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Abstract. Tables are information-rich structured objects in document
images. While significant work has been done in localizing tables as
graphic objects in document images, only limited attempts exist on table
structure recognition. Most existing literature on structure recognition
depends on extraction of meta-features from the pdf document or on
the optical character recognition (ocr) models to extract low-level lay-
out features from the image. However, these methods fail to generalize
well because of the absence of meta-features or errors made by the ocr
when there is a significant variance in table layouts and text organization.
In our work, we focus on tables that have complex structures, dense con-
tent, and varying layouts with no dependency on meta-features and/or
ocr.
We present an approach for table structure recognition that combines cell
detection and interaction modules to localize the cells and predict their
row and column associations with other detected cells. We incorporate
structural constraints as additional differential components to the loss
function for cell detection. We empirically validate our method on the
publicly available real-world datasets - icdar-2013, icdar-2019 (ctdar)
archival, unlv, scitsr, scitsr-comp, tablebank, and pubtabnet. Our
attempt opens up a new direction for table structure recognition by
combining top-down (table cells detection) and bottom-up (structure
recognition) cues in visually understanding the tables.

Keywords: Document image, table detection, table cell detection, row
and column association, table structure recognition.

1 Introduction

Deep neural networks have shown promising results in understanding document
layouts [1–3]. However, more needs to be done for structural and semantic un-
derstanding. Among these, the problem of table structure recognition has been
of high interest in the community [4–20]. Table structure recognition refers to
representation of a table in a machine-readable format, where its layout is en-
coded according to a pre-defined standard [10–14, 17]. It can be represented in
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Fig. 1. The figure depicts the problem of recognizing table structure from it’s image.
This opens up many applications including information retrieval, graphical represen-
tation and digitizing for editing.

the form of either physical [10, 12, 14, 17] or logical formats [11, 13]. While logical
structure contains every cells’ row and column spanning information, physical
structure additionally contains bounding box coordinates. Table structure recog-
nition is a precursor to contextual table understanding, which has a myriad of
applications in business document analysis, information retrieval, visualization,
and human-document interactions, as motivated in Figure 1.

Table structure recognition is a challenging problem due to complex struc-
tures and high variability in table layouts [4–17]. Early attempts in this space are
dependent on extraction of hand-crafted features and meta-data extracted from
the pdfs on top of heuristic/rule-based algorithms [21–24] to locate tables and
understanding tables by predicting/recognizing structures. These methods, how-
ever, fail to extend to scanned documents as they rely on meta-data information
contained in the pdfs. They also make strong assumptions about the structure
of the tables. Some of these methods are also dependent on textual informa-
tion analysis which make them domain dependent. While textual features are
useful, visual analysis becomes imperative for analysis of complex page objects.
Inconsistency of size and density of tables, presence and location of table cell
borders, variation in table cells’ shapes and sizes, table cells spanning multiple
rows and/or columns and multi-line content are some challenges (refer Figure 2
for some examples) that need to be addressed to solve the problem using visual
cues [4, 5, 21–24].

We pose the table structure recognition problem as the generation of xml
containing table’s physical structure in terms of bounding boxes along with span-
ning information and, additionally, digitized content for every cell (see Figure 1).
Since our method aims to predict this table structure given the table image only
(without using any meta-information), we employ a two-step process — (a)
top-down: where we decompose the table image into fundamental table objects,
which are table cells using a cell detection network and (b) bottom-up: where
we re-build the entire table as a collection of all the table cells localized from
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Fig. 2. Examples of complex table images from unlv and icdar-2013 datasets. Com-
plex tables are ones which contain partial or no ruling lines, multi-row/column spanning
cells, multi-line content, many empty dense cells.

the top-down process, along with their row and column associations with every
other cell. We represent row and column associations of table cells using row and
column adjacency matrices.

Though table detection has observed significant success [11, 25–28], detec-
tion of table cells remains a challenging problem. This is because of (i) large
variation in sizes and aspect ratios of different cells present in the same table,
(ii) cells’ inherent alignment despite high variance in text amount and text jus-
tification, (iii) lack of linguistic context in cells’ content, (iv) presence of empty
cells and (v) presence of cells with multi-line content. To overcome these chal-
lenges, we introduce a novel loss function that models the inherent alignment
of cells in the cell detection network; and a graph-based problem formulation to
build associations between the detected cells. Moreover, as detection of cells and
building associations between them depend highly on one another, we present
a novel end-to-end trainable architecture, termed as tabstruct-net, for cell de-
tection and structure recognition. We evaluate our model for physical structure
recognition on benchmark datasets: scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], and unlv [29]. Further,
we extend the comparative analysis of the proposed work for logical structure
recognition on tablebank [11] dataset. Our method sets up a new direction for
table structure recognition as a collaboration of cell detection, establishing an
association between localized cells and, additionally, cells’ content extraction.

Our main contributions can be summarised as follows:

– We demonstrate how the top-down (cell detection) and bottom-up (structure
recognition) cues can be combined visually to recognize table structures in
document images.

– We present an end-to-end trainable network, termed as tabstruct-net for
training cell detection and structure recognition networks in a joint manner.

– We formulate a novel loss function (i.e., alignment loss) to incorporate struc-
tural constraints between every pair of table cells and modify Feature Pyra-
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Fig. 3. Block diagram of our approach. Table detection is a precursor to table structure
recognition and our method assumes that table is already localized from the input
document image. The end-to-end architecture predicts cell bounding boxes and their
associations jointly. From the outputs of cell detection and association predictions, xml
is generated using a post-processing heuristic.

mid Network (fpn) to capture better low-level and long-range features for
cell detection.

– We enhance the visual features representation for structure recognition (built
on top of model [9]) through lstm.

– We unify results from previously published methods on table structure recog-
nition for a thorough comparison study.

2 Related Work

In the space of document images, researchers have been working on understand-
ing equations [30, 31], figures [32, 33] and tables [6–17]. Diverse table layouts,
tables with many empty cells and multi-row/column spanning cells are some
challenges that make table structure recognition difficult. Research in the domain
of table understanding through its structure recognition from document images
dated back to the early 1990s when algorithms based on heuristics were pro-
posed [21–24, 34–36]. These methods were primarily dependent on hand-crafted
features and heuristics (horizontal and vertical ruling lines, spacing and geo-
metric analysis). To avoid heuristics, Wang et al. [5] proposed a method for
table structure analysis using optimization methods similar to the x-y cut algo-
rithm. Another technique based on column segmentation, header detection, and
row segmentation to identify the table structure was proposed by Hu et al. [4].
These methods make strong assumptions about table layouts for a domain ag-
nostic algorithm.

Many cognitive methods [6–12, 14–16, 37–43] have also been presented to un-
derstand table structures as they are robust to the input type (whether being
scanned images or native digital). These also do not make any assumptions
about the layouts, are data-driven, and are easy to fine-tune across different
domains. Minghao et al. [11] proposed one class of deep learning methods to
directly predict an xml from the table image using the image-to-markup model.
Though this method worked well for small tables, it was not robust enough to
dense and complex tables. Another set of methods is invoice specific table ex-
traction [39, 40], which were not competent for a more generic use-cases. To
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Fig. 4. Visual illustration of cell spanning information along rows and columns of a
table from unlv dataset. Left Image: shows original table image in unlv and Right
Image: illustrates ground-truth cell spanning information.

overcome this challenge, a combination of heuristics and cognitive methods has
also been presented in [12]. Chris et al. [10] presented another interesting deep
model, called splerge, which is based on the fundamental idea of first split-
ting the table into sub-cells, and then merging semantically connected sub-cells
to preserve the complete table structure. Though this algorithm showed con-
siderable improvements over earlier methods, it was still not robust to skew
present in the table images. Another interesting direction was presented by Vine
et al. [42], where they used conditional generative adversarial networks to ob-
tain table skeleton and then fit a latent table structure into the skeleton using a
genetic algorithm. Khan et al. [15], through their gru based sequential models,
showed improvements over several cnn based methods for table structure ex-
traction. Recently, many works have preferred a graph-based formulation of the
problem as the graph is inherently an ideal data structure to model structural
associativity. Qasim et al. [9] proposed a solution where they used graph neural
networks to model table-level associativity between words. The authors validate
their method on synthetic table images. Chi et al. [14] proposed another graph-
based problem formulation and solution using a graph attention mechanism.
While these methods made significant progress towards understanding complex
structured tables, they made certain assumptions like availability of accurate
word bounding boxes, accurate document text, etc. as additional inputs [6, 9,
14]. Our method does not make any such assumptions. We use the table im-
age as the input and produce xml output without any other information. We
demonstrate results on complex tables present in unlv, icdar-2013, icdar-2019
ctdar archival, scitsr, scitsr-comp tablebank, and pubtabnet datasets.

3 TabStruct-Net

Our solution for table structure recognition progresses in three steps — (a)
detection of table cells; (b) establishing row/column relationships between the



6 Raja et al.

Fig. 5. Our tabstruct-net. Modified rpn in cell detection network, which consists of
both top-down and bottom-up pathways to better capture low-level visual features. P2
layer of the optimized feature pyramid is used in the structure recognition network to
extract visual features.

detected cells, and (c) post-processing step to produce the xml output as desired.
Figure 3 depicts the block diagram of our approach.

3.1 Top-Down: Cell Detection

The first step of our solution for table structure recognition is localization of
individual cells in a table image, for which we use the popular object detection
paradigm. The difference from natural scene images, however, is an inherent
association between table cells. Recent success of r-cnns [44] and its improved
modifications (Fast r-cnn [45], Faster r-cnn [46], Mask r-cnn [47]) have shown
significant success in object detection in natural scene images. Hence, we employ
Mask r-cnn [47] for our solution with additional enhancements — (a) we aug-
ment the Region Proposal Network (rpn) with dilated convolutions [48, 49] to
better capture long-range row and column visual features of the table. This im-
proves detection of multi-row/column spanning and multi-line cells ; (b) inspired
by [50], we append the feature pyramid network with a top-down pathway, which
propagates high-level semantic information to low-level feature maps. This al-
lows the network to work better for cells with varying scales; and (c) we append
additional losses during the training phase in order to model the inherent struc-
tural constraints. We formulate two ways of incorporating this information —
(i) through an end-to-end training of cell detection and the structure recognition
networks (explained next), and (ii) through a novel alignment loss function. For
the latter, we make use of the fact that every pair of cells is aligned horizontally
if they span the same row and aligned vertically if they span the same column.
For the ground truth, where tight bounding boxes around the cells’ content
are provided [18, 14, 13], we employ an additional ground truth pre-processing
step to ensure that bounding boxes of cells in the same row and same column
are aligned vertically and horizontally, respectively. We model these constraints
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during the training in the following manner:

L1 =
∑

r∈SR

∑
ci,cj∈r ||y1ci − y1cj ||22, L2 =

∑
r∈ER

∑
ci,cj∈r ||y2ci − y2cj ||22

L3 =
∑

c∈SC

∑
ci,cj∈c ||x1ci − x1cj ||22 and L4 =

∑
c∈EC

∑
ci,cj∈c ||x2ci − x2cj ||22

Here, SR, SC, ER and EC represent starting row, starting column, ending row
and ending column indices as shown in Figure 4. Also, ci and cj denote two cells
in a particular row r or column c; x1ci , y1ci , x2ci and y2ci represent bounding box
coordinates X-start, Y-start, X-end and Y-end respectively of the cell ci. These
losses (L1, L2, L3, L4) can be interpreted as constraints that enforce proper
alignment of cells beginning from same row, ending on same row, beginning
from same column and ending on same column respectively. Alignment loss is
defined as

Lalign = L1 + L2 + L3 + L4. (1)

3.2 Bottom-Up: Structure Recognition

We formulate the table structure recognition using graphs similar to [9]. We
consider each cell of the table as a vertex and construct two adjacency matrices
- a row matrix Mrow and a column matrix Mcol which describe the association
between cells with respect to rows and columns. Mrow,Mcol ∈ RNcells×Ncells .
Mrowi,j

= 1 or Mcoli,j = 1 if cells i, j belong to the same row or column, else 0.
The structure recognition network aims to predict row and column relation-

ships between the cells predicted by the cell detection module during training
and testing. During training, only those predicted table cells are used for struc-
ture recognition which overlap with the ground truth table cells having an IoU
greater than or equal to 0.5. This network has three components:

– Visual Component: We use visual features from P2 layer (refer Figure 5)
of the feature pyramid based on the linear interpolation of cell bounding
boxes predicted by the cell detection module. In order to encode cells’ visual
characteristics across their entire height and width, we pass the gathered
P2 features for every cell along their centre horizontal and centre vertical
lines using lstm [51] to obtain the final visual features (refer Figure 5) (as
opposed to visual features corresponding to cells’ centroids only as in [52]).

– Interaction Component: We use the dgcnn architecture based on graph
neural networks used in [52] to model the interaction between geometrically
neighboring detected cells. It’s output, termed as interaction features, is a
fixed dimensional vector for every cell that has information aggregated from
its neighbouring table cells.

– Classification Component: For a pair of table cells, the interaction features
are concatenated and appended with difference between cells’ bounding box
coordinates. This is fed as an input to the row/column classifiers to pre-
dict row/column associations. Please note that we use the same [52] Monte
Carlo based sampling to ensure efficient training and class balancing. During
testing time, however, predictions are made for every unique pair of table
cells.
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We train the cell detection and structure recognition networks in a joint man-
ner (termed as tabstruct-net) to collectively predict cell bounding boxes along
with row and column adjacency matrices. Further, the two structure recognition
pathways for row and column adjacency matrices are put together in parallel.
The visual features prepared using lstms for every vertex are duplicated for both
the pathways, after which they work in a parallel manner. The overall empirical
loss of tabstruct-net is given by:

L = Lbox + Lcls + Lmask + Lalign + Lgnn, (2)

where Lbox, Lcls and Lmask are bounding box regression loss, classification loss
and mask loss, respectively defined in Mask r-cnn [47], Lalign is alignment loss
which is modeled as a regularizer (defined in Eq. 1) and Lgnn is the cross-entropy
loss back propagated from the structure recognition module of tabstruct-net.
The additional loss components help the model in better alignment of cells be-
longing to same rows/columns during training, and in a sense fine-tunes the
predicted bounding boxes that makes it easier for post-processing and structure
recognition in the subsequent step.

3.3 Post-Processing

Once all the cells and their row/column adjacency matrices are predicted, we
create the xml interpretable output as a post-processing step. From the cell
coordinates along with row and column adjacency matrix, SR, SC, ER and EC
indexes are assigned to each cell, which indicate spanning of that cell along rows
and columns. We use Tesseract [53] to extract the content of every predicted cell.
The xml output for every table image finally contains coordinates of predicted
cell bounding boxes and along with cell spanning information and its content.

4 Experiments

4.1 Datasets

We use various benchmark datasets — scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], unlv [29], Marmot ex-
tended [12], tablebank [11] and pubtabnet [13] datasets for extracting structure
information of tables. Statistics of these datasets are listed in Table 1.

scitsr scitsr icdar icdar-2013 icdar unlv unlv- Marmot table pubtabnet
comp 2013 -partial 2019 partial extended bank

Train 12000 12000 - 124 600 - 446 1016 145K 339K
Test 3000 716 158 34 150 558 112 - 1000 114K

Table 1. Statistics of the datasets used for our experiments.
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4.2 Baseline Methods

We compare the performance of our tabstruct-net against seven benchmark
methods — deepdesrt [7], tablenet [12], graphtsr [14], splerge [10], dgcnn [9],
Bi-directional gru [15] and Image-to-Text [11].

4.3 Implementation Details

tabstruct-net1 has been trained and evaluated with table images scaled to a
fixed size of 1536×1536 while maintaining the original aspect ratio as the input.
While training, cell-level bounding boxes along with row and column adjacency
matrices (prepared from start-row, start-column, end-row and end-column in-
dices) are used as the ground truth. We use nvidia titan x gpu with 12 gb
memory for our experiments and a batch-size of 1. Instead of using 3×3 convolu-
tion on the output feature maps from the fpn, we use a dilated convolution with
filter size of 2×2 and dilation parameter of 2. Also, we use the resnet-101 back-
bone that is pre-trained on ms-coco [54] dataset. Dilated convolution blocks
of filter size 7 are used in the fpn. To compute region proposals, we use 0.5, 1
and 2 as the anchor scale and anchor box sizes of 8, 16, 32, 64 and 128. lstms
used to gather visual features have a depth of 128. The final memory state of
the lstm layers is concatenated with the cell’s coordinates to prepare features
for the interaction network. Further, for generation of the row/column adjacency
matrices, we use 2400 as the maximum number of vertices keeping in mind dense
tables. Next, features from 40 neighboring vertices are aggregated using an edge
convolution layer followed by a dense layer of size 64 with ReLu activation. Since
every input table may contain hundreds of table cells, training can be a time
consuming process. To achieve faster training, we employ a two-stage training
process. In the first stage, we use 2014 anchors and 512 rois, and in the second
stage, we use with 3072 anchors and 2048 rois. During both the stages, we use
0.001 as the learning rate, 0.9 as the momentum and 0.0001 as the weight decay
regularisation.

4.4 Evaluation Measures

We use various existing measures — precision, recall and F1 [14, 18, 29] to evalu-
ate the performance of our model for recognition of physical structure of tables.
For recognition of logical structure of tables, we use bleu [55] score as used
in [11] and Tree-Edit-Distance-based similarity (teds) [13]. Since xml is our fi-
nal output for table structure recognition, we also use bleu [55], cider [56] and
rouge [57] scores to compare generated xml and ground truth xml on spanning
information and content of every cell. We first calculate these scores separately
on each table and then compute both micro-averaged score and macro-averaged
score as the final result. We consistently use an IoU threshold of 0.6 to compute
the confusion matrix. Please note that only non-empty table cells are considered
similar to [18] for the evaluation.

1 Our code is available at https://github.com/sachinraja13/TabStructNet.git
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Test Dataset Train Dataset S-A S-B
P↑ R↑ F1↑ P↑ R↑ F1↑

icdar-2013 scitsr 0.915 0.897 0.906 0.976 0.985 0.981
icdar-2013-partial scitsr 0.930 0.908 0.919 0.991 0.993 0.992
scitsr scitsr 0.927 0.913 0.920 0.989 0.993 0.991
scitsr-comp scitsr 0.909 0.882 0.895 0.981 0.987 0.984
unlv-partial scitsr 0.849 0.828 0.839 0.992 0.994 0.993
icdar-2019 scitsr 0.595 0.572 0.583 0.924 0.899 0.911
icdar-2019 icdar-2019 0.803 0.768 0.785 0.975 0.957 0.966
icdar-2019 scitsr+icdar-2019 0.822 0.787 0.804 0.975 0.958 0.966

Table 2. shows the performance of our tabstruct-net for physical table structure
recognition on various benchmark datasets.

Test Dataset Train Dataset Metric Score

tablebank-word scitsr bleu 0.914
tablebank-latex scitsr bleu 0.937
tablebank-word+latex scitsr bleu 0.916
pubtabnet scitsr teds 0.901

Table 3. shows the performance of our tabstruct-net for logical table structure recog-
nition on various benchmark datasets.

4.5 Experimental Setup

One major challenge in the comparison study with the existing methods is the
inconsistent use of additional information (e.g., meta-features extracted from
the pdfs [10], content-level bounding boxes from ground truths [12, 14] and cell’s
location features generated from synthetic dataset [9]). Hence, we do experiments
in two different setups

– Setup-A (S-A): using only table image as the input
– Setup-B (S-B): using table image along with additional information (e.g.,

cell bounding boxes) as the input. For this, instead of removing the cell
detection component from the network, we ignore the predicted boxes and
use the ground truth ones as input for structure recognition.

5 Results on Table Structure Recognition

Tables 2 and 3 summarize the performance of our model on standard datasets
used in the space of table structure recognition.

5.1 Analysis of Results

Table 4 presents results on icdar-2013 dataset. In S-A, we observe that our
model outperforms deepdesrt [7] method by a 27.5% F1 score. This is because
cell coordinates for the latter are obtained by row and column intersections,
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making it unable to recognize cells that span multiple rows/columns. For dense
tables (small inter-row spacing), row segmentation results of deepdesrt com-
bined multiple rows into one in several instances. split+heuristic [10] method
outperforms tabstruct-net by a small margin, however, it requires icdar-2013
dataset-specific cell merging heuristics and is trained on a considerably larger set
of images. Therefore, a direct comparison of (split+heuristic) with our method
is not fair. Nevertheless, comparable results of tabstruct-net indicates its ro-
bustness to icdar-2013 dataset, without using any kind of dataset-specific post-
processing. However, if compared under the same training environment and no
post-processing, our model outperforms splerge with a 3% average F1 score.
splerge works well for datasets where ground truth bounding boxes are an-
notated at the content-level instead of cell-level. This is because it allows for
a wider area for a prospective prediction of a row/column separator. Further,
since it is based on cell detection through the row and column separators, it
is not agnostic to input image noise such as skew and rotations. This method
is susceptible to dataset-specific post-processing as opposed to ours, where no
post-processing is needed.

Method Training Experimental P↑ R↑ F1↑
Dataset #Images Setup

deepdesrt [7] scitsr 12K S-A 0.631 0.619 0.625
splerge [10] scitsr 12K S-A 0.883 0.875 0.879
split+heuristic [10] Private [10] 83K S-A 0.938 0.922 0.930
tabstruct-net (our) scitsr 12K S-A 0.915 0.897 0.906

tablenet [12] Marmot Extended 1K S-B 0.922 0.899 0.910
graphtsr [14] scitsr 12K S-B 0.885 0.860 0.872
split-pdf [10] Private [10] 83K S-B 0.920 0.913 0.916
split-pdf
+heuristic [10] Private [10] 83K S-B 0.959 0.946 0.953
dgcnn [9] scitsr 12K S-B 0.972 0.983 0.977
tabstruct-net (our) scitsr 12K S-B 0.976 0.985 0.981

Table 4. Comparison of results for physical structure recognition on icdar-2013
dataset. #Images: indicates number of table images in the training set. Heuristic:
indicates dataset specific cell merging rules for various models in [10].

In S-B, tabstruct-net sets up a state-of-the-art benchmark on the icdar-
2013 dataset, outperforming all the existing methods [9, 10, 14, 12]. It is further
interesting to note that our technique outperforms split-pdf+heuristic model
also without needing any post-processing. It is because our enhancements to
the dgcnn [9] model can capture the visual characteristics of a cell across a
larger span through lstms. We observe that our model achieves significantly
improved performance when content-level bounding boxes are used instead of
cell-level, which are much easier to obtain with the help of ocr tools and pdf
meta-information.
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CD Network SR Network IoUCD Scores SR Scores
TH P↑ R↑ F1↑ P↑ R↑ F1↑
0.5 0.9350.9420.9380.9270.9110.919
0.6 0.921 0.926 0.923 0.915 0.897 0.906

Mask r-cnn+td+bu+aldgcnn+p2+lstm0.7 0.815 0.820 0.817 0.797 0.785 0.791
0.8 0.638 0.653 0.645 0.629 0.615 0.622
0.9 0.275 0.312 0.292 0.247 0.236 0.241

Table 5. Physical structure recognition results on icdar-2013 dataset for varying IoU
thresholds to demonstrate tabstruct-net’s robustness. ES: Experimental Setup, CD:
Cell Detection, TH: IoU threshold value, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

Table 5 shows the performance of our technique under the varying IoU thresh-
olds. It can be inferred from the table that our model achieves an F1 score of
79.1% on structure recognition with an IoU threshold value of as high as 0.7. For
the IoU values of 0.5 and 0.6, our model’s performance is 91.9% and 90.6%, re-
spectively. It demonstrates the robustness of our model. Figures 6 and 7 display
some qualitative outputs of our method on the datasets discussed in Section 4.1.
Figure 8 shows some of the failure cases of cell detection by our method. It can
be seen that our model fails for table images that have large amounts of empty
spaces. Supplementary material has (i) more quantitative results, (ii) more qual-
itative examples, (iii) specific implementation details, (iv) detailed comparative
analysis, IoU variation results, and ablation study on all the datasets.

Fig. 6. Sample intermediate cell detection results of tabstruct-net on table images
of icdar-2013, icdar-2019 ctdar and unlv, scitsr, scitsr-comp and tablebank
datasets.
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Fig. 7. Sample structure recognition output of tabstruct-net on table images of icdar-
2013, icdar-2019 ctdar archival and unlv datasets. First Row: prediction of cells
which belong to the same row. Second Row: prediction of cells which belong to the
same column. Cells marked with orange colour represent the examine cells and cells
marked with green colour represent those which belong to the same row/column of the
examined cell.

Fig. 8. Sample intermediate cell detection results of tabstruct-net on table images of
icdar-2013, icdar-2019 ctdar, unlv, scitsr, scitsr-comp and tablebank datasets
illustrate failure of tabstruct-net.

5.2 Ablation Study

Table 6 shows the outcome of our enhancements to Mask r-cnn [47] and dgcnn [9]
models for both cell detection and structure recognition networks under S-A and
S-B. From the table, it can be observed that our additions to the networks result
in a significant increase of 4% average F1 scores on cell detection and structure
recognition tasks. The novel alignment loss, along with the use of top-down and
bottom-up pathways in the fpn results in an improvement of 2.3% F1 score
for cell detection and 2.4% on structure recognition. Use of lstms and P2 layer
output to prepare visual features for structure recognition results in a 2.1% im-
provement of F1 scores. Interestingly, because both models are trained together
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in an end-to-end fashion, cell detection’s effect is also observed in the form of a
1.5% average F1 score. This empirically bolsters our claim of using an end-to-end
architecture for cell detection and, in turn, structure recognition.

ES CD Network SR Network CD Scores SR Scores
P↑ R↑ F1↑ P↑ R↑ F1↑

Mask r-cnn dgcnn 0.885 0.890 0.887 0.871 0.860 0.865
Mask r-cnn dgcnn+P2 0.886 0.892 0.889 0.877 0.863 0.870
Mask r-cnn dgcnn+P2+lstm0.898 0.904 0.901 0.885 0.879 0.882
Mask r-cnn+td+bu dgcnn 0.895 0.899 0.897 0.883 0.867 0.875

S-AMask r-cnn+td+bu dgcnn+p2 0.895 0.901 0.898 0.886 0.870 0.878
Mask r-cnn+td+bu dgcnn+p2+lstm 0.904 0.910 0.907 0.892 0.884 0.888
Mask r-cnn+td+bu+aldgcnn 0.905 0.911 0.908 0.891 0.879 0.885
Mask r-cnn+td+bu+aldgcnn+p2 0.914 0.920 0.917 0.906 0.885 0.895
Mask r-cnn+td+bu+aldgcnn+p2+lstm 0.9210.9260.9240.9150.8970.906

-na- dgcnn -na- -na- -na- 0.972 0.983 0.977
S-B-na- dgcnn+p2 -na- -na- -na- 0.973 0.983 0.978

-na- dgcnn+p2+lstm -na- -na- -na- 0.9760.9850.981

Table 6. Ablation study for physical structure recognition on icdar-2013 dataset. ES:
Experimental Setup, CD: Cell Detection, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

6 Summary

We formulate the problem of table structure recognition as a combination of
cell detection (top-down) and structure recognition (bottom-up) tasks. For cell
detection, we make a modification to the rpn of original Mask r-cnn and in-
troduce a novel alignment loss function (formulated for every pair of table cells)
to enforce structural constraints. For structure recognition, we improve input
representation for the dgcnn network by using lstm, pre-trained ResNet-101
backbone and rpn of cell detection network. Further, we propose an end-to-end
trainable architecture to collectively predict cell bounding boxes along with their
row and column adjacency matrices to predict structure. We demonstrate our
results on multiple public datasets on both digital scanned as well as archival
handwritten table images. We observe that our approach fails to handle tables
containing a large number of empty cells along both horizontal and vertical
directions. In conclusion, we encourage further research in this direction.
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18. Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In:
ICDAR. (2013)

19. Gao, L., Huang, Y., Déjean, H., Meunier, J.L., Yan, Q., Fang, Y., Kleber, F.,
Lang, E.: ICDAR 2019 competition on table detection and recognition (cTDaR).
In: ICDAR. (2019)

20. Mondal, A., Lipps, P., Jawahar, C.V.: IIIT-AR-13K: a new dataset for graphical
object detection in documents. In: DAS. (2020)

21. Itonori, K.: Table structure recognition based on textblock arrangement and ruled
line position. In: ICDAR. (1993)



16 Raja et al.

22. Green, E., Krishnamoorthy, M.: Recognition of tables using table grammars. In:
Annual Symposium on Document Analysis and Information Retrieval. (1995)

23. Kieninger, T.G.: Table structure recognition based on robust block segmentation.
In: Document Recognition V. (1998)

24. Tupaj, S., Shi, Z., Chang, C.H., Alam, H.: Extracting tabular information from
text files. EECS Department, Tufts University, Medford, USA (1996)

25. Gilani, A., Qasim, S.R., Malik, I., Shafait, F.: Table detection using deep learning.
In: ICDAR. (2017)

26. Dong, H., Liu, S., Han, S., Fu, Z., Zhang, D.: TableSense: Spreadsheet table
detection with convolutional neural networks. In: AAAI. (2019)

27. Kavasidis, I., Pino, C., Palazzo, S., Rundo, F., Giordano, D., Messina, P., Spamp-
inato, C.: A saliency-based convolutional neural network for table and chart de-
tection in digitized documents. In: ICIAP. (2019)

28. Saha, R., Mondal, A., Jawahar, C.V.: Graphical object detection in document
images. In: ICDAR. (2019)

29. Shahab, A., Shafait, F., Kieninger, T., Dengel, A.: An open approach towards the
benchmarking of table structure recognition systems. In: DAS. (2010)

30. Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using
tree transformation. IEEE Trans. on PAMI (2002)

31. Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for handwritten
mathematical expression recognition. In: ICDAR. (2018)

32. Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: FigureSeer: Parsing
result-figures in research papers. In: ECCV. (2016)

33. Tang, B., Liu, X., Lei, J., Song, M., Tao, D., Sun, S., Dong, F.: DeepChart: Com-
bining deep convolutional networks and deep belief networks in chart classification.
Signal Processing (2015)

34. Harit, G., Bansal, A.: Table detection in document images using header and trailer
patterns. In: ICVGIP. (2012)

35. Gatos, B., Danatsas, D., Pratikakis, I., Perantonis, S.J.: Automatic table detection
in document images. In: CVPR. (2005)

36. Ohta, M., Yamada, R., Kanazawa, T., Takasu, A.: A cell-detection-based table-
structure recognition method. In: ACM Symposium on Document Engineering.
(2019)

37. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific
table recognition. In: ICDAR. (2019)

38. Adiga, D., Bhat, S.A., Shah, M.B., Vyeth, V.: Table structure recognition based
on cell relationship, a bottom-up approach. In: RANLP. (2019)

39. Riba, P., Dutta, A., Goldmann, L., Fornes, A., Ramos, O., Llados, J.: Table
detection in invoice documents by graph neural networks. In: ICDAR. (2019)
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