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Figure 1: Our system models human experts realistically, that is, having varying accuracies. We show that this modeling allows our
system to obtain better accuracies at a lower cost in a real-world setting, when compared to systems making machine-only predictions
(Method 1) or systems modeling human accuracies homogeneously (Method 2), similar to [24].

ABSTRACT
Despite advances in deep learning and facial recognition techniques,
the problem of fault-intolerant facial recognition remains challeng-
ing. With the current state of progress in the field of automatic face
recognition and the in-feasibility of fully manual recognition, the
situation calls for human-machine collaborative methods. We design
a system that uses machine predictions for a given face to generate
queries that are answered by human experts to provide the system
with the information required to predict the identity of the face cor-
rectly. We use a Markov Decision Process for which we devise an
appropriate query structure and a reward structure to generate these
queries in a budget or accuracy-constrained setting. Finally, as we do
not know the capabilities of the human experts involved, we model
each human as a bandit and adopt a multi-armed bandit approach
with consensus queries to efficiently estimate their individual accura-
cies, enabling us to maximize the accuracy of our system. Through
careful analysis and experimentation on real-world data-sets using
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humans, we show that our system outperforms methods that exploit
only machine intelligence, simultaneously being highly cost-efficient
as compared to fully manual methods. In summary, our system uses
human-machine collaboration for face recognition problem more
intelligently and efficiently.
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1 INTRODUCTION
Face recognition by machines has improved considerably in the past
few years, highlighted by the ability to recognize frontal faces with
very high accuracy in still images taken in controlled environments
[26, 29]. However, these systems have been shown to be sensitive
to different factors, such as viewpoint variations, which human
recognition is largely robust to. Further, machine learning-based
systems are prone to adversarial attacks and spoofs, which pose a
major security threat in many applications. The friction between
accuracy and interpretability of deep learning models pertains to

10

https://doi.org/10.1145/3371158.3371160
https://doi.org/10.1145/3371158.3371160


CoDS COMAD 2020, January 5–7, 2020, Hyderabad, India Saurabh Ravindranath et.al.

the trade-off between being able to accomplish complex tasks and
understanding how these tasks are accomplished. The most intuitive
way to tackle these uncertainties is to include humans in the loop.

The proposed human-in-the-loop approach seeks to combine the
enormous data-crunching capability of machines with the domain
expertise of humans. Humans contribute by providing knowledge
and capabilities that are difficult to model for a machine learning
system. Simultaneously, a machine would be able to handle enor-
mous data-sets that are far beyond the reach of expert observation.
Typical examples are biometric security and classification problems
[19, 33, 34], where the task is too ambiguous for a purely mechanical
solution and too large for even a large team of human experts.

For sensitive security applications such as face recognition from
security cameras [22], appropriate human involvement in run time
can be a critical necessity. As the number of identities grows, it
becomes increasingly important to find a structured way to include
humans-in-the-loop.

In this work, we develop a structured framework to appropriately
combine the prediction capabilities of a machine learning model
with that of a diverse group of humans while optimizing over the
accuracy-cost trade-off. To this end, we propose a Markov decision
process (MDP) [6, 9, 16, 17, 27] that takes the probability predictions
from the machine learning model as input and use humans to refine
its predictions through specific queries. To involve a diverse group
of human experts, we have to consider the variation in the quality
of the individual experts. That is, selecting different human experts
for the same task may result in variation in the accuracy. The task
of selecting human experts needs to consider the trade-off between
exploration and exploitation. Existing techniques do not deal with
this real-world problem of heterogeneous human expert qualities.
Similar to many previous methods that employ human-in-the-loop
methods , we use a multi-armed bandit (MAB) [3, 5, 15, 30, 31]
mechanism to select the human best suited for each task. As rep-
resented in Figure 1 the realistic modeling of human experts helps
our model to increase accuracy while decreasing the overall cost.
Our system outperforms the systems that rely only on machine
predictions and also the methods which model humans as having
homogeneous accuracies. Overall, the major contributions of our
work are as follows:

• We formulate an MDP to model machine and human knowl-
edge in a single framework.

• We incorporate human accuracies, estimated on the go using
MAB and consensus agreement approaches, to choose the best
human for a particular task.

• We propose a novel combination of algorithms for tackling
the problem of face recognition that combines human and
machine intelligence ingeniously. We employ an MDP frame-
work for query optimization with an MAB for the quality
estimation of human experts.

To obtain the accuracy estimates of each human involved, we first
make "gold queries," queries for which the correct answer is al-
ready known. However, as these gold queries are expensive, we use
these only to obtain a rough accuracy estimate and then fine-tune
these estimates using certain consensus agreement queries. Our re-
sults demonstrate that we perform better than both machine learning

based models and the human workforce at tackling face recogni-
tion. Moreover, although here we demonstrate our method on the
face recognition problem, it can be easily generalized to other appli-
cations such as object detection, image classification, and various
segmentation tasks.

An interesting result of using MDP in the engagement of humans
in our system is the increased flexibility it offers in terms of the level
of involvement. The ability to devise appropriate reward functions
to optimize particular problems opens up a new dimension of issues
that can be solved, relating to the systematic deployment of Artificial
Intelligence components in manual scenarios. As observed in our
experiments, increasing the budget of the system increases human
involvement and the final accuracy in a structured manner. Such
a property would greatly alleviate issues that arise when Artificial
Intelligence systems replace manual alternatives.

Coming to the issue of privacy, we assumed that all are publicly
known people, so there will not be an issue. It is outside the scope
of this work to consider the privacy of unknown people.

Before we move onto details, it should be noted that to best of our
knowledge, human-in-the-loop approaches are widely used either
in collecting labeled data or in the active learning scenario where
the machine learning model is updated with the involvement of
human supervision during training [8, 35]. However, in this work,
we are proposing to use humans when a trained machine learning
algorithm is put in a system and at run-time, has low confidence in
the answer. This is very much necessary in security applications such
as face recognition. We believe the systematic study, which we do
in this paper, has many more applications, e.g., machine translation
systems.

2 RELATED WORK
Different works have been carried out in the field of face recognition
using deep learning techniques, some of which produce robust re-
sults in few-shot learning and other challenging scenarios. However,
these methods are not fully robust to viewpoint variations, which
is a fundamental problem with CNN architectures. Although cap-
sule network architectures [11, 25] are viewpoint invariant, their
scalability is still a question. There is a vast corpus of work in face
verification and recognition. Reviewing it is out of the scope of this
paper, so we briefly discuss the most relevant recent work. The works
of [28, 29, 37] employ a complex system of multiple stages which
combines the output of a deep convolutional network with PCA for
dimensionality reduction and an SVM for classification. Taigman et
al. [29] explicitly models a 3D face and derives a face representation
from a deep neural network. Schroff et al. [26], on the other hand,
uses a deep convolutional network trained to optimize the embed-
ding space itself directly. The learned representation space in all
these can be used for face recognition, employing a classifier in the
end.

In recent years, the computer vision community has seen a burst of
interest in deep learning based solutions to image classification prob-
lems. Different active learning approaches are also used to find the
most diverse data-set effectively. In the above cases, human involve-
ment is present only in the annotation phase. Unlike these methods,
our work focuses on using human input in the testing phase. Works
most similar to our approach are those who combine human help and
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computer vision for tasks such as fine-grained image classification
[4, 33], object detection [24], and image segmentation. Works such
as [7, 32] model a human-computer interactive system and optimizes
human cost versus annotation accuracy. However, these methods
either do not incorporate individual human expert accuracy into the
formulation or do not include human in the annotation phase.

Crowd-sourcing platforms offer an inexpensive method to capture
human knowledge and understanding for a vast number of visual
perception tasks. Selecting optimal works is challenging problem
and there is lot of research happening in this direction, e.g., [10, 14,
18, 21, 23, 31] and references cited there-in. When qualities of the
crowd workers (human experts) are unknown, the most natural tool
is Multi-Armed Bandits (MAB). MAB [3] based work such as [12, 15,
30, 31] are used in this scenario, where an optimal subset of experts
is selected for the task such that the outcome after aggregating their
opinions guarantees a target level of accuracy. We employ MAB and
consensus agreement algorithms used in these works to learn the
quality of predictions made by each human expert.

The human-machine collaboration framework for object anno-
tation proposed by Russakovsky et al.[24] is closely connected to
our approach. The input to their system is an image, and a set of
annotation constraints, and the output is a set of object annotations
informed by computer vision and human feedback. We employ their
idea of using an MDP for effectively incorporating human and ma-
chine knowledge and adapt it to the problem of face recognition.
Our method hence has a similar state space, a more trivial action
space, but novel reward functions and look-ahead criteria for the
different dimensions we optimize on. We draw upon all the above
works to integrate machine learning models, human feedback, and
their quality estimation in the most effective way.

3 PROBLEM FORMULATION
We demonstrate a policy that maximizes the accuracy of face recogni-
tion using human expert input at test time, in addition to the machine
predictions. We model human experts in this system by assuming an
accuracy value for each expert and fine-tuning them as feedback is
collected. Our system consists of the following components:

BM - Machine classifier: (Baseline Model - Computer vision
face recognition model): This is the face recognition model which
provides us with the initial set of predictions. The input to this system
is an image of a face, and the output is a vector of probabilities of
the face belonging to the respective identities.

HIL-MDP - Efficient query selection: (human in the loop - MDP

for query selection) This component decides the queries to ask the
human expert to maximize accuracy given a cost constraint in time
or minimize the human expert time required while guaranteeing a
given accuracy. We use a Markov Decision Process to achieve this.

HIL-MAB - Annotator quality estimation and selection: (human
in the loop - multi-armed bandit for query addressing) This compo-
nent deals with selecting the human expert best suited for the given
task. This is carried out by estimating and fine-tuning the accuracy
estimates of the different human experts by assigning some gold and
consensus queries to them and obtaining their feedback. A Multi-
armed Bandit approach is used to select the human expert whose
accuracy values are to be fine-tuned for each query.

4 OUR SYSTEM FOR FACE RECOGNITION
In this section, we explain how we tackle a face recognition problem
by combining machine intelligence with human intelligence. The
target image flows in our system until the face is identified as follows.
The image of a face is given as input to the BM component. This
component makes predictions and gives the confidence measures
of the different identities being the same as the one in the image.
The HIL-MDP component uses these predictions to select the queries
to be asked, such that the final accuracy is maximized, and the
final cost is minimized. Finally, the HIL-MAB component assigns
these queries to the different human experts based on their qualities,
which is inferred through the feedback it obtains from them. The
diagrammatic representation can be observed in Figure 2. We now
explain how these three modules work in our system.

4.1 BM
We use the OpenFace face recognition [1] methodology to provide
initial predictions for each face for our system. For each image, we
perform a face alignment. The FaceNet [26] pre-trained embedding
space is then employed to represent the face on a 128-dimensional
unit hyper-sphere. This embedding space is an end-to-end learned
system that employs a triplet loss that directly reflects what we wish
to achieve in face recognition. A Support vector machine (SVM)
classifier trained on this set of images is then used to recognize the
faces. This system outputs the list of predictions and their confidence
values, which are used as initial predictions for our setup.

4.2 HIL-MDP

Notation Meaning

I1, I2, ..., In The set of all possible identities

Il |s
The identity with the highest probability of
being the face in the image, at state s

Ic The correct identity of the face in the image

P(Ik |s)
Probability that the kth identity is the iden-
tity of the face in the image at state s

P(TP)
Probability that the human expert will pick
the correct identity if it is present in the
query.

P(TN )

Probability that the human expert correctly
identifies that none of the queried identities
corresponds to the input face.

Table 1: List of symbols used in describing the working of the
HIL-MDP component and what they mean.

Multiple types of queries can be assigned to the human experts to
obtain information about the identity of the face in the image. These
queries would have varying costs, depending on their complexity. In
our system, we define these costs as the amount of human expert
time required to complete them.

Here, the queries we ask are of the type: Given k Identities, and
the image of the face, determine if the face belongs to any of these
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Figure 2: System overview: The inputs, outputs and interaction between the different components can be seen. BM makes predictions
based on the image, HIL-MDP selects the queries to be asked and HIL-MAB chooses the human experts to ask these queries to, based on
the feedback they give.

identities and if yes, which identity. Many such queries would have to
be generated for each image, in case of different human expert input.
These queries would only depend on the current confidence scores
of the different identities being the identity in the image. Further, for
each value of k, there would be a different cost associated with the
query, as more human expert time would be required to answer some
queries than others. The aim of the system would be to minimize
the total cost of the queries while choosing the queries that could
possibly give the most information to the system. Due to these
reasons, we use a Markov decision process (MDP) to generate these
queries. This approach is similar to that found in Russakovsky et
al. [24]. However, we modify the state and action spaces to that of
the face recognition problem. We also have created different reward
functions to optimize for different sub-problems, them being:

• Obtaining the best possible estimated accuracy of prediction,
given a fixed budget

• Expending the least human effort to achieve a given estimated
accuracy constraint

Since such an MDP would not have a fixed end-state, we have set
a horizon or look-ahead as the number of actions it would search
through, from the given start state. This would effectively set a limit
on the number of queries that can be posed about a given image. An
MDP is defined as a tuple of the following form (S,A,T ,R), the sets
being:

State Space, S . : The state-space of the MDP is the probability
vector of the identity predictions for the given image. The prediction
vector output of the computer vision model will be the start state.

Action Space, A. : The actions of the MDP are the set of queries
we will be assigned to the human experts. We have a set of k possible
actions, a1,a2, ...,ak from every state, defined as follows:

ak : Given k identities, I1, I2, ..., Ik , and the image, determine if
the face belongs to any identity and if yes, which identity. The cost
of this action would be a monotonically increasing function of k , i.e.,
c(k).

As seen in Figure 3, the action ak will have k+1 possible answers,
leading to k + 1 different identity prediction vectors. However, k
of these answers is the human expert claiming that the identity of

the input face is one of the identities present in the query, thus
determining the final answer. This implies that no more queries
would have to be asked on the image. Hence, the action ak would
lead to k terminal state and 1 non-terminal state, that is when the
human expert answers that none of the identities in the query is the
identity of the face in the image.

Transition probabilities, T . : The state reached on asking a query,
ak to a human expert would depend on the probability of the human
expert picking the correct answer, and the correct identity being
present in the query. Thus, the probability to transition to different
states when query ak is posed are as follows:

• Ic is present in I1, I2, ..., Ik , and the human expert labels cor-
rectly: In this case, with a probability of

P(TP)
k∑
j=1

P(Ij |s) (1)

the state will transition to: P(Im |s ′) = 1, where Im = Ic , and
P(Ij |s

′) = 0,∀j , m. This implies that the system produces
the final answer, Ic

• Ic is not present in I1, I2, ..., Ik , and the human expert labels
correctly: In this case, with a probability of

P(TN )(1 −
k∑
j=1

P(Ij |s)) (2)

the state will transition to: P(Im |s ′) = 0,∀1 ≤ m ≤ k, and∑k
j=1 P(Ij |s) will be added to P(Ij |s

′),∀j , m in a weighted
manner

Reward Function, R. : The reward function used would depend
on the quantity being optimized. In our work, we have created two
separate sub-problems, each optimizing a different quantity, that is,
either human expert cost or estimated accuracy of the identity.

(1) Given a fixed budget, to maximize the estimated accu-
racy: Estimated accuracy of a state s, on performing an action
a and moving to states s ′ stochastically, can be calculated as
follows:
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Figure 3: MDP state transitions: State S0 would be the prediction
vector output by the classifier, where ID 1, . . . , ID k are the dif-
ferent identities. Action a1 would be posed to the human expert
by giving 3 images of ID 1, to query whether ID 1 is the identity
present in the input image or not. All the human expert answers
that lead to terminal states are marked with red arrows.

V (s,a) =
∑
s ′

P(s ′ |s,a)(R(s ′) +max
a′

V (s ′,a′)) (3)

which, in this case would be:

V (s,a) = [P(TP)
k∑
j=1

P(Ij |s)] × 1

+ P(TN )[1 −
k∑
j=1

P(Ij |s)] × (P(Il |s
′) +max

a′
V (s ′,a′)) (4)

where a′ would be an action from state s ′.
Thus, here, the reward function, R(s) will be P(Il |s).
To not exceed the given cost constraint, we limit the horizon
of the MDP such that actions, which on inclusion exceed
the budget, are not considered in calculating the estimated
accuracy.

(2) Expending the least human effort to achieve a given accu-
racy constraint: As our goal is to minimize the cost of the

MDP given an accuracy constraint, we have set the reward
function, R(s,a) to simply as R(s,a) = −cost(a).
To stay within the given estimated accuracy constraint,A0 >=
V (s0), we modify Equation (4) to obtain the following expres-
sion:

A1 >=
A0 − P(TP)

∑k
j=1 P(Ij |s) × 1

P(TN )(1 −
∑k
j=1 P(Ij |s))

(5)

Here, Ai would be the estimated accuracy constraint to be
satisfied in the ith look-ahead of the MDP.
Having the values of Ai would allow us to eliminate all action
sequences which do not meet the given accuracy constraint.

4.3 HIL-MAB
Here, the task is to find the best human for each query by estimating
the accuracy of each human expert. To this end, each human can be
modeled as a bandit, with an unknown accuracy.

As the accuracy of each human expert is unknown in the begin-
ning, we first obtain a rough estimate by posing certain gold queries,
i.e. face images where the identity is known. To fine-tune these accu-
racies, we then pose certain queries to a subset of human experts to
arrive at a consensus. Here, the consensus answer can be assumed to
be the true answer as a high accuracy level is being assured. Such an
assumption is similar to the assumptions made in [15, 20]. Due to
this, the queries are split into three types, and the algorithm to select
the human experts for each type of query is as follows:

Notation Meaning

na Total number of human experts

cai
Number of queries answered correctly by
human expert i

tai
Number of queries answered by human ex-
pert i

qi
The quality of the human expert, calculated
as qi =

cai
tai

Table 2: List of symbols used in describing the working of the
HIL-MAB component and what they mean

Type A - Gold queries. Gold queries are expensive, and thus, we
aim to reduce the number of gold queries our system uses. This is
done by first passing the gold queries through the MDP to generate
queries and then assigning each query to all the experts present,
rather than a subset of them. As we know, the correct answers, cai ,
and tai can be updated, and thus, for each query, we can update the
qi values of all the human experts. In our work, we set a certain
fraction of the queries as gold queries; however, future work can be
done to optimize the number of gold queries, similar to the work
done by Chien-Ju Ho et al. [12].

Type B - Consensus queries. Estimating the accuracy with high
precision would require numerous gold queries. To avoid this, we
aim to obtain "consensus labels" that would be more accurate than
the label given by a single human expert.
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We only perform these accuracy updates on queries of MDP type
a1, where only one identity is given to the human expert, and he/she
is asked to identify if this identity is the same as the one in the
input face image or not. This is done because, when such a query is
asked an odd number of human experts, a consensus is guaranteed
to emerge, as there are only two possible options. Once a consensus
is reached, we assume the consensus is the correct answer, and
accordingly, the cai , tai , and thus the qi values can be updated for
the human experts the query was directed to.

To maintain the balance between exploring the accuracies of the
lesser assigned human experts and exploiting the high accuracies of
more assigned human experts, we use a multi-armed bandit solution,
namely the upper confidence bound algorithm [2, 5]. The algorithm
greedily picks the human expert i with the highest UCB value. The
UCB value for a human expert i, UCBi is computed as follows:

UCBi = qi +

√
2 log(

∑na
i=1 tai )

tai
(6)

The confidence bound increases with the total number of times
we pick any human expert but decreases with the number of times
we have picked a particular human expert. This ensures that although
the number of times each human expert is picked tends to infinity
as the total number of trials tends to infinity, the balance still exists
between exploration and exploitation. Thus, for queries of this type,
three human experts having the highest UCBi values are selected.

Type C - Non-update queries. The accuracy values estimated
using the previous two types of queries are used to select the human
experts used in these types of queries. A single human expert with
the highest current qi value is selected to answer the query. The
responses to these queries are not used to update the qi values of
human experts.

To summarize, the procedure to select appropriate human experts
for specific queries can be outlined as follows:

Algorithm 1 Query Distribution

1: if Type A Query then Assign to all human experts
2: else if Type B Query then
3: Compute the UCB value of each human expert using Equa-

tion 6
4: Assign query to 3 human experts having highest UCB values
5: else if Type C Query then
6: Assign query to human expert with highest qi value

5 EXPERIMENTS
In this section, the experimental results of the above system can be
observed.

5.1 data-sets used
LFW data-set. We use a subset of the “labeled faces in the wild"

data-set [13], training our baseline model on 85 identities, with a
training set of size 2,285 images and testing size of 1,315 images.
Our classifier achieves an accuracy of 88.6% on the test set using a
facenet embedding space and SVM classifier face recognition system.

CASIA WebFace data-set. We use a subset of the “CASIA Web-
Face data-set" data-set [36], training our baseline model on 500
identities, with a training set of size 15,000 images and testing size
of 5,000 images. Our classifier achieves an accuracy of 84.32% on
the test set.

5.2 Simulated Experiment Details
Action cost determination. In our system, we require costs to

be assigned to the different possible queries chosen by the MDP.
Each MDP query would be of the form ak , where the human expert
would have to determine whether one of the identities is the same
as that in the given image, or not, if yes, to pick the identity. In this
context, we define cost to be the amount of human expert time spent
on the action. Note that, the monetary rewards will vary from the
demographics of the human experts and hence, we work with time
taken by the human experts as costs. In our experiments, we will not
be accounting for idle human expert time, and thus the total cost will
be the summation of the time spent on all the queries. To determine
these costs, we assigned 6,500 queries to 8 different human experts
and on averaging the results, the following are the costs obtained:

Action a1 a2 a3 a4 a5
Cost (in seconds) 3.8 5.7 8.9 11.3 14.7

Table 3: Action Cost Ground-Truth: The average time taken by
the humans to answer each HIL-MDP query.

Human Annotator Simulation. To test our system on larger data-
sets, and to run it on different sets of constraints, we built a system
that simulates human experts. In this simulation, each human expert
is assigned an accuracy, a : 0 ≤ a ≤ 1, and with a probability of
a, the right answer is returned, and with a probability of 1 − a, a
random wrong answer is returned.

To ensure such simulations give accurate results, we estimated the
accuracy of 8 human experts, over 476 queries each, and their accu-
racies were: {94.53%, 91.19%, 95.80%, 95.38%, 98.95%, 94.53%,
97.27%, 97.05%}. These are the accuracy values of the human ex-
perts in all the simulations that follow.

5.3 Load Balancing
In our system, type A and type B queries have a mechanism of
being distributed among the different human experts (Type A being
assigned to all human experts, and type B being assigned using the
UCB algorithm), whereas type C queries do not. This results in our
system using multiple human experts inefficiently. To alleviate this
issue, we introduce a “balance factor", bf into our system. This
factor ensures that the difference in the number of type C queries
between the human experts having the ith and the (i + 1)th highest
type C queries never exceed bf . This ensures that queries of type C
are also distributed in a balanced manner among human experts. As
bf increases, the number of queries assigned to each human expert
gets skewed, and the accuracy of the system increases. The results
when simulations are run without budget or accuracy constraints can
be observed in Table 4.
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bf Accuracy Total Cost Range SD (σ )
LFW data-set

50 96.75% 11524.90 sec 575 199.42
100 97.32% 8342.70 sec 952 334.72
200 98.11% 8293.49 sec 1112 373.68

No bf 98.56% 15954.50 sec 4372 1431.20
CASIA WebFace data-set

50 95.5% 55452.10 sec 377 120.18
200 95.84% 55750.60 sec 1578 504.87
500 96.33% 65681.90 sec 5338 1928.79

No bf 97.29% 73076.40 sec 18944 6214.09

Table 4: Effect of balance factor on accuracy, cost and query
distribution among human experts, measured using range and
standard deviation (SD) of the number of queries assigned to
the human experts.

5.4 Impact of HIL-MAB Component
To observe the impact of HIL-MAB, we run the simulation without
budget constraints and load balancing, and with and without the
HIL-MAB component. The results can be observed in Table 5. On
the addition of the HIL-MAB component, the difference between
the qualities of the different human experts is capitalized, thus as-
signing queries accordingly, resulting in higher accuracies. It can be
observed that the total cost required also decreases, as when human
experts with higher accuracies are picked to answer queries, more
information is gained, and thus, the HIL-MDP would have to make
fewer queries to improve the prediction.

Experiment Accuracy Total Cost (sec)
without
MAB

with
MAB

without
MAB

with
MAB

LFW 95.05% 98.56% 16996 15954
CASIA 93.41% 97.29% 76263 73076

Table 5: Results obtained with and without the HIL-MAB compo-
nent: There is significant in the accuracies obtained when using
the HIL-MAB component.

5.5 Impact of HIL-MDP Optimization
On the CASIA WebFace data-set, we ran simulations with different
budget constraint values while including and excluding HIL-MAB, as
seen in Figure 5. As we use HIL-MDP to determine the queries to be
asked the humans, we can see how increasing the available budget
causes the system to either increase the number of queries asked or
ask more expensive queries, thus increasing the accuracy obtained.
It can also be seen how the addition of the HIL-MAB component
consistently provides better results.

5.6 Using Real Human Input
We ran the system with eight real human experts on the LFW data-
set. We did not assign a budget constraint. A balance factor of
bf = 50 was set to minimize human expert wait time. Through gold

Figure 4: Graph showing how our system can accurately pre-
dict accuracies of simulated humans. Here, A1, A2, . . . , A8
are the human experts whose accuracy measure has been es-
timated.

Figure 5: Accuracy vs Cost graph for different budget con-
straints simulated on the CASIA WebFace data-set. The points,
from left to right are budget constraints of 0, 4, 8, 12, 16 and
Unlimited human expert seconds per image respectively.

queries and consensus queries, the HIL-MAB component estimated
the accuracy measures of the human experts as {94.53%, 91.19%,
95.80%, 95.38%, 98.95%, 94.53%, 97.27%, 97.05%}. Out of the
1315 queries, 80 of them were gold queries.

The final accuracy achieved under these conditions was 95.16%,
which follows the trends that we have seen in our simulations.

6 DISCUSSION AND CONCLUSIONS
We presented a novel system that combines the ability of machine
learning approaches to handle large volumes of data with superior
human accuracy in the domain of facial recognition. Using real
human experts, we show that our system can obtain an accuracy of
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Figure 6: Impact of human input: We can see how although
the classifier fails to give the correct input, the correct answer is
present in the top-k results and is easily identifiable by a human
expert.

95.16% on a subset of the LFW data-set, whereas the machine-only
approach obtained an accuracy of 88.6%.

We show that we can introduce different degrees of load balancing
in our system, which allows us to more efficiently use the multiple
human experts present at the cost of accuracy.

We highlight the importance of the MAB component to assign
the human expert to be queried. Through our experiments, it is seen
how accurately estimating the accuracy of each human expert and
assigning queries appropriately increases the overall accuracy of our
system and also decreases the cost incurred. In the future, we will
go for contextual multi-armed bandits that consider time-varying as
well as demographic-based accuracies of human experts.

One of the results of using an MDP in our system is that there
is scope for obtaining optimal results under varying constraints.
As seen in our experiments, different sets of queries are generated
according to the specified budget, which correspondingly increases
or decreases the final accuracy of the system.

We believe that such a combination of the machine input, along
with MDP and MAB methods to obtain human input, can be applied
to other machine learning tasks.

In this work, we treated workers having a fixed accuracy. However,
further MAB theory needs to be developed as though tasks are
homogeneous can greatly vary in difficulty. We leave it for future
work, how to efficiently do explore-exploit trade-off in such settings.

The proposed approach is very generic and could be used in plenty
of applications such as machine translation.
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