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Abstract

For sponsored search auctions, we consider contextual multi-armed bandit problem in the
presence of strategic agents. In this setting, at each round, an advertising platform (center)
runs an auction to select the best-suited ads relevant to the query posted by the user. It is in
the best interest of the center to select an ad that has a high expected value (i.e., probability
of getting a click × value it derives from a click of the ad). The probability of getting a click
(CTR) is unknown to the center and depends on the user’s profile (context) posting the query.
Further, the value derived for a click is the private information to the advertiser and thus
needs to be elicited truthfully. The existing solution in this setting is not practical as it suffers

from very high regret (O(T
2
3 )).

Towards designing practically useful mechanisms, we first design an elimination-based algo-
rithm ELinUCB-SB that is ex-post monotone, which is a sufficient condition for truthfulness.
Thus, ELinUCB-SB can be naturally extended to ex-post incentive compatible and ex-post
individually rational mechanism M-ELinUCB-SB. We show via experiments that the proposed
mechanisms outperform the existing mechanism in this setting. Theoretically, however, the
mechanism may incur linear regret in some instances, which may not occur frequently. To have
a theoretically stronger mechanism for regret, we propose a SupLinUCB-based allocation rule
SupLinUCB-S. With the help of SupLinUCB-S, we design a mechanism M-SupLinUCB-S,
which is ex-post incentive compatible and ex-post individually rational. We prove that it has
regret O(n2√dT log T ) as against O(n

√
dT log T ) for non-strategic settings; O(n) is price of

truthfulness. We demonstrate the efficacy of our mechanisms via simulation and establish
superior performance than the existing literature.

1 Introduction

Internet advertising is one of the booming and rapidly increasing industry with revenue volume
in billions of dollars [13]. The majority of the revenue generated by search engines like Google,
Yahoo, and Bing comes from advertisements displayed on their platform. Typically, for any search
query by a user, a search engine/the advertising platform, henceforth a center, displays ads along
with the relevant results via an auction mechanism known as sponsored search auction (SSA). The
fundamental difference between traditional advertising and Internet advertising is the payment
model. In the former, the advertisers (henceforth agents), pay based on the number of impressions
whereas in latter, the agents pay only if their ad receives a click. Thus, the probability of an ad
getting clicked, referred to as click-through rate (CTR), plays a crucial role in SSA. The CTR of an
ad is unknown to the center, but it can learn CTRs by displaying the ad repeatedly over a period
of time. Each agent also has a private valuation for its ad, which represents its willingness to pay
for a click. This valuation needs to be elicited from the agents truthfully.

In the absence of contexts, when the agents report their true valuations, we can model the
problem as a Multi-Armed Bandit (MAB) problem [16] with agents playing the role of the arms.
As the agents (arms) are strategic, they may misreport their valuations to maximize their utility.
To elicit truthful bids from the agents, researchers have used Mechanism Design [2, 20]. However,
such mechanisms are oblivious to the learning requirements and fail to avoid manipulations by the
agents when learning is involved. In such cases, the researchers have modeled this problem as a
MAB mechanism [7, 11, 12, 14]. The authors designed ex-post truthful mechanisms wherein the
agents are not able to manipulate even when the random clicks are known to them.

Typically an individual user tends to click some specific ads more often than the other ads,
which depends upon the profile of an individual user of the platform. In this work, we leverage this
fact and use the profile of the user as features (for context) to personalize the ads to increase the
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number of clicks and hence, the social welfare. When the CTRs of the ads depend on the specific
context at a particular round, we can model the problem as a Contextual MAB (ConMAB) problem
[4, 17, 18, 1]. However, a naive implementation of ConMAB is not adequate in the presence of
strategic agents.

To the best of our knowledge, contextual information in SSA is considered only in [12]. The
authors proposed a novel, theoretically sound, deterministic, exploration-separated mechanism
that offers strong game-theoretic properties. However, it faces multiple practical challenges: (i) it
incurs high cost of learning (regret), (ii) the center needs to know the number of rounds for which
it needs to execute SSA, and (iii) the initial rounds being free, a malicious agent may drop off after
free rounds; in some cases, all the rounds could be free.

Contributions

In the presence of strategic agents, random context-arrivals, and stochastic clicks, our goal is to
design a non-exploration-separated, ex-post truthful mechanism that (i) learns CTRs efficiently
(minimizes regret), (ii) may not need prior knowledge of T , and (iii) does not have free rounds.
We leverage popular algorithms LinUCB [18] and SupLinUCB [10] that perform well in estimating
CTRs in the contextual setting to build our randomized mechanisms to avoid manipulations by
strategic agents. In particular, our contributions are:

• We adapt LinUCB to design an ex-post monotone allocation rule ELinUCB-S for a single-
slot SSA (Theorem 2). We further optimize ELinUCB-S by introducing batch level update to
propose ELinUCB-SB and using resampling procedure by [6], we develop an ex-post truthful
mechanism M-ELinUCB-SB, which is also ex-post individually rational (Theorem 3). Unlike
existing ConMAB mechanism, M-ELinUCB-SB does not need to know T .

• For stronger theoretical guarantees, we adapt SupLinUCB to design an ex-post monotone
allocation rule SupLinUCB-S for a single-slot SSA (Theorem 11). We prove that SupLinUCB-
S has regret O(n2

√
dT log T ) (Theorem 9) as against O(n

√
dT log T ) for the non-strategic

settings; we attribute O(n) as price of truthfulness. Using resampling procedure, we develop
M-SupLinUCB-S which is ex-post truthful and ex-post individually rational. M-SupLinUCB-
S, however, needs to know T upfront.

• We study M-ELinUCB-SB and M-SupLinUCB-S with the existing mechanism M-Reg, on
simulated data and provide empirical analysis. Empirically, M-ELinUCB-SB performs supe-
rior to M-SupLinUCB-S by large factors for less than million rounds.

2 Preliminaries

First, we define our model and notation.

2.1 Model and Notation

There is a fixed set of agents N = {1, 2, . . . , n}, where each agent has exactly one ad to display
and the center has one slot available for allocation. A contextual n−armed Multi-Armed Bandit
(MAB) mechanism M proceeds in discrete rounds t = 1, 2, . . . , T . At each round t:

1. M observes a context xt ∈ [0, 1]d which summarizes the profile of the user arriving at round
t.

2. Based on the history, ht, of allocations, observed clicks, and the context xt, M chooses an
agent It ∈ N to display it’s ad.

3. A click rIt is observed which is 1 if it gets clicked and 0 otherwise.

4. Mechanism M decides the positive payment pIt,t to be made by the agent It to the center.
The payment by any other agent is 0.

5. Update ht = ht−1 ∪ {xt, {It}, {rIt}}.

6. The mechanism then improves its arm-selection strategy with new observation (xt, {It}, {rIt}).
No feedback is received for the agents that are not selected.
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Each agent i is thus characterized by two quantities: (i) private valuation vi ∈ [0, 1], which repre-
sents the willingness to pay for the click received and is constant throughout the rounds, and (ii)
click through rate (CTR) of its ad µi(xt) ∈ [0, 1] which is an unknown parameter and is dependent
on the context xt. Each agent i submits the valuation of getting a click on its ad as bid bi. We
assume that the bids are constant across the rounds (since vi’s are constant). We assume that the
CTR of an agent i is linear in d-dimensional context xt with some unknown coefficient vector θi
[18]. Thus, the problem reduces to learning the d−dimensional vector θi for each agent i. The
probability of getting a click on the ad of agent i at any given round t is given as:

P[ri,t|xt] = µi(xt) = θᵀi xt

Thus, the expected valuation of agent i is viµi. Let b−i be the bid vector of all the agents other
than i and b denote the bid vector of all the agents. The utility of an agent i in round t with
history ht is given as:

ui,t(bi, b−i, xt;ht; vi) = 1{It(b, xt;ht) = i}ri,t(vi − pi,t(b;ht))

and the utility of center is given as:

uct(xt) =

N∑
i=1

{It(b, xt;ht) = i}ri,tpi,t

In this work, our aim is to maximize social welfare similar to [7, 14]. The social welfare at round
t is evaluated as sum of utilities of the agents and the center and is given as:

swt(xt) =

N∑
i=1

{It(b, xt;ht) = i}ri,tvi.

When the CTRs are not known, the efficiency of any mechanism is measured by its rate of learning
or regret. Thus, our goal reduces to design a mechanism M that minimizes the social welfare
regret which is given as:

RT (M) =

T∑
t=1

[θTi∗t xt · bi∗t − θ
T
Itxt · bIt ] (1)

Here, i∗t (xt) denote the highest expected valuation (based on bids) i.e., i∗t (xt) = argmaxk{bk ·
(θTk xt)}.

In the following section, we define game theoretic properties relevant to this work.

2.2 Game Theoretic Properties

A mechanism M = (A,P) (where A is the allocation rule and P is the payment rule) is ex-post
truthful (formally called EPIC) if and only if A is ex-post monotone [19, 3]. That is, for all
instances of possible click realizations and context-arrivals, by increasing its bid to b+i > bi, agent
i should obtain at least same number of clicks at bid bi if not more. Formally,

Definition 1. Ex-post monotonicity: Let νi(bi, t) denote total number of clicks on the ad of
agent i in first t rounds. Then, A is ex-post monotone if for every possible sequence of context-
arrivals and click realizations, for each agent i ∈ N ,∀t,∀b−i and two possible bids of i, b+i ≥ bi we
have

νi(b
+
i , t) ≥ νi(bi, t).

Definition 2. EPIC: A mechanismM = (A,P) is said to be ex-post incentive compatible (EPIC)
if by misreporting the bid, no agent can gain its total utility more than that it would have obtained
by bidding truthfully, i.e., ∀i,∀b−i,∀vi,∀ht,∀bi,

T∑
t=1

ui,t(vi, b−i, xt;ht; vi) ≥
T∑
t=1

ui,t(bi, b−i, xt;ht; vi).

EPIC implies even if an agent has observed all the contexts and all the click realizations,
it is in the agent’s best interest to report true valuation. Note that, if a mechanism does any
randomization, ui,t(·) is replaced by E[ui,t(·)], where the expectation is taken w.r.t. randomization
in the mechanism. Such a mechanism is still truthful for every realization of external randomness
such as click realizations, context-arrivals.
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One alternative notion of IC which may seem suitable in our model is dynamic IC [8]. We would
like the reader to note that in our model, the bids, as well as valuations, are constant throughout
the rounds, and not dependent on any round t. Thus, private information and communication
with the mechanism are not dynamic. Hence, a strong game-theoretic property of ex-post IC is
more apt in our model.

Definition 3. EPIR: A mechanismM = (A,P) is said to be ex-post individually rational (EPIR)
if every agent has a non-negative utility with truthful bidding irrespective of the bids of other agents
i.e., ∀i,∀xt,∀vi,∀t, ∀ht,

ui,t(vi, b−i, xt;ht; vi) ≥ 0.

The authors in [6] have shown the power of randomization in designing truthful mechanisms
by proposing a randomized context-free MAB mechanism that is ex-post truthful and has regret
O(
√
T ). Thus, by introducing randomness in the mechanism, they showed that it is possible to

bypass the impossibility result in [7], which states that any deterministic, truthful MAB mechanism
has to be exploration-separated and hence must suffer a regret of Ω(T 2/3). The main result of [6]
involves designing the black box mechanism using the self-resampling procedure in Algorithm 1,
which provides ex-post truthful and IR mechanism if given an ex-post monotone allocation rule
(Theorem 1).

Algorithm 1 Non-recursive self-resampling procedure [6]

1: Input: bid b = {b1, . . . , bn}, parameter δ ∈ (0, 1)
2: Output: modified bid y = {y1, . . . , yn}, η = (η1, . . . , ηn)
3: Independently for each agent i ∈ N
4: Sample: εi uniformly at random from [0, 1]
5: with probability 1− δ
6: ηi = 1
7: else
8: ηi = ε

1/(1−δ)
i

9: Construct the vector of modified bids y = (y1, . . . , yn) , where yi = ηibi

Theorem 1. (Theorem 4.5, [6]) Let A be ex-post monotone allocation rule. Applying the trans-
formation in Algorithm 1 to A with parameter δ, we obtain a mechanism M such that M is EPIC
and EPIR.

There is no previous work done in designing the ex-post monotone allocation rule in the con-
textual setting. Hence, we address this problem and design two allocation rules, which are ex-post
monotone, though it has different properties.

Concerning ConMAB mechanisms for SSA, two works are closely related to our work [12] and
[18]. The former considers the strategic agents in ConMAB [12] by proposing a mechanism that
we will call M-Reg. The mechanism is exploration-separated [11, 7] which is deterministic and
induces EPIC property. The regret achieved by this mechanism is quite high O(T 2/3) as compared
to O(

√
T ) regret in the traditional ConMAB problem. The latter introduces LinUCB algorithm,

which is particularly of interest to us. Hence we describe it below.

2.3 LinUCB

LinUCB [18] is a generic ConMAB algorithm that efficiently learns the CTR of an agent where
the CTR model is linear in terms of context and the unknown parameters. The authors experi-
mentally showed the efficacy of the algorithm in approximating the CTRs of news articles in news
recommendation. Hence, we choose to adapt it to our setting. LinUCB is motivated by UCB [5]
where upper confidence bound (UCB) is maintained for each agent. To capture the contextual
information in ConMAB setting, LinUCB uses Ai and ci for each agent i, where Ai summarizes
the information about contexts and ci corresponding clicks. It maintains upper confidence bound

(UCB) for each agent i as µ+
i,t ← θ̂>i xt +α

√
x>t A

−1
i xt where θ̂i ← A−1i ci and α is learning param-

eter. At round t, the algorithm selects the agent It with the highest UCB µ̂i,t. The statistics for
the selected agent It is updated as AIt ← AIt + xtx

ᵀ
t , cIt ← cIt + rItxt, where rIt is the indicator

variable of receiving click.
LinUCB was originally designed to estimate CTRs of news articles and hence does not capture

strategic manipulations. Motivated by LinUCB, we build randomized EPIC mechanisms for SSA by
developing an ex-post monotone allocation rule, ELinUCB-SB, and using the resampling procedure
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Algorithm 2 LinUCB

1: Inputs: α ∈ R+

2: Initialization:
3: for all i ∈ N do
4: Ai ← Id (d-dimensional identity matrix)
5: ci ← 0d×1 (d-dimensional zero vector)
6: for t = 1, 2, 3, . . . , T do
7: Observe context of user as xt
8: for all i ∈ N do

9: θ̂i ← A−1i ci, µ
+
i,t ← θ̂ᵀi xt + α

√
xᵀtA

−1
i xt

10: It = argmaxi∈N µ
+
i,t, Observe rIt ∈ {0, 1}

11: AIt ← AIt + xtx
ᵀ
t , cIt ← cIt + rItxt

(Algorithm 1) to design a randomized EPIC and EPIR mechanism M-ElinUCB-SB [6]. ELinUCB-
SB has linear regret. We present it here as the key ideas to adapt LinUCB to design truthful
mechanisms are useful and carry forward when we design a more complicated mechanism, M-
SupLinCUB-S, based on SupLinUCB by [10].

3 M-ELinUCB-SB : Truthful ConMAB Mechanism 1

We first propose a single-slot allocation rule ELinUCB-S based on LinUCB. We next provide a
further optimized algorithm ELinUCB-SB that incorporates mini-batch learning, which makes the
algorithm efficient both in terms of regret and computation.

3.1 ELinUCB-S : LinUCB-Based Single-Slot SSA

Algorithm 3 ELinUCB-S : LinUCB-based allocation for single-slot SSA

1: Inputs: n, α ∈ R+, bid vector b
2: Initialization: Sact = N
3: for all i ∈ N do
4: Ai ← Id (d-dimensional identity matrix)
5: ci ← 0d×1 (d-dimensional zero vector)
6: µ+

i ← bi;µ
−
i ← 0

7: for t = 1, 2, 3, . . . do
8: Observe context as xt
9: It′ ← 1 + (t mod n)

10: if It′ ∈ Sact then
11: Allocate agent It′ , i.e., It ← It′

12: Observe click as rIt ∈ {0, 1}
13: AIt ← AIt + xtx

ᵀ
t , cIt ← cIt + rItxt, θ̂It ← A−1

It
cIt

14: {Update confidence bound}
15: if µ−It < µ+

It
then

16: (γ−It , γ
+
It

) ← bIt(θ̂Itxt ∓ α
√
xᵀtA

−1
It
xt)

17: if max(µ−It , γ
−
It

) < min(µ+
It
, γ+
It

) then

18: (µ−It , µ
+
It

)← (max(µ−It , γ
−
It

),min(µ+
It
, γ+
It

))
19: else

20:
(
µ−It , µ

+
It

)
←
(
µ−
It

+µ+
It

2
,
µ−
It

+µ+
It

2

)
21: else
22: It ← argmaxi bi · (θ̂Ti xt), 3 It ∈ Sact
23: Observe click as rIt ∈ {0, 1}
24: for all agent i ∈ Sact do
25: if µ+

i < maxk∈Sact µ
−
k then

26: Remove i from Sact

ELinUCB-S (Algorithm 3) for single-slot allocation maintains a set of active agents Sact. At
each round, algorithm evaluates whether an agent should be retained in Sact or not. Once an
agent is evicted from Sact, it can not be added back. For better understanding about the working
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of the algorithm, we virtually divide the LinUCB-S into 4 subroutines: i) Initialization (lines[1-
7]) ii) Exploration (lines[11-20]) iii) Exploitation (lines[22-23]) iv) Elimination (lines[24-26]).1 For
each agent i, the algorithm maintains lower confidence bound (LCB) and upper confidence bound
(UCB) as µ−i and µ+

i respectively.
At each round t, the algorithm observes context xt. It determines the index of agent It′ whose

turn is to display the ad based on round robin order, as stated in line[9]. The algorithm then checks
if It′ ∈ Sact. If it evaluates to true the algorithm runs Exploration subroutine else Exploitation.
In Exploration subroutine the algorithm allocates the slot to It′ , observes click rI′t

and updates

its parameters. The confidence bounds are updated if and only if the size of confidence interval
decreases (line[18]). In Exploitation subroutine, the agent with the maximum estimated expected
valuation among the agents in Sact is allocated the slot and observes click rIt . It is important
to note that no parameter is updated during Exploitation subroutine which is crucial for the ex-
post monotonicity property. At the end of each round, Elimination subroutine is executed which
removes the agents j ∈ Sact from Sact if UCB of agent j is less than LCB of any other agent in
Sact.

The intuition driving the algorithm is after sufficient exploration the confidence interval becomes
sufficiently small, hence the agents which are close to optimal continues to remain in Sact and sub-
optimal agents are eliminated.

Algorithm 4 ELinUCB-SB : LinUCB-based batch allocation rule for single-slot SSA

1: Inputs: n, T , α ∈ R+, bid vector b, batch size bs
2: Initialization: Sact = N , x

′
← 0d×1, T

′
= b T

bs
c

3: for all i ∈ N do
4: Ai ← Id (d-dimensional identity matrix)
5: ci ← 0d×1 (d-dimensional zero vector)
6: µ+

i ← bi;µ
−
i ← 0

7: for t
′

= 1, 2, 3, . . . , T
′
do

8: It′ ← 1 + (t
′
− 1) mod n

9: if It′ ∈ Sact then
10: for t = (t

′
− 1)bs, . . . , (t

′
· bs− 1) do

11: Observe context as xt
12: It ← It′ ,

13: x
′
← ((t− 1)x

′
+ xt)/t (averaging over contexts)

14: Observe click as rIt ∈ {0, 1}
15: AIt ← AIt + xtx

ᵀ
t , cIt ← cIt + rItxt, θ̂It ← A−1

It
cIt

16: if µ−It < µ+
It

then

17: (γ−It , γ
+
It

)← bIt(θ̂
ᵀ
It
x
′
∓ α

√
(x′)ᵀA−1

It
x′)

18: if max(µ−It , γ
−
It

) < min(µ+
It
, γ+
It

) then

19: (µ−It , µ
+
It

)← (max(µ−It , γ
−
It

),min(µ+
It
, γ+
It

))
20: else

21:
(
µ−It , µ

+
It

)
←
(
µ−
It

+µ+
It

2
,
µ−
It

+µ+
It

2

)
22: else
23: for t = (t

′
− 1)bs, . . . , (t

′
· bs− 1) do

24: Observe xt
25: It ← argmaxi bi · (θ̂Ti xt), 3 It ∈ Sact
26: Observe click as rIt ∈ {0, 1}
27: for all agent i ∈ Sact do
28: if µ+

i < maxk∈Sact µ
−
k then

29: Remove i from Sact

3.2 Regret Analysis of ELinUCB-SB

Although the algorithm ELinUCB-S seems promising, the dynamic and varying nature of contexts
and its arrival order may lead to the elimination of an optimal agent. Hence, it may continue to
allocate sub-optimal agents in subsequent rounds leading to high regret on specific instances, which
is evident from our simulation of the algorithm (Fig.1c). The updates in µ+

i , µ−i depend upon the
context in such a way that µ+

i is non-increasing and µ−i is non-decreasing, as stated and proved

1Note that this is virtual division and proposed algorithms is not actually exploration-separated where initial
rounds are only exploration as well as free and then exploitation where no update happens.

6



in Claim 2. These updates being irreversible needs to be carefully handled to optimize regret. To
counter this problem, we design ELinUCB-SB (Algorithm 4) in which we have introduced a subtle,
yet important use of mini-batch. The algorithm ELinUCB-SB allocates an agent for bs number
of rounds instead of one round. It follows similar rules for allocating agents and maintaining the
active set Sact. It updates the bounds of agents by taking the average over the contexts arrived
in bs rounds. Updating the bounds over the average of context after the completion of batch
allocation handles the variance in contexts and its arrivals, thus reducing the regret significantly.

It can be shown that eventually, ELinUCB-SB will eliminate all but one arm. The remaining
arm will be the dominant arm in most of the contexts. However, we can construct examples
where this arm is not the best for at least one context, which has non-zero probability and thus
leading to O(T ) regret. However, the round number at which it happens is generally very high,
which we validate experimentally. Even though ELinUCB-SB incurs linear regret theoretically, it
performs well in experiments and has interesting monotonicity properties; the proofs we leverage
while designing ex-post truthful ConMAB mechanism with sub-linear regret in the next section.

3.3 Monotonicity of ELinUCB-S

We now prove ex-post monotonicity property for the proposed allocation rule.
For a fixed sequence of context-arrivals {xt}t, and click realization ρ, let Sact(b, t) be the set

of active agents in the beginning of round t when agents bid b = (bi, b−i). For each agent i, let
µ−i (b, t) and µ+

i (b, t) be the values of µ−i and µ+
i in the round t and similarly when agents bid b′.

We prove ex-post monotonicity with the following claims.

Claim 1. For fixed context-arrivals {xt}t and click realization ρ, let two bid vectors be b and b′,
then for each round t, if i ∈ Sact(b, t) ∩ Sact(b

′
, t), then:

µ−i (b, t)/bi = µ−i (b′, t)/b′i and µ+
i (b, t)/bi = µ+

i (b′, t)/b′i

Proof. µ+
i and µ−i are updated only in Exploration subroutine which is based on round-robin order

and hence does not depend on bid. Thus, the claim follows from the fact that contexts and click
realizations are fixed. �

Claim 2. For a fixed bid vector b, and each agent i : µ−i ≤ µ+
i , then for all (t− 1, t) consecutive

rounds µ−i is non-decreasing and µ+
i is non-increasing.

Proof. From lines[15-20] of the Algorithm 3, we have: µ−i (b, t−1) ≤ µ−i (b, t) ≤ µ+
i (b, t) ≤ µ+

i (b, t−
1). Hence the claim holds. �

Claim 3. For any two bid vectors b+ and b, where b+i ≥ bi, b
+
j = bj ∀j 6= i and i ∈ Sact(b+, τ) ∩

Sact(b, τ), then ∀τ ∈ {1, 2, . . . , T}, Sact(b+, τ) ⊆ Sact(b, τ) holds.

Proof. The condition i ∈ Sact(b+, τ) ∩ Sact(b, τ) implies that if i ∈ Sact(b+, τ), then i ∈ Sact(b, τ),
hence satisfying the claim for i. For j 6= i, we will use induction on t. The claim trivially holds
for t = 1. Let, t ≤ τ be the last round such that Sact(b

+, t) = Sact(b, t) and Sact(b
+, t + 1) 6=

Sact(b, t+ 1). In this case, we prove that: ∀j 6= i, j ∈ Sact(b+, t+ 1) =⇒ j ∈ Sact(b, t+ 1).
Since, j 6= i, µ+

j (b+, t+ 1) = µ+
j (b, t+ 1), µ−z (b+, t+ 1) = µ−z (b, t+ 1) ∀z 6= i, and µ−i (b+, t+ 1) ≥

µ−i (b, t+ 1) from Claim 1. Thus,

µ+
j (b+, t+ 1) > max

z∈Sact(b+,t)
µ−z (b+, t+ 1)

≥ max
z∈Sact(b+,t)

µ−z (b, t+ 1)

=⇒ µ+
j (b, t+ 1) > max

z∈Sact(b,t)
µ−z (b, t+ 1)

(Since Sact(b, t) = Sact(b
+, t)). Hence, j ∈ Sact(b, t + 1). From, induction hypothesis, ∀t′ s.t.

τ > t′ ≥ t, Sact(b+, t′) ⊆ Sact(b, t′). We will now prove that Sact(b
+, t′ + 1) ⊆ Sact(b, t′ + 1).

Consider any j ∈ Sact(b
+, t′) ∩ Sact(b, t′): we will prove that if j ∈ Sact(b

+, t′ + 1), then
j ∈ Sact(b, t′ + 1).

Since j ∈ Sact(b+, t′)∩Sact(b, t′), µ+
j (b+, t′+1) = µ+

j (b, t′+1). Also, ∀z ∈ Sact(b, t′)∩Sact(b+, t′)
and z 6= i, µ−z (b+, t′ + 1) = µ−z (b, t′ + 1). Further, ∀z such that z ∈ Sact(b, t′) but z /∈ Sact(b+, t′),
∃l ∈ Sact(b+, t′) such that µ+

z (b+, t′ + 1) < µ−l (b+, t′ + 1) =⇒ µ−z (b+, t′ + 1) < µ−l (b+, t′ + 1).
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Thus, maxz∈Sact(b,t′+1) µ
−
z (b+, t′+ 1) ≤ maxz∈Sact(b+,t′+1) µ

−
z (b+, t′+ 1). Thus, j ∈ Sact(b+, t′+ 1)

implies

µ+
j (b+.t′ + 1) ≥ max

z∈Sact(b+,t′)
µ−z (b+, t′ + 1)

=⇒ µ+
j (b, t′ + 1) ≥ max

z∈Sact(b,t′)
µ−z (b+, t′ + 1)

=⇒ µ+
j (b, t′ + 1) ≥ max

z∈Sact(b,t′)
µ−z (b, t′ + 1)

�

Claim 4. For fixed context-arrivals, fixed click realizations, and fixed bids of the agents except i,
that is, for a fixed b−i, if i ∈ Sact(t, b), then i ∈ Sact(t, b+) where b = (bi, b−i) and b+ = (b+i , b−i);
b+i > bi.

Proof. Let τ∗ ≥ 1 be the last round for i s.t. it is in active set with both bids. From Claim 1,

µ+
i (b+, τ∗) =

b+i
bi
µ+
i (b, τ∗) > µ+

i (b, τ∗) as i ∈ Sact(b, τ
∗) ∩ Sact(b+, τ∗). As the context-arrivals,

click realizations and bids of the remaining agents are fixed, if agent i becomes inactive with bid
b+i then

µ+
i (b+, τ∗) < max

k∈Sact(b+,τ∗−1)
µ−k (b+, τ∗)

=⇒ µ+
i (b, τ∗) < max

k∈Sact(b+,τ∗−1)
µ−k (b+, τ∗)

=⇒ µ+
i (b, τ∗) < max

k∈Sact(b,τ∗−1)
µ−k (b, τ∗).

The last line follows from Claim 3. Thus, i is also inactive with bid bi. �

Theorem 2. The allocation rule induced by ELinUCB-S (Algorithm 3) is ex-post monotone.

Proof. For a fixed context-arrivals {xt}t, click realization ρ, bids of agents except i, i.e., b−i and
two possible bids b+i > bi, let τ and τ+ be the last round for i s.t. i is in active set with bids bi
and b+i respectively. From Claim 4, τ+ ≥ τ . Thus, i will receive more number of rounds with bid
b+i as compared with bid bi. �

Proposition 1. The allocation rule induced by ELinUCB-SB (Algorithm 4) is ex-post monotone.

Proof. The difference between Algorithm 3 and Algorithm 4 is the introduction of batch allocation.
In Algorithm 4 the unit of one round is equivalent to bs rounds in Algorithm 3. Hence, by replacing
variable t with t

′
where t ∈ {1, 2, . . . , T} and t

′ ∈ {1, 2, . . . , b Tbsc} will satisfy all the claims (Claim
1-4). Thus, ELinUCB-SB (Algorithm 4) is still ex-post monotone. �

M-ELinUCB-SB

We now propose the following mechanism M-ELinUCB-SB for the single-slot SSA. A mechanism
is defined as M = (A,P). The outline of both mechanisms is defined in Mechanism 5. For both
the mechanisms, we apply the resampling procedure [6] on the bids and the allocation in both
cases are based on the modified bids, where δ is resampling parameter. For M-ELinUCB-SB, A is
given by ELinUCB-SB. The payment P at round t, corresponding context xt, ∀i ∈ N is given by
pi,t = bi · (1{It = i}) if ηi = 1 and pi,t = bi · (1{It = i}) · (1− 1

δ ) if ηi < 1.

Algorithm 5 M-ELinUCB-SB : LinUCB-based ex-post truthful mechanism

1: Input: bid vector b, resampling parameter δ
2: Run self-resampling procedure on bid vector b, obtain modified bid vector y = (y1, . . . , yn), η =

(η1, . . . , ηn)
3: Allocate according to A(y, t)

4: For each agent i, assign payment pi,t = bi · Ai,t(y, t) ·
{

1 if ηi = 1
1− 1

δ
if ηi < 1

8



3.4 M-ELinUCB-SB : Game Theoretic Analysis

Theorem 3. M-ELinUCB-SB is ex-post incentive compatible (EPIC) and ex-post individually
rational (EPIR) mechanism.

Proof. The result follows from Theorem 1 and by ex-post monotonicity of A defined in Algorithm
4. �

4 M-SupLinUCB-S : Truthful ConMAB Mechanism 2

As the mechanism with allocation rule in Algorithm 4 can incur linear regret, in this section, we
propose a new ConMAB mechanism for SSA that achieves sub-linear regret. First, we explain how
we adapt SupLinUCB [10] for SSA to derive an ex-post monotone allocation algorithm SupLinUCB-
S in the next subsection. In Section 4.2, we prove the regret bound on SupLinUCB-S. Then we
prove the monotonicity of it. Finally, we design a truthful mechanism M-SupLinUCB-S.

4.1 SupLinUCB-S

Chu et al. [10] proposed SupLinUCB for contextual MAB settings with linear payoffs. First let
us emphasize the major differences between SupLinUCB ([10]) and SupLinUCB-S (proposed here,
Algorithm 6). (i) Chu et al. have considered a common θ to be learned across all the agent and for
each round t the contexts are different for each agent whereas in our setting we have independent θi
to be learned for each agent i whereas the context across each agent is same. (ii) We have adapted
their algorithm for auction setting such that it satisfies ex-post monotonicity property, which is
necessary to design ex-post truthful mechanisms. Our algorithm is presented in 6.

Algorithm 6 SupLinUCB-S:(Adapted from SupLinUCB by [10] to satisfy monotonicity property)

1: Initialization: S ← lnT , Ψs
i,t ← φ for all s ∈ [lnT ]

2: for t = 1,2,. . . , T do
3: s← 1 and Â1 ← N
4: j ← 1 + (t mod n)
5: repeat
6: Use BaseLinUCB-S with {Ψs

i,t}i∈N and context vector xt to calculate the width wsi,t and upper

confidence bound ucbsi,t = (r̂si,t + wsi,t), ∀i ∈ Âs
7: if j ∈ Âs and wsj,t > 2−s then
8: Select It = j
9: Update the index sets at all levels:

Ψs′
i,t+1 ←

{
Ψs′
i,t ∪ {t} if s = s′

Ψs′
i,t otherwise

10: else if wsi,t ≤ 1√
T
, ∀i ∈ Âs then

11: Select It = argmaxi∈Âs
bi · (r̂si,t + wsi,t)

12: Update index sets at all levels for It:
Ψs′
It,t+1 ← Ψs′

It,t, ∀s
′ ∈ [S]

13: else if wsi,t ≤ 2−s, ∀i ∈ Âs then

14: Âs+1 ← {i ∈ Âs|bi · (r̂si,t + wsi,t) ≥ maxa∈Âs
ba · (r̂sa,t + wsa,t)− 21−s}

15: s← s+ 1
16: else
17: Select It = argmaxi∈Âs

bi · (r̂si,t + wsi,t)
18: until It is selected

Algorithm 7 BaseLinUCB-S: (Adapted from BaseLinUCB by [10])

1: Inputs: α ∈ R+, Ψi,t ⊆ {1, 2, . . . , t− 1}
2: Ai,t ← Id +

∑
τ∈Ψi,t

xᵀτxτ

3: ci,t ←
∑
τ∈Ψi,t

ri,τxτ

4: θi,t ← A−1
i,t ci,t

5: Observe context vector as xt ∈ [0, 1]d

6: for i ∈ N do

7: wsi,t ← α
√
xᵀtA

−1
i,t xt

8: r̂si,t ← θᵀi,txt

9



In the next section, we prove the regret bounds on SupLinUCB-S, highlighting the steps which
differ from regret analysis of SupLinUCB.

4.2 Regret Analysis of SupLinUCB-S

For convenience, let si,t =
√
xᵀtA

−1
i,t xt, ucb

s
i,t = (r̂si,t+wsi,t) and 0 < bi <= 1,∀i ∈ N . For all round

t, stage s and given context xt, i
∗
t (xt) = argmaxi∈Âs

bi ·E[ri,t|xt]. The regret analysis is along the
similar lines with [10] with changes deemed necessary to incorporate in our setting. In Lemmas 4,
5, and 6, we need to work for each agent as we have different θis for different agents.

Lemma 4. (Lemma 2, [10]) For each s ∈ [S] and i ∈ N , suppose ψsi,t+1 = ψsi,t ∪ {t}. Then,

eigenvalues of Ai,t can be arranged so that λji,t ≤ λ
j
i,t+1, for all j and

s2i,t ≤ 10

d∑
j=1

λji,t+1 − λ
j
i,t

λji,t

Lemma 5. (Lemma 3, [10]) Using notation in BaseLinUCB-S and assuming |ψsi,T+1| ≥ 2, we have∑
t∈ψs

i,T+1

si,t ≤ 5
√
d|ψsi,T+1| ln |ψsi,T+1|

Lemma 6. (Lemma 4, [10]). For each s ∈ [S], each t ∈ [T ], and any fixed sequence of feature
vectors xt, with t ∈ ψsIt,t, the corresponding rewards rIt,t are independent random variables such
that E[rIt,t] = θᵀi xt.

In our settings, rewards of the arms also have bid component which plays an important role,
thus we need the following lemma.

Lemma 7. With probability 1− κS, for any t ∈ [T ] and any s ∈ [S], the following hold:

1. bi · ucbsi,t − 2 · wsi,t ≤ bi ·E[ri,t] ≤ bi · ucbsi,t for all i

2. i∗t (xt) ∈ Âs

3. bi∗t (xt) ·E[ri∗(xt),t]− bi ·E[ri,t] ≤ 23−s

Proof. From Lemma 15 of [4], we have, ucbsi,t − 2 · wsi,t ≤ E[ri,t] ≤ ucbsi,t for all i. As bi > 0, after
multiplying with bi inequality still holds, i.e., bi · ucbsi,t − 2 · biwsi,t ≤ bi ·E[ri,t] ≤ bi · ucbsi,t. From
our assumption bi ≤ 1, hence the first part holds.

The lemma trivially holds for s = 1. For s > 1, Âs ⊆ Âs−1 and from the algorithm it is clear
that wsi,t ≤ 2−(s−1) and wsi∗t (xt)

≤ 2−(s−1). From part 1 of the lemma and using the above fact,

for any j ∈ Âs we have bi∗t (xt)ucb
(s−1)
i∗t (xt),t

≥ bi∗t (xt)E[ri∗t (xt),t] and bjE[rj,t] ≥ bjucb
s
j,t − 2 · 2−(s−1).

From definition, bi∗t (xt)E[ri∗t (xt),t] ≥ bjE[rj,t]. Using this and above inequalities, agent i∗t (xt) will

belong to Âs,∀s (i.e., will never be eliminated for context xt) due to the rule defined in Line[14],
Algorithm 6. Hence part 2 of the lemma is proved.

From Line[14] Algorithm 6, biucb
s
i,t ≥ bi∗t (xt)ucb

s
i∗t (xt),t

−2 ·2−(s−1). Using part 1 of the lemma and

above inequality the proof of part 3 follows. �

Lemma 8. (Lemma 6, [10]) For all s ∈ [S] and i ∈ N ,

|ψsi,T+1| ≤ 5 · 2s(1 + α2)
√
d|ψsi,t+1|

All the above can be summarized as the following theorem.

Theorem 9. SupLinUCB-S has regret O(n2
√
dT lnT ) with probability at least 1 − κ if it is run

with α =
√

1
2 ln 2nT

κ .
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Proof. The proof is similar to the proof of Theorem 6 of [4] but requires additional terms to
consolidate the difference between the algorithms, problem setting, and regret definition. We
have restricted the learning during round-robin ordering only Lines[7-9] due to which we have an
additional decision rule for agent selection as in Line[17]. Note that this additional rule was not
in [10]. Hence the main challenge is to bound the number of rounds agent selection, which is done
using this decision rule. (We refer it ψsext in our analysis.)

Let ψ0 be the set of rounds in which the agent was selected in Lines[10-12]. Let ψsext be the set
of rounds agent was selected in Lines[16-17] and ψsT+1 =

⋃
i ψ

s
i,T+1.

Claim 5. At each stage s, |ψsest| <= (n− 1) · |ψsT+1|.

For any stage s, let us take case of n consecutive rounds. Let us assume for each of the n
rounds, selection of agent is done in Lines[16-17]. But note that selection of agent in this decision
block is done if and only if there exist an agent k such that j 6= k (where j is designated agent for
the round) and wsk,· > 2−s. But after n consecutive rounds each agent has got its designated round

once (Line[4]). Hence, if for some agent k, wsk,· > 2−s, then this agent k should be selected on
its designated round. Hence our assumption of selection of agent in Lines[16-17] for n consecutive
round is wrong. From above reasoning, it is clear that at least for one round out of n rounds, one
of the agent must be selected at its designated round. Hence, at most for n − 1 rounds agent is
selected in Line[16-17] out of n rounds, until condition in Line[10] is achieved. Thus, we can say
that at each stage s, |ψsest| <= (n− 1) · |ψsT+1|.
As 2−S ≤ 1/

√
T , we have {1, . . . , T} = ψ0 ∪

⋃
s ψ

s
T+1

⋃
s ∪ψsest. Using the claim and the lemmas,

RT =

T∑
t=1

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

=
∑
t∈ψ0

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

+

S∑
s=1

[ ∑
t∈ψs

T+1

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

+
∑
t∈ψs

est

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

]

≤ 2√
T
|ψ0|+

S∑
s=1

n ·
∑

t∈ψs
T+1

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

=
2√
T
|ψ0|+

S∑
s=1

n

|N |∑
i

∑
t∈ψs

i,T+1

[bi∗t (xt)E[ri∗t (xt),t]− bItE[rIt,t]]

≤ 2√
T
|ψ0|+ n

|N |∑
i

S∑
s=1

8 · 2−s · |ψsi,T+1|

≤ 2√
T
|ψ0|+ n

|N |∑
i

S∑
s=1

40 · (1 + ln (2Tn/κ)) ·
√
d|ψsi,T+1|

≤ 2√
T
|ψ0|+ n

|N |∑
i

40 · (1 + ln (2Tn/κ) ·
√
STd

≤2
√
T + 40n2 · (1 + ln (2Tn/κ) ·

√
STd

�

Theorem 10. The allocation rule induced by SupLinUCB-S (Algorithm 6) is ex-post monotone.

Proof. The allocation rules Algorithm 3 and Algorithm 6 are similar in the way it learns and
eliminates agents. Both algorithms learn only when a designated agent is selected based on round-
robin ordering, and the elimination is based on bids, UCB and LCB estimates. The difference
between elimination rules is the need for the width of an agent to reach threshold 2−s at stage s.
Due to the above similarities, the proof follows on the similar lines of the proof of Theorem 2, and
hence we skip it for ease of exposition. �
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M-SupLinUCB-S

The mechanism M-SupLinUCB-S follows the same structure as that of mechanism M-ELinUCB-
SB. The only change is that the allocation rule A is given by SupLinUCB-S (Algorithm 6).

4.3 M-SupLinUCB-S : Game-Theoretic Analysis

Theorem 11. M-SupLinUCB-S is ex-post incentive compatible (EPIC) and ex-post individually
rational (EPIR) mechanism.

Proof. The result follows from Theorem 1 and by ex-post monotonicity of A defined in Algorithm
6. �

5 Experimental Analysis

5.1 Data Preparation

Our simulated data follow the structure and information availability found in a real-world system.
Typically, a center has access to user features such as gender, age, geographic features, device
model, and behavioral categories (which summarizes the user’s past preferences), which constitute
the context. Note that each of the stated features can be discretized. Considering the above
facts, we created the corpus of users χ: with d = 4, for each feature, we randomly select 4 possible
different values from 0 to 100, and then by taking all possible combination of features, we generated
random 256 (44) users. We normalize each x ∈ χ such that x ∈ [0, 1]d, with ||x||2 = 1 and store
these normalized contexts as a database χdb.

We then select xt uniformly at random from the context database χdb for each round to generate
a stochastic context. For each agent (advertiser), we generate θi ∼ U([0, 1]d) and then normalize
it s.t. ||θi||2 = 1. To simulate the clicks, at round t with the sampled xt, we generate a click
ri,t from Bernoulli distribution with parameter θTi xt. We conduct experiments for 40 iterations,
and for each iteration, we randomly generate a sequence of contexts from χdb for T = 106 rounds.
We generate valuation of agent i for a click to be vi sampled from uniform distribution [0, 1] and
assume the agents bid truthfully; due to truthfulness properties of our mechanisms.

5.2 Results and Comparison

From our experimentation, we found learning parameter α = 1 and batch size bs = 100 to be
suitable for M-ELinUCB-SB. The metric of comparison between the mechanisms is regret, which
is averaged over 40 iterations. Fig.1a compares the regret of M-Reg, M-ELinUCB-SB, and M-
SupLinUCB-SB for n = 7. When n > 7, M-Reg becomes infeasible as the number of exploration
rounds λ exceeds the total number of rounds T , for T = 106. In terms of regret, it is evident that
both the mechanisms M-ELinUCB-SB and M-SupLinUCB-SB outperform M-Reg by a very large
margin. Fig.1b highlights difference in experimental regret M-ELinUCB-SB and M-SupLinUCB-
SB (it is zoomed version from Fig. 1a). We can see that M-ELinUCB-SB experimentally performs
approximately 5 times better than M-SupLinUCB-SB ; albeit the results are validated only on the
randomly generated 256 contexts (χdb).

Though in theory, M-ELinUCB-SB has the worst regret, from simulations, the slope being very
small, for reasonable values of T it outperforms M-Reg. Our experiments show that M-ELinUCB-
SB and M-SupLinUCB-SB, both have nearly negligible regret as compared to M-Reg. Fig.1c com-
pares the regret incurred by M-ELinUCB-SB with varying batch size bs ∈ {1, 5, 10, 25, 50, 75, 100,
125, 150} for T ∈ {10k, 100k, 1000k}. From the figure, it is easy to infer the significant improve-
ment in regret when we move from batch size bs = 1 to greater batch sizes. One may need to tune
bs based on different experimental setup.

6 Conclusion

We believe that ours is the first attempt to design a non-exploration-separated ConMAB mech-
anism. We focused on designing ConMAB mechanisms for sponsored search auction (SSA). For
a single-slot, we first designed LinUCB-based ex-post monotone allocation rule ELinUCB-S. We
show that the introduction of batch size in ELinUCB-S significantly improves the regret while sat-
isfying the ex-post monotone property. With this observation, we present ELinUCB-SB. Through
simulations, we see that in practice, it performs better for regret; however, theoretically, it may
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(a) Regret vs Rounds (T) (b) Regret vs Rounds (T)

(c) Regret vs Batch Size (bs)

Figure 1: Regret comparisons

incur linear regret on carefully chosen contexts. To achieve sub-linear regret, we proposed another
ex-post monotone allocation rule, SupLinUCB-S. We further extended these allocation rules to
mechanisms, M-ELinUCB-SB, and M-SupLinUCB-SB satisfying EPIC and EPIR properties. We
showed our mechanism performs significantly better than the existing mechanism M-Reg [12]. In
summary, M-SupLinUCB-S is novel, truthful ConMAB mechanism that outperforms M-Reg in
every aspect.

Although our mechanisms are randomized, they are game theoretically sound and scalable as
compared to M-Reg. Further, in terms of regret, M-ELinUCB-SB and M-SupLinUCB-S outper-
forms M-Reg in experiments and theoretically M-SupLinUCB-S matches the regret in non-strategic
setting up to a factor of O(n) which is the price of truthfulness. Though we presented mechanisms
for single slot SSA, they can be generalized to multi-slot SSA using similar techniques. Along with
SSA, this work can form a baseline for other applications such as crowdsourcing [9], smart grids
[15], where similar setting arises to learn the stochastic parameters in the presence of strategic
agents.

References
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