], [3], [4] and depth estimation [5], [6], [7]. However,
despite accurate semantics, non-parametric outputs do not
correspond to typical human interpretations associated with
driving, thus, might not be intuitive to use for downstream
navigational reasoning or decision making tasks.

In contrast to the above approaches, Wang et al [8] and
Liu et al [9] propose a rich parametric model to represent
the 3D scene layout from monocular ground imagery, which
facilitates high-level reasoning. However, the model faces
challenges in representing prominent aspects in the scene
layout outside the field of view of the camera and in estimating
distance and semantics due to perspective foreshortening.
Refinement, extraction and understanding of global road
topology [1], [10], [11], [12], [13] using aerial imagery is
advantageous due to its larger field of view, uniform resolution
for distance and semantic estimation in near and far fields
(due to a nearly orthographic projection). However, it cannot
observe all local properties of the road topology due to
occlusions in aerial imagery arising from vegetation and
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infrastructure. Given the complementary properties of ground
and aerial data, we propose that benefits may be available
through their combination. However, this is a challenging
problem for scene understanding, since both local details
and global information are manifested very differently in
perspective and aerial imagery.

We propose to use both, aerial and ground modalities,
for the task of parametric representation of road scenes
to exploit their complementary properties as illustrated in
Figure 1. Several prior works exploit such complementary
understanding from multiple data modalities such as ground
and aerial imagery [14], [15], [16], [17], [18], [19], [20], [21]
, ground imagery and LIDAR data from perspective view
[22], [23], ground imagery and Open Street Maps (OSM)
[22], aerial imagery and OSM [22], as well as LIDAR and
OSM [22], [24], [25]. We differ from all those works in using
aerial imagery to obtain global context and ground imagery
for strong visual cues of local measurements, in order to
derive a parametric representation of scene geometry and
semantics in unconstrained traffic scenes. We propose a new
scene model, network architecture and multi-task training
strategy to fully realize the complementary benefits of ground
and aerial imagery.

The parameters used to define our scene layout are
existence and distance to intersection, type of intersection,
number of lanes on both sides, number of lanes on opposite
side etc. We use the annotations released by [26] on the
KITTT dataset for comparison of results with previous works.
This dataset is however, limited to describing scenes that
are only up to 30 meters from the ego-vehicle. Thus, we
supplement the existing Argoverse dataset [27] with scene
attributes annotations that can describe road scenes that are
much farther away from the ego-vehicle. It is important to
note that manual annotation for these parameters is very
subjective, needs complex reasoning of the geometry of
the scene and expensive to collect at large scale. We thus
leverage the publicly available Argoverse HD map [27] and
automatically extract attributes from it. We then show the
increasing importance of aerial imagery in predicting scene
attributes that rely on distant visual cues.

To summarize, in this paper, we make the following
contributions:

« A novel approach to parametric road scene understanding
that leverages complementary properties of ground and
aerial imagery.

« Novel representations that yield advantages with respect
to field of view, occlusions and estimation farther from
the ego-vehicle.
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Fig. 1: (a) While ground imagery provides strong cues for local properties of the road topology, they are limited by the
narrow field of view of the camera, occlusions and perspective foreshortening. In contrast, aerial imagery has the advantage
of a larger field of view, presents a uniform resolution in both the near and far fields and is free from severe occlusions due
to traffic. (b) In this paper, we derive a parametric representation of scene geometry and semantics in unconstrained traffic
scenes. We leverage aerial imagery to lookahead and complement the local visual cues from ground imagery. Note that the
bright red spot on the aerial image corresponds to the position of the ego-vehicle.

o A dataset with processed aerial imagery and scene
attribute annotations to supplement the publicly available
Argoverse dataset.

II. RELATED WORK

a) Parametric scene understanding: Parametric scene
understanding is the task of approximating a road scene with
a set of parameters, that are often human interpretable and
thus intuitive to use for downstream navigational reasoning
or decision making tasks. Ess et. al. [2] propose a method
to distinguish between different road layouts and also detect
the presence of cars and pedestrians, while Mattyus et al.
[11] estimate the width of OSM roads by utilizing aerial
imagery. These methods only provide a crude understanding
of the road scene. Geiger et al. [28] reason about the scene
topology, geometry, and traffic activities from hand-crafted
features and evaluate on a limited dataset of 113 images.
Mattyus et al. [14] jointly infer location and width of roads,
cycling pavements, parking areas and sidewalks using aerial
and stereo ground imagery. They use handcrafted features
which model only straight roads and do not work on scenes
with intersections. In contrast, our work can model complex
road scenes including intersections.

We find [8], [9], [29] to be the closest works to ours. Seff
et al. [29] use CNN to automatically infer scene attributes
from a monocular RGB image. Wang et al. [8] estimate the
semantic layout of ground imagery in Birds Eye View (BEV)
and then extract scene attributes. Liu et al. [9] propose to use
videos to benefit from cues of camera motion and long-term
context. They make use of a Feature Transform Module to
fuse features from nearby frames and a COLMAP [30], [31]
based scene reconstruction of the whole video sequence to
provide global information. However, all these models still

suffer from issues of occlusion and perspective foreshortening
inherently present in ground imagery, which we overcome
by providing imagery from aerial modality. Additionally, we
are able to provide surrounding scene context to the model
by simply enlarging the field of view in aerial imagery.

b) Aerial-ground reasoning: Hu et al. [33] address the
task of geo-localizing a ground-view image on an aerial image.
Li et al. [34] propose a method to adapt to ground imagery
in unseen regions with the help of aerial imagery. While
these methods utilize both modalities of data, they focus on
obtaining similar features from both views. In contrast, we
leverage the complementary properties of the modalities to
obtain stronger representations. Wegner et al. [35] detect trees
by jointly reasoning from aerial and ground imagery. They
use per-view detectors to obtain detection proposals from
each image separately. The proposals from each view are then
combined to generate the final proposals. While they combine
the two modalities at the output-level, we combine the aerial
and ground imagery at the feature-level. This provides the
model stronger cues to learn and predict from. Feng et al. [36]
propose a method for urban zoning by using the semantic
information from aerial imagery and the classification outputs
of ground imagery. The extracted features are then passed to
an MRF for inference. However, they use handcrafted features
and their method is not trainable end-to-end. Workman et al.
[17] propose an end-to-end trainable network for estimating
geospatial functions such as population density, land cover and
land use. They use kernel regression and density estimation to
convert features from ground-level images into a dense feature
map and combine them with the aerial imagery features.
Manderson et. al [18] learn a navigation policy for off-road
driving leveraging complementary inputs of ground and aerial
imagery. In comparison, we learn novel representations that
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Fig. 2: We employ two Dilated Residual Networks [32] (DRN), till the penultimate layer, to extract generic features from
ground and aerial imagery. The ultimate layer of the DRN is then used to extract targeted features for each attribute,
individually. The attribute-specific aerial and ground features are then passed through an adaptive max pooling layer and
fused using learned weights (¢;). The fused features are passed to a convolution neural network to predict binary, continuous

and multi-class attributes (1;
corresponds to the position of the ego-vehicle.

provide an accurate representation of scene geometry and
semantics in unconstrained traffic scenes. Our architecture
yields advantages with respect to field of view, occlusions
and estimation farther from the ego-vehicle.

III. PARAMETRIC SCENE PARSING WITH GROUND AND
AERIAL IMAGERY

a) Scene Model: We can model a complex road scene
using a set of binary, continuous and multi-class attributes.
Binary attributes indicate the presence or absence of road
components such as neighboring lanes, intersections and side
roads. Mutli-class and continuous attributes provide detailed
understanding of these components by quantifiying them, for
example, the number of neighboring lanes and the distance
to intersection. In total, we have 14 binary (®p), 2 multi-
class (@) and 8 continuous (®¢) attributes for KITTI and 8
binary, 2 multi-class and 2 continuous attributes for Argoverse.
For more details, refer to [26] for KITTI and Section 4 for
Argoverse.

A. Architecture

As discussed earlier, each driving scene is described by
a rich set of attributes. Since each attribute describes a
different component of the road, naturally, the visual cues
attended to in the image vary significantly. With the aerial
and ground modalities providing complementary properties,
it is important to fuse features efficiently to leverage this
advantage. Additionally, the amount of context available
from a particular modality differs for different attributes.
Finally, due to the large number of attributes being learnt,
there is an inherent trade off between increasing model

—1,) where n is the number of attributes. Note that the bright red spot in the aerial image

capacity for learning discriminative features for each attribute
and the resultant model size. These reasons make the
architecture design for parametric scene understanding from
complementary modalities challenging which we seek to
address below.

a) Attribute specific feature extraction: We use DRN as
our backbone architecture for feature extraction. The choice
of the feature extractor is not a focus of our work and
can be replaced by other networks like ResNet [37]. Seff
et al. [29] predict scene attributes by training a separate
network for each attribute, thereby wasting computation by
not learning shared features. On the other extreme, Wang
et al. [8] learn and predict scene attributes from a single
shared branch, thereby restricting the model from learning
more discriminative features per attribute. We strike a balance
by learning a shared DRN from each modality until the last
layer, from where we branch. This allows the model to learn
attribute-specific features from each modality with minimal
impact on model size.

b) Multimodal fusion for leveraging complementary
properties: Efficient fusion of features from ground and aerial
modalities is important to leveraging their complimentary
properties since the importance of a modality varies for
each attribute. For example, nearby lane information is more
prominent in ground modality due to high resolution of ground
imagery while information on side roads is clearer from aerial
imagery due to uniform resolution of the modality. Thus
we fuse the features through a weighted sum given by the
equation f}- = oify + (1— o) fi, where fi, fi, fji- are ground,

g
aerial and fused features of the " attribute respectively and



@; is a learnable parameter to fuse the ground and aerial
features of the i/ attribute. Vielzeuf et al. [38] propose a multi-
layer fusion approach and claim better results than the above
mentioned fusion technique. However, while extending their
technique to a feature extractor shared by multiple attributes,
the influence of one modality on the other at the earlier layers
leads to bias, resulting in the network performing well only
on specific attributes. Thus, we extract features independently
from each modality and then finally fuse features through
weighted sum.

¢) Multi-attribute prediction: The fused features for
each attribute are passed to a prediction network separately.
The prediction network consists of two convolutional layers,
a global average pooling layer and a fully connected layer in
sequence.

d) Loss function: We use weighted cross entropy and
least squared error as our loss functions. As the losses of
binary, continuous and multi-class are of different scales, we
use multipliers to each of these losses, denoted by yp, vc and
ym respectively.

1 N
¥ = NZYBBCE(G)B,UnB-i)+7MCE(®M,i7nM,i) (1)
i=1

+ vcl2(®c;i, Nei)

where BCE is Binary Cross Entropy, CE is Cross Entropy
and {@,1} ; denotes the i sample in the dataset of length
N and corresponding scene attributes.

Ns = {n',n*...0"% Nu = {n"n"2 P,
Ne= {nb+m+l7nh+m+27 - _’nb+m+c}’ n=b+m4c

where b,m,c,n are the number of binary, multi-class,
continuous and total attributes respectively in the scene model.

IV. EXPERIMENTS AND RESULTS
A. Datasets

We use two datasets, Argoverse and KITTI for ground
imagery in perspective view. Wang et al. [26] provide scene
attribute annotations for the KITTI dataset. Since the released
annotations on the KITTI dataset is limited to road scenes
up to 30m, we supplement the publicly available Argoverse
dataset with scene attribute annotations for road scenes up
to 60m. Since aerial imagery for KITTI and Argoverse are
unavailable, we collect and process aerial imagery for both
these datasets. For each of the above datasets, we acquire
aerial imagery from Google Maps at zoom level 21. The
Ground Sampling Distance (GSD) is 30cm for KITTI and
15cm for Argoverse. The aerial imagery is rotated such that
the direction of the ego-vehicle always points towards the
north of the aerial imagery. The scene attribute annotations
on the Argoverse dataset, along with the processed aerial
imagery for all datasets are released publicly. We further
refer to these extended datasets on KITTI and Argoverse as
KITTI-Air-PSU and Argo-Air-PSU, respectively.

a) KITTI-Air-PSU: We only use the left-front RGB
images from the stereo camera in the KITTI dataset. Wang
et al. [26] annotate each image with 14 binary, 2 multi-class
and 8 continuous attributes. The attributes describe mainroad,

TABLE I: Description of attributes of the Argo-Air-PSU scene
model. B: Binary, M: Multi-class, C: Continuous.

ID  Description

B1  Are there lanes to the left of the ego-vehicle?

B2  Are there lanes to the right of the ego-vehicle?

B3  Is the main road one-way?

B4 Is there a side road to the left at the next intersection?
B5  Is there a side road to the right at the next intersection?
B6  Is the ego-vehicle at an intersection?

B7  Does the main road continue after the next intersection?
B8 Is the main road curved?

M1 Number of lanes to the left of the ego-vehicle?
M2 Number of lanes to the right of the ego-vehicle?

Cl1 Distance to the next intersection
C2  Radius of curvature

intersections, sideroads, crosswalks and sidewalks. There are
in total, 16273 training and 2108 validation images. Please
refer to [26] for detailed information.

b) Argo-Air-PSU: The KITTI-Air-PSU dataset is limited
to describing scenes that are only up to 30 meters from
the ego-vehicle. In an another work, Seff and Xiao [29]
release annotations for 1 million Google Street View (GSV)
panoramas, by automatically extracting attributes from the
crowdsourced Open Street Maps (OSM). While this dataset
is huge, there are several drawbacks associated with it. While
there is a severe misalignment between GSV imagery and
the roads in OSM, the annotations also are incomplete and
error-prone due to the weak vetting process. In contrast,
Argoverse provides HD maps from which we automatically
query and extract accurate scene attribute annotations. We
use the center-front images in the Argoverse tracking dataset
as the ground imagery and create two different versions of
the dataset. The first version covers scene attributes that are
up to 30 meters in front of the camera, which we further call
Argo-Air-PSU-30. The second version covers scene attributes
that are up to 60 meters in front of the camera, which we
further call Argo-Air-PSU-60. Since the Argoverse dataset
only contains information pertaining to roads, we annotate
the Argo-Air-PSU dataset on mainroads, intersections and
sideroads. In total, we obtain annotations for 13122 training
and 5017 validation images with 8 binary, 2 multi-class and
2 continuous attributes as described in Table 1.

¢) Evaluation Metrics: For binary and multi-class at-
tributes, we report on binary accuracy (Accu-Bi.) and multi-
class accuracy (Accu-Mc.) respectively. Since few attributes
in the dataset are highly biased, we experiment with F1
scores. However, since a single misprediction on the minor
class results in heavy penalization, we observe that accuracy
better reflects the performance of the model. For continuous
attributes, we report on the normalized MSE (nMSE) scores.
We do report on IOU as the renderer that is required for
computation is imperfect and the IOU scores are influenced
by the implementation of the renderer.



TABLE II: Comparison of our Unified model with online methods on the KITTI, Argo-Air-PSU-30 and Argo-Air-PSU-60
validation sets. Across datasets and attribute types, the Unified model shows better performance than prior works [8], [29]

and baselines that use only a single modality.

Method KITTI [28] Argo-Air-PSU-30 Argo-Air-PSU-60
Accu-Bi. T Accu-Mc. T nMSE | Accu-Bi. T Accu-Mc. T nMSE | Accu-Bi. T Accu-Mc. 1+ nMSE |

M-RGB [29] 811 778 230 -

M-BEV [8], [39] .820 177 141 -

Proximate (ours) .833 795 .168 .885 .838 .089 .883 .842 .088

Remote (ours) 817 796 116 93 792 .058 .893 811 .062

Unified (ours) .848 819 118 939 .896 047 904 852 052

B. Implementation Details

We set the batch size to 12 and use Adam for optimization
with a learning rate of 10~*. We set multipliers for binary,
continuous and multi-class losses to yz = 30, v = 0.01 and y,
= 30, so that their respective losses lie in the same scale. We
train every model on 4 NVIDIA 1080 GPUs for 10 epochs.
The code and the models are released publicly.

C. Baselines

To the best of our knowledge, [8], [9] and [29] are the
only works that perform parametric road scene understanding.
We note that recent works like [4], [39] generate semantic
maps or occupancy grids in BEV, however, the outputs are
non-parametric and thus, not directly comparable to us.

M-RGB [29] The features are extracted from ground
imagery using a shared ResNet-101 [37]. The scene attributes
are inferred directly by passing features through a fully
connected (FC) network.

M-BEV [8], [39] The model constructs the BEV of
ground imagery using semantic and depth labels. Features are
extracted from BEV using CNN and followed by FC network
for predictions.

Liu et al. [9] The model takes a video sequence from
ground modality, converts them to BEV and fuses features
from different frames using a Feature Transform Module.
Further, an expensive COLMAP based reconstruction applied
on the entire video sequence in an offline manner is provided
as an additional input to the network.

Proximate (ours) We use the Unified model proposed by
us but only use features from ground imagery.

Remote (ours) We use the Unified model proposed by us
but only use features from aerial imagery.

D. Results

a) Comparison on KITTI dataset (online methods): In
comparison to prior works, Table II shows our Unified model
achieving a significant improvement on binary accuracy (.820
to .848), multi-class accuracy (.777 to .819) and on nMSE
scores (.141 to .118) for continuous attributes. Comparing
Proximate with M-RGB, where the only difference is the
architecture being used, we can clearly observe the impact of
our design choices. Despite M-BEV using additional semantic
and depth information, our Remote model still performs better
on multi-class and continuous attributes, while there is a minor

TABLE III: Comparison of our Unified model with offline
methods on the KITTI validation set.

Method KITTI [28]

Accu-Bi. T Accu-Mc. ¥ nMSE |
Liu et al. [9] .842 841 134
Unified (ours) .848 .819 118

performance drop on binary attributes. We now compare the
performance of our Unified model against our Proximate
and Remote models. While the Unified model shows similar
performance to Remote on nMSE scores, there is a marked
increase in binary and multi-class accuracy over both Remote
and Proximate models. Overall, the performance of the
Unified model clearly shows the advantage of using both aerial
and ground modalities for parametric scene understanding.

b) Comparison on Argo-Air-PSU-30 and Argo-Air-PSU-
60 datasets (online methods): As shown in Table II, the results
indicate that the Unified model shows better performance
than Remote and Proximate models on binary, multi class
and continuous attributes. Importantly, they demonstrate the
ability of aerial imagery in looking ahead at scenes that are
farther away from the ego-vehicle. Looking at the continuous
and binary attributes, the performance of Remote model is
superior to Proximate model in both the Argo-Air-PSU-30
and Argo-Air-PSU-60. Most of the binary attributes and
all the continuous attributes correspond to global properties
of the road topology. Thus, we can infer that addition of
aerial modality improves the performance in prediction of
global properties, such as details of road intersection and
side roads. Similarly, we can observe that the performance
of the Proximate model is better than that of the Remote
model on multi-class attributes i.e. lanes to the right of ego
lane and lanes to the left of ego lane (local properties). The
aerial imagery also aides in improving performance of the
Unified model on multi class attributes in case of occlusions
in ground imagery.

c) Comparison on KITTI dataset (offline methods):
From Table III, we observe that though Liu et al. [9] utilize
the complete video sequence for predicting scene attributes at
a particular timestep, our Unified model still performs better
on binary and continuous attributes, while observing imagery



(a) Curvature of the road is
visible in aerial imagery. visible in ground imagery

due to limited field of view.
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(c) Right sidewalk is occluded
by trees in aerial imagery.

(d) Right sideroad is occluded
by trees in aerial imagery.

Fig. 3: The above examples demonstrate the advantage of
using both aerial and ground imagery. For all examples, the
Unified model gives correct predictions. The (a) and (b)
are examples where the Remote model predicts correctly
while the Proximate model gives incorrect predictions. The
(c) and (d) are examples where Proximate model predicts
correctly while the Remote model gives incorrect predictions.
The reason for incorrect predictions are mentioned in the
individual captions. Example (b) is taken from the Argo-Air-
PSU-30 dataset while the rest are taken from KITTI-Air-PSU-
30 dataset. Note that the bright red spot on the aerial image
corresponds to the position of the ego-vehicle.

only from that current timestep. We however perform worse
on multi-class attributes, which constitute less than 10% of
the total attributes. We note that [9] uses additional cues
from scene reconstruction and vehicle localization, while we
extract novel representations from aerial and ground modality
without additional context and fuse them efficiently.

d) Ablation Experiments: To investigate the design
choices of our Unified model, we conduct several ablation
studies as shown in Table IV. Firstly, we observe that having
an individual prediction network for each attribute is desirable,

TABLE IV: The table shows the results of various ablation
studies performed with the Unified model on the Argo-Air-
PSU-30 dataset. Each row block corresponds to an experiment
set. The results are to be compared within the block and with
the final row, corresponding to our final Unified model. GAP:
Global Average Pooling, AMP: Adaptive Max Pooling, Uni.
sum: Uniform Sum, Wt. sum: Weighted sum, Pos: Position

Argo-Air-PSU-30

Car Pos. DRN Branch Pooling  Fusion  Prediction N/W
Acc-Bi T Acc-Mc T nMSE |

Middle No GAP Concat. Shared 922 786 170
Middle No GAP Concat. Individual 924 816 .090
Middle Yes AMP Concat. Individual 934 805 .070
Middle Yes AMP  Uni. sum Individual 936 816 .085
Middle Yes GAP  Wt. sum Individual 925 863 099
Middle No AMP Wt sum Individual 935 852 .066
Bottom Yes AMP Wt sum Individual 923 821 .080
Middle Yes AMP  Wt. sum Individual 939 .896 047

as the model can learn more discriminative features for
prediction. Secondly, we look at different techniques for
multimodal feature fusion. By learning optimal weightage for
the two modalities for each attribute individually, the model
using weighted sum is able to best exploit the complementary
properties of the two modalities. Thirdly, we look at the
pooling techniques and observe that Adaptive Max Pooling
performs significantly better than Global Average Pooling
since it is able to retain the spatial context of features.
Fourthly, we observe that even by branching only at the
final layer of the DRN leads to significant improvement,
validating the importance of having attribute-specific features
before fusion. Finally, by placing the car at the middle of the
aerial imagery, we are able to efficiently incorporate prior
context behind the ego-vehicle, thereby resulting in significant
performance gains.

e) Qualitative Results: In Figure 3, we illustrate a few
examples where our Unified model is able to overcome the
individual shortcomings of aerial and ground imagery.

V. CONCLUSION

In this paper, we exploit the complementary properties of
aerial and ground imagery to derive a parametric representa-
tion of scene geometry and semantics in unconstrained traffic
scenes. We start by creating a dataset with scene attribute
annotations to supplement the publicly available Argoverse
dataset. We propose a novel approach for parametric road
scene understanding and show that our Unified model achieves
better performance than prior works. We also extensively
show, both quantitatively and qualitatively, the advantage of
jointly learning from both aerial and ground modalities. In the
future, we would like to extend our work beyond parametric
scene understanding to other critical tasks in autonomous
navigation such as landmark localization.
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