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Abstract

Active learning is an important technique to reduce the number
of labeled examples in supervised learning. Active learning
for binary classification has been well addressed in machine
learning. However, active learning of the reject option clas-
sifier remains unaddressed. In this paper, we propose novel
algorithms for active learning of reject option classifiers. We
develop an active learning algorithm using double ramp loss
function. We provide mistake bounds for this algorithm. We
also propose a new loss function called double sigmoid loss
function for reject option and corresponding active learning al-
gorithm. We offer a convergence guarantee for this algorithm.
We provide extensive experimental results to show the effec-
tiveness of the proposed algorithms. The proposed algorithms
efficiently reduce the number of label examples required.

1 Introduction
In standard binary classification problems, algorithms return
prediction on every example. For any misprediction, the al-
gorithms incur a cost. Many real-life applications involve
very high misclassification costs. Thus, for some confusing
examples, not predicting anything may be less costly than
any misclassification. The choice of not predicting anything
for an example is called reject option in machine learning
literature. Such classifiers are called reject option classifiers.

Reject option classification is very useful in many appli-
cations. Consider a doctor diagnosing a patient based on
the observed symptoms and preliminary diagnosis. If there
is an ambiguity in observations and preliminary diagnosis,
the doctor can hold the decision on the treatment. She can
recommend to take advanced tests or consult a specialist to
avoid the risk of misdiagnosing the patient. The holding re-
sponse of the doctor is the same as to reject option for the
specific patient (da Rocha Neto et al., 2011). On the other
hand, the doctor’s misprediction can cost huge money for
further treatment or the life of a person. In another example,
a banker can use the reject option while looking at the loan
application of a customer (Rosowsky and Smith, 2013). A
banker may choose not to decide based on the information
available because of high misclassification cost, and asks for
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further recommendations or a credit bureau score from the
stakeholders. Application of reject option classifiers include
healthcare Hanczar and Dougherty (2008); da Rocha Neto et
al. (2011), text categorization Fumera, Pillai, and Roli (2003),
crowdsourcing Li et al. (2017) etc.

Let X ⊂ Rd be the feature space and {+1,−1} be the
label space. Examples of the form (x, y) are generated from
an unknown fixed distribution on X × {+1,−1}. A reject
option classifier can be described with the help of a function
f : X → R and a rejection width parameter ρ ∈ R+ as
below.

hρ(f(x)) = 1.I{f(x)>ρ} − 1.I{f(x)<−ρ} − 0.I{|f(x)|≤ρ}
(1)

The goal is to learn f(.) and ρ simultaneously. For a given
example (x, y), the performance of reject option classifier
hρ(f(.)) is measured using following loss function.

Ld(yf(x), ρ) = I{yf(x)≤−ρ} + dI{|f(x)|≤ρ} (2)

where d ∈ (0, 0.5) is the cost of rejection. A reject option
classifier is learnt by minimizing the risk (expectation of loss)
under Ld. As Ld is not continuous, optimization of empiri-
cal risk under Ld is difficult. Bartlett and Wegkamp (2008);
Wegkamp and Yuan (2011) propose a convex surrogate of
Ld called generalized hinge loss. They learn the reject op-
tion classifier using risk minimization algorithms based on
generalized hinge loss. Grandvalet et al. (2008) propose an-
other convex surrogate of Ld called double hinge loss and
corresponding risk minimization approach for reject option
classification. Manwani et al. (2015); Shah and Manwani
(2019) propose double ramp loss based approaches for re-
ject option classification. Double ramp loss is a non-convex
bounded loss function. All these approaches assume that we
have plenty of labeled data available.

In general, classifiers learned with a large amount of train-
ing data can give better generalization on testing data. How-
ever, in many real-life applications, it can be costly and diffi-
cult to get a large amount of labeled data. Thus, in many cases,
it is desirable to ask the labels of the examples selectively.
This motivates the idea of active learning. Active learning
selects more informative examples and queries labels of those
examples. Active learning of standard binary classifiers has



been well-studied (Dasgupta, Kalai, and Monteleoni, 2009;
Bachrach, Fine, and Shamir, 1999; Tong and Koller, 2002). In
El-Yaniv and Wiener (2012), authors reduce active learning
for the usual binary classification problem to learning a reject
option classifier to achieve faster convergence rates. However,
active learning of reject option classifiers has remained an
unaddressed problem. In this paper, we propose online active
learning algorithms to reject option classification.

Let us reconsider the example where the banker uses the
reject option classifier for selecting the loan applications.
Consider a loan application that satisfies the basic require-
ments. Thus, the banker is not clear about using the hold
option. On the other hand, she is also not sure enough to ap-
prove the application. Such cases are instrumental in defining
the separation rule between accepting the loan application
and holding it for further investigation. This motivates us
to think that one can use active learning to ask the labels
of selective examples as described above while learning the
reject option classifier.

A broad class of active learning algorithms is inspired by
the concept of a margin between the two categories. Thus, an
example, which falls in the margin area of the current clas-
sifier, carries more information about the decision boundary.
On the other hand, examples which are correctly classified
with good margin or misclassified by a good margin, give less
knowledge of the decision boundary. Margin examples can
bring more changes to the existing classifier. Thus, querying
the label of margin examples is more desirable than the other
two kinds of examples.

A reject option classifier can be viewed as two parallel sur-
faces with the rejection area in between. Thus, active learning
of the reject option classifier becomes active learning of two
surfaces in parallel with a shared objective. This shared ob-
jective is nothing but to minimize the sum of Ld losses over a
sequence of examples. In Manwani et al. (2015), the authors
propose a risk minimization approach based on double ramp
loss (Ldr) for learning the reject option classifier. In Man-
wani et al. (2015), it is shown that at the optimality, the two
surfaces can be represented using only those examples which
are close to them. Examples that are far from the two surfaces
do not participate in the representation of the surfaces. This
motivates us to use double ramp loss for developing an active
learning approach to reject option classifiers.

Our Contributions
We make the following contributions in this paper.
• We propose an active learning algorithm based on double

ramp loss Ldr to learn a linear and non-linear classifier.
We give bounds to the number of rejected examples and
misclassification rates for un-rejected examples.

• We propose a smooth non-convex loss called double sig-
moid loss (Lds) for reject option classification.

• We propose an active learning algorithm based on Lds to
learn both linear and non-linear classifiers. We also give
convergence guarantees for the proposed algorithm.

• We present extensive simulation results for both proposed
active learning algorithms for linear as well as non-linear
classification boundaries.

Figure 1: Double Ramp Loss with ρ = 2

2 Proposed Approach: Active Learning
Inspired by Double Ramp Loss

Active learning algorithm does not ask the label in every trial.
We denote the instance presented to algorithm at trial t by xt.
Each xt ∈ X is associated with a unique label yt ∈ {−1, 1}.
The algorithm calculates ft(xt) and outputs the decision
using eq.(1). Based on ft(xt), the active learning algorithm
decides whether to ask label or not. Guillory, Chastain, and
Bilmes (2009) shows that online active learning algorithms
can be viewed as stochastic gradient descent on non-convex
loss function therefore, we use a non-convex loss function
Double ramp loss Ldr (Manwani et al., 2015) to derive our
first active learning approach. Ldr is defined as follows.

Ldr(yf(x), ρ) = d
[[
1− yf(x) + ρ

]
+
−
[
− 1− yf(x) + ρ

]
+

]
+(1− d)

[[
1− yf(x)− ρ

]
+
−
[
− 1− yf(x)− ρ

]
+

]
Here [a]+ = max(0, a) and d is the cost of rejection. Fig-

ure 1 shows the plot of double ramp loss for ρ = 2.
We first consider developing active learning algorithm

for linear classifiers (i.e. f(x) = w · x). We use stochastic
gradient descent (SGD) to derive double ramp loss based
active learning algorithm. Parameters update equations using
SGD are as follows.

wt+1 = wt − η∇wt
Ldr(ytf(xt), ρt)

=


wt + ηdytxt, ρt − 1 ≤ ytf(xt) ≤ ρt + 1

wt + η(1− d)ytxt −ρt − 1 ≤ ytf(xt) ≤ −ρt + 1

wt otherwise

ρt+1 = ρt − η∇ρtLdr(ytf(xt), ρt)

=


ρt − ηd, ρt − 1 ≤ ytf(xt) ≤ ρt + 1

ρt + η(1− d), −ρt − 1 ≤ ytf(xt) ≤ −ρt + 1

ρt otherwise

Where η is the step-size. We see that the parameters are
updated only when |ft(xt)| ∈ [ρt − 1, ρt + 1]. For the rest
of the regions, the gradient of the loss Ldr is zero therefore,
there won’t be any update when an example xt is such that
|ft(xt)| /∈ [ρt − 1, ρt + 1]. Thus, there is no need to query
the label when |ft(xt)| /∈ [ρt − 1, ρt + 1]. We only query
the labels when |ft(xt)| ∈ [ρt − 1, ρt + 1]. Thus, we ask the



label of the current example only if it falls in the linear region
of the loss Ldr. This is the same way any margin based active
learning approach updates the parameters. If the algorithm
does not query the label yt, the parameters (w, ρ) are not
updated. Thus, we define the query function Qt as follows.

Qt =

{
1 if ρt − 1 ≤ |f(xt)| ≤ ρt + 1

0 otherwise
(3)

The detailed algorithm is given in Algorithm 1. We call it
DRAL (double ramp loss based active learning). DRAL can
be easily extended for learning nonlinear classifiers using
kernel trick and is described in the supplementary file.

Algorithm 1 Double Ramp Loss Active Learning (DRAL)
Input: d ∈ (0, 0.5), step size η
Output: Weight vector w, Rejection width ρ
Initialize: w1 = 0, ρ1 = 1
for t = 1, . . . , T do

Sample xt ∈ S
Set ft(xt) = wt · xt
if ρt − 1 ≤ |ft(xt)| ≤ ρt + 1 then

Set Qt = 1
Query the label yt of xt.
if (ρt − 1 ≤ ytft(xt) ≤ ρt + 1) then

wt+1 = wt + ηdytxt.
ρt+1 = ρt − ηd

else if (−ρt − 1 ≤ ytft(xt) ≤ −ρt + 1) then
wt+1 = wt + η(1− d)ytxt
ρt+1 = ρt + η(1− d)

else
wt+1 = wt

ρt+1 = ρt

Mistake Bounds for DRAL

In this section, we derive the mistake bounds of DRAL. Be-
fore presenting the mistake bounds, we begin by presenting a
lemma which would facilitate the following mistake bound
proofs. Let ft(xt) = wt · xt. We define the following.1{
Ct = I{ρt≤ytft(xt)≤ρt+1} R1t = I{ρt−1≤ytft(xt)≤ρt}
R2t = I{−ρt≤ytft(xt)≤−ρt+1} Mt = I{−ρt−1≤ytft(xt)≤−ρt}

(4)

Lemma 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-
put instances, where xt ∈ X and yt ∈ {−1, 1} for all
t ∈ [T ].2 Given Ct, R1t, R2t and Mt as defined in eq.(4)
and α > 0, the following bound holds for any w.

1I{A} takes value 1 when A is true and 0 otherwise.
2Here, [T ] denotes the sequence 1, . . . , T .

α2‖w‖2 + (1− αρ)2 + 2αη

T∑
t=1

Ldr(ytf(xt), ρ) ≥

T∑
t=1

[Ct +R1t ]
[
2αηd+ 2η(Ldr(ytft(xt), ρt)− d)

−η2d2(‖xt‖2 + 1)
]
+

T∑
t=1

[R2t +Mt ]
[
2αη(1 + d)

+2η(Ldr(ytft(xt), ρt)− d− 1)− η2(1− d)2(‖xt‖2 + 1)
]

where f(xt) = w · xt and ft(xt) = wt · xt.
The proof is given in the Supplementary file. Now, we will

find the bounds on rejection rate and mis-classification rate.
Theorem 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of
input instances, where xt ∈ X and yt ∈ {−1, 1} and ‖xt‖ ≤
R for all t ∈ [T ]. Assume that there exists a f(x) = w · x
and ρ such that Ldr(ytf(xt), ρ) = 0 for all t ∈ [T ].
1. Number of examples rejected by DRAL (Algorithm 1)

among those for which the label was asked in this sequence
is upper bounded as follows.∑

t:Qt=1

[R1t +R2t] ≤ α2‖w‖2 + (1− αρ)2

whereα = max
(

1+η2d2(R2+1)+2ηd
2ηd , 1+η

2(1−d)2(R2+1)+2η(1−d)
2η(1+d)

)
.

2. Number of examples mis-classified by DRAL (Algorithm 1)
among those for which the label was asked in this sequence
is upper bounded as follows.∑

t:Qt=1

Mt ≤ α2‖w‖2 + (1− αρ)2

whereα = max
(
ηd(R2+1)+2

2 , 1+η
2(1−d)2(R2+1)+2η(1−d)

2η(1+d)

)
.

The proof is given in the Supplementary file. The above
theorem assumes that there exists f(x) = w · x and ρ such
that Ldr(ytf(xt), ρ) = 0 for all t ∈ [T ]. This means that
the data is linearly separable. In such a case, the number of
mistakes made by the algorithm on unrejected examples as
well as the number of rejected examples are upper bounded
by a complexity term and are independent of T . Now, we
derive the bounds when the assumption Ldr(ytf(xt), ρ) =
0, t ∈ [T ] does not hold for any f(x) = w · x and ρ.
Theorem 3. Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a se-
quence of input instances, where xt ∈ X and yt ∈ {−1, 1}
and ‖xt‖ ≤ R for all t ∈ [T ]. Then, for any given
f(x) = w · x and ρ, we observe the following.
1. Number of rejected examples by DRAL (Algorithm 1)

among those for which the label was asked in this sequence
is upper bounded as follows.∑
t:Qt=1

[R1t+R2t] ≤ α2‖w‖2+(1−αρ)2+
T∑
t=1

2ηαLdr(ytf(xt), ρ)

where α = max

{
1+η2d2(R2+1)+2ηd

2ηd
1+η2(1−d)2(R2+1)+2η(1−d)

2η(1+d)

.



2. The number of misclassified examples by DRAL (Algo-
rithm 1) is upper bounded as follows.

∑
t:Qt=1

Mt ≤ α2‖w‖2 + (1− αρ)2 +
T∑
t=1

2ηαLdr(ytf(xt), ρ)

where α = max

{
ηd(R2+1)+2

2
1+η2(1−d)2(R2+1)+2η(1−d)

2η(1+d)

.

The proof is given in the Supplementary file. We see that
when the data is not linearly separable, the number of mis-
takes made by the algorithm is upper bounded by the sum of
complexity term and sum of the losses using a fixed classifier.

3 Active Learning Using Double Sigmoid
Loss Function

We observe that double ramp loss is not smooth. Moreover,
Ldr is constant whenever yf(x) ∈ [ρ+1,∞)∪ (−∞,−ρ−
1] ∪ [−ρ + 1, ρ − 1]. Thus, when loss Ldr for an example
x falls in any of these three regions, the gradient of the loss
becomes zero. The zero gradient causes no update. Thus,
there is no benefit of asking the labels when an example falls
in one of these regions. However, we don’t want to ignore
these regions completely. To capture the information in these
regions, we need to change the loss function in such a way
that the gradient does not vanish completely in these regions.
To ensure that, we propose a new loss function.

Double Sigmoid Loss
We propose a new loss function for reject option classification
by combining two sigmoids as follows. We call it double
sigmoid loss function Lds.

Lds(yf(x), ρ) = 2dσ(yf(x)− ρ) + 2(1− d)σ(yf(x) + ρ)

where σ(a) = (1 + eγa)
−1 is the sigmoid function (γ > 0).

Figure 2 shows the double sigmoid loss function. Lds is a
smooth non-convex surrogate of loss Ld (see eq.(2)). We
also see that for the double sigmoid loss, the gradient in the
regions yf(x) ∈ [ρ+1,∞)∪(−∞,−ρ−1]∪ [−ρ+1, ρ−1]
does not vanish unlike double ranp loss. Below we establish

Figure 2: Double sigmoid loss with γ = 2.

that the loss Lds is β-smooth.3

Lemma 4. Assuming ‖x‖ ≤ R, Double sigmoid loss
Lds(yf(x), ρ) is β−smooth with constant β = γ2

5

[
R2 + 1

]
.

The proof is given in the supplementary file.

Query Probability Function
In the case of DRAL, we saw that the gradient of Ldr be-
comes nonzero only in the region yf(x) ∈ [ρ − 1, ρ + 1].
So, we ask the labels only when examples fall in this region.
However, in case of double sigmoid loss, the gradient does
not vanish. Thus, to perform active learning using Lds, we
need to ask the labels selectively.

We propose a query probability function to set the label
query probability at trial t. The query probability function
should carry the following properties. In the loss Ld (see
eq.(2)), we see two transitions. One at yf(x) = ρ (transition
between correct classification and rejection) and another at
yf(x) = −ρ (transition between rejection and misclassifica-
tion). Any example falling closer to one of these transitions
captures more information about the two transitions. We want
the query probability function to be such that it gives higher
probabilities near these transitions. Examples that are cor-
rectly classified with a good margin, examples misclassified
with a considerable margin, and examples in the middle of
the reject region do not carry much information. Such ex-
amples are also situated away from the transition regions.
Thus, query probability should decrease as we move away
from these decision boundaries. Therefore, we ask the label
in these regions with less probability. Considering these desir-
able properties, we propose the following query probability
function.

pt = 4 σ(|ft(xt)| − ρt) (1− σ(|ft(xt)| − ρt)) (5)

where ft(xt) = wt ·xt. Figure 3 shows the graph of the query
probability function. We see that the probability function has
two peaks. One peak is at yf(x) = ρ (transition between
correct classification and rejection) and another at yf(x) =
−ρ (transition between rejection and misclassification).

Figure 3: Query Probability Function

3A function f is β-smooth if for all x, y ∈ Domain(f ),

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.



Double Sigmoid Based Parameter Updates
The parameter update equations using Lds is as follows.

wt+1 = wt − η∇wt
Lds(ytf(xt), ρt)

= wt − 2ytαxt

[
dσ(ytft(xt)− ρt) (1− σ(ytft(xt)− ρt))

+ (1− d)σ(ytft(xt) + ρt) (1− σ(ytft(xt) + ρt))
]

(6)

ρt+1 = ρt − η∇ρtLds(ytf(xt), ρt)

= ρt + 2α
[
dσ(ytft(xt)− ρt) (1− σ(ytft(xt)− ρt))

− (1− d)σ(ytft(xt) + ρt) (1− σ(ytft(xt) + ρt))
]

(7)

Now, we will explain the update equations for w and ρ.
1. When an example is correctly classified with good mar-

gin (i.e. ytft(xt) >> 0) then the active learning algo-
rithm will update w by a small factor of ytxt and will
reduce the rejection width (ρ) because for ytft(xt) >>
0, dσ(ytft(xt) − ρt) (1− σ(ytft(xt)− ρt)) > (1 −
d)σ(ytft(xt) + ρt) (1− σ(ytft(xt) + ρt)).

2. When an example is misclassified with good margin
(i.e. ytft(xt) << 0) then the active learning algorithm
will update w by a large factor of ytxt and will in-
crease the rejection width (ρ) because for ytft(xt) <<
0, dσ(ytft(xt) − ρt) (1− σ(ytft(xt)− ρt)) < (1 −
d)σ(ytft(xt) + ρt) (1− σ(ytft(xt) + ρt)).

We use the acronym DSAL for double sigmoid based active
learning. DSAL is described in Algorithm 2.

Algorithm 2 Double Sigmoid Loss Active Learning (DSAL)
Input: d ∈ (0, 0.5), step size η
Output: Weight vector w, Rejection width ρ.
Initialize: w1, ρ1
for t = 1, .., T do

Sample xt ∈ Rd
Set ft(xt) = wt · xt
Set pt = 4σ(|ft(xt)| − ρt) (1− σ(|ft(xt)| − ρt))
Randomly sample zt ∈ {0, 1} from Bernoulli(pt).
if zt == 1 then

Query the label yt of xt.
Find wt+1 using eq.(6).
Find ρt+1 using eq.(7).

else
wt+1 = wt.
ρt+1 = ρt.

Convergence of DSAL
In the case of DRAL, the mistake bound analysis was possi-
ble as Ldr increases linearly in the regions where its gradient
is nonzero. However, we don’t see similar behavior in dou-
ble sigmoid loss Lds. Thus, we are not able to carry out
the same analysis here. Instead, we here show the conver-
gence of DSAL to local minima. For which, we borrow the
techniques from online non-convex optimization. In online

non-convex optimization, it is challenging to converge to-
wards a global minimizer. It is a common practice to state
the convergence guarantee of an online non-convex opti-
mization algorithm by showing it’s convergence towards an
ε-approximate stationary point. In our case, it means that for
some t, ‖∇Lds(ytft(xt), ρt)‖2 ≤ ε. To prove the conver-
gence of DSAL, we use the notion of local regret defined in
(Hazan, Singh, and Zhang, 2017) .

Definition 5. The local regret for an online algorithm is

R(T ) =
T∑
t=1

‖∇Lds(ytft(xt), ρt)‖2.

where T is the total number of trials. (Defined in (Hazan,
Singh, and Zhang, 2017))

Thus, in each trial, we incur a regret, which is the squared
norm of the gradient of the loss. When we reach a stationary
point, the gradient will vanish and hence the norm. Note
that the convergence here requires that the objective function
should be β-smooth. In this case, Lds holds that property,
as shown in Lemma 4. Thus, we can use the convergence
approach proposed in (Hazan, Singh, and Zhang, 2017).4

Theorem 6. If we choose η = 5

γ2
[
R2+1

] , then using smooth-

ness condition of Lds(yf(x), ρ), the local regret of DSAL
algorithm is bounded as follows.

R(T ) ≤ 4γ2

5

(
R2 + 1

)
(T + 1)

The proof is given in the supplementary file. To prove that
DSAL reaches ε−stationary point in expectation over iterates,
we use following result of (Hazan, Singh, and Zhang, 2017).

E
t∼Unif[T ]

[
‖∇Lds(yf(x), ρ)‖2

]
≤ R(T )

T
(8)

Corollary 7. For DSAL algorithm,

E
t∼Unif[T ]

[
‖∇Lds(yf(x), ρ)‖2

]
≤ 4γ2

5

(
R2 + 1

)(
1 +

1

T

)
(9)

Using theorem 6 and eq. (8), we can get the required result
of the Corollary. In the Corollary, We see that upper bound on
the expectation of the square of the gradient is inversely pro-
portional to T ; hence, decreases as the total number of trials
T increases. It means that the probability of DSAL algorithm
reaches to ε−stationary point increases as T increases.

4 Experiments
We show the effectiveness of the proposed active learning
approaches on Gisette, Phishing and Guide datasets available
on UCI ML repository (Lichman, 2013).

4Ldr does not have sufficient smoothness properties required in
(Hazan, Singh, and Zhang, 2017). Thus, we do not present these
convergence results for DRAL.



Figure 4: Comparison plots for Gisette dataset with linear Kernel function.

Experimental Setup
We evaluate the performance of our approaches to learning
linear classifiers. In all our simulations, we initialize step size
by a small value, and after every trial, step size decreases
by a small constant. Parameter α in the double sigmoid loss
function is chosen to minimize the average risk and average
fraction of queried labels (averaged over 100 runs).

We need to show that the proposed active learning algo-
rithms are effectively reducing the number of labeled exam-
ples required while achieving the same accuracy as online
learning. Thus, we compare the active learning approaches
with an online algorithm that updates the parameters using
gradient descent on the double sigmoid loss at every trial.
We call this online algorithm as DSOL (double sigmoid loss
based online learning).

Simulation Results
We report the results for three different values of d ∈
{0.1, 0.25, 0.4}. The results provided here are based on 100
repetitions of a total number of trial (T ) equal to 10000. For
every value of d, we find the average of risk, the fraction
of asked labels, fraction of misclassified examples, and frac-
tion of rejected examples over 100 repetitions. We plotted
the average of each quantity (e.g., risk, the fraction of asked
labels, etc.) as a function of t ∈ [T ]. Moreover, the standard
deviation of the quantity is denoted by error bar in figures.
Figure 4, 5 and 6 show experimental results for Gisette and
Phishing and Guide datasets. We observe the following.

• Label Complexity Versus Risk: The first column in each
figure shows how the risk goes down with the number of
asked labels. For Gisette and Phishing datasets, given the
number of queried labels, both DSAL and DRAL achieve
lower risk compared to DSOL. For Guide dataset, DSAL
always makes lower risk compared to DSOL for a given

number of queried labels. For Gisette and Guide datasets,
DSAL achieves lower risk compared to DRAL with the
same number of label queries. For Phishing dataset, DSAL
and DRAL perform comparably.

• Average Risk: The second column in all the figures shows
how the average risk (average of Ld) goes down with the
number of steps (t). In all the cases, we see that the risk
increases with increasing the value of d. We understand
that the average risk of DSAL is higher than DRAL for
Gisette and Phishing datasets and all values of d. For Guide
dataset, DSAL always achieves lower risk compared to
DRAL.
For Gisette and Guide datasets, DSAL achieves simi-
lar risk as DSOL. For Phishing dataset, DSOL performs
marginally better than DSAL and DRAL. DRAL does
better risk minimization compared to DSOL for Phishing
dataset. For Guide dataset, DRAL performs comparable to
DSOL as t becomes larger except for d = 0.1.

• Average Fraction of Asked Labels: Third column in all
the figures show the fraction of labels asked for a given
time step t. We observe that the fraction of asked labels
decreases with increasing d. For Gisette and Phishing
datasets, DSAL asks significantly less number of labels
as DRAL. This happens because DRAL asks labels every
time in a specific region and completely ignores other re-
gions, but DSAL asks labels in every region with some
probability. For Guide dataset, the fraction of labels asked
to become the same for both DSAL and DRAL as t be-
comes larger.

• Average Fraction of Misclassified Examples: The
fourth column of all the figures, shows how the average
fraction of misclassified examples goes down with t. We
observe that the misclassification rate goes up with increas-
ing d. We see that DRAL achieves a minimum average



Figure 5: Comparison plots for Phishing dataset with linear Kernel function.

Figure 6: Comparison plots for Guide dataset with polynomial kernel function.

misclassification rate in all the cases compared to DSOL
and DSAL except for the Guide dataset with d = 0.1
value. For Gisette and Phishing datasets, DSAL achieves
a comparable average misclassification rate compared to
DSOL for all the cases. For Guide dataset, DSAL achieves
a lower misclassification rate compared to DSOL except
for d = 0.1.

• Average Fraction of Rejected Examples: The fifth col-
umn in each figure shows how the rejection rate goes down
with steps t. We see that the average fraction of rejected
examples is higher in DRAL than DSAL and DSOL. Also,
the rejection rate decreases with increasing d.

Thus, we see that the proposed active learning algorithms
DRAL and DSAL effective reduce the number of labels re-
quired for learning the reject option classifier and perform
better compared to online learning.

5 Conclusion
In this paper, we have proposed novel active learning algo-
rithms DRAL and DSAL. We presented mistake bounds for
DRAL and convergence results for DSAL. We experimen-
tally show that the proposed active learning algorithms reduce
the number of labels required while maintaining a similar
performance as online learning.
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