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Abstract. Precise boundary annotations of image regions can be crucial
for downstream applications which rely on region-class semantics. Some
document collections contain densely laid out, highly irregular and over-
lapping multi-class region instances with large range in aspect ratio. Fully
automatic boundary estimation approaches tend to be data intensive,
cannot handle variable-sized images and produce sub-optimal results
for aforementioned images. To address these issues, we propose Bound-
aryNet, a novel resizing-free approach for high-precision semi-automatic
layout annotation. The variable-sized user selected region of interest is
first processed by an attention-guided skip network. The network opti-
mization is guided via Fast Marching distance maps to obtain a good
quality initial boundary estimate and an associated feature represen-
tation. These outputs are processed by a Residual Graph Convolution
Network optimized using Hausdorff loss to obtain the final region bound-
ary. Results on a challenging image manuscript dataset demonstrate that
BoundaryNet outperforms strong baselines and produces high-quality se-
mantic region boundaries. Qualitatively, our approach generalizes across
multiple document image datasets containing different script systems
and layouts, all without additional fine-tuning. We integrate Bound-
aryNet into a document annotation system and show that it provides
high annotation throughput compared to manual and fully automatic
alternatives.

Keywords: document layout analysis · interactive · deep learning

1 Introduction

Document images exhibit incredible diversity in terms of language [40,36,6], con-
tent modality (printed [12,34], handwritten [35,32,16,4]), writing surfaces (paper,
parchment [29], palm-leaf [30,17]), semantic elements such as text, tables, pho-
tos, graphics [6,34,43] and other such attributes. Within this variety, handwritten
and historical documents pose the toughest challenges for tasks such as Optical
Character Recognition (OCR) and document layout parsing.
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Fig. 1: Compare the contours of semantic region instances for printed documents
(top) [41] and historical document images (bottom). The latter are very di-
verse, often found damaged, contain densely laid out overlapping region instances
(lines, holes) with large range in aspect ratios and high local curvature. These
factors pose a challenge for region annotation.

In this work, we focus on historical documents. These documents form an im-
portant part of world’s literary and cultural heritage. The mechanised process
of machine printing imparts structure to modern-era paper documents. In con-
trast, historical document images are typically handwritten, unstructured and
often contain information in dense, non-standard layouts (Fig. 1). Given the
large diversity in language, script and non-textual elements in these documents,
accurate spatial layout parsing can assist performance for other document-based
tasks such as word-spotting [21], optical character recognition (OCR), style or
content-based retrieval [39,44]. Despite the challenges posed by such images, a
number of deep-learning based approaches have been proposed for fully auto-
matic layout parsing [35,30,3,26]. However, a fundamental trade off exists be-
tween global processing and localized, compact nature of semantic document
regions. For this reason, fully automatic approaches for documents with densely
spaced, highly warped regions often exhibit false negatives or imprecise region
boundaries. In practice, correction of predicted boundaries can be more burden-
some than manual annotation itself.

Therefore, we propose an efficient semi-automatic approach for parsing im-
ages with dense, highly irregular layouts. The user selected bounding-box en-
closing the region of interest serves as a weak supervisory input. Our proposed
deep neural architecture, BoundaryNet, processes this input to generate precise
region contours which require minimal to no manual post-processing.

Numerous approaches exist for weakly supervised bounding-box based se-
mantic parsing of scene objects [2,37]. However, the spatial dimensions and as-
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pect ratios of semantic regions in these datasets are less extreme compared to
ones found in handwritten documents (Fig. 1). More recently, a number of ap-
proaches model the annotation task as an active contour problem by regressing
boundary points on the region’s contour [1,24,27,7,10]. However, the degree of
curvature for document region contours tends to be larger compared to regular
object datasets. The image content and associated boundaries are also distorted
by the standard practice of resizing the image to a common height and width.
For these reasons, existing approaches empirically tend to produce imprecise con-
tours, especially for regions with high warp, extreme aspect ratio and multiple
curvature points (as we shall see).

To address these shortcomings, we propose a two-stage approach (Sec. 3).
In the first stage, the variable-sized input image is processed by an attention-
based fully convolutional network to obtain a region mask (Sec. 3.1). The region
mask is morphologically processed to obtain an initial set of boundary points
(Sec. 3.2). In the second stage, these boundary points are iteratively refined
using a Residual Graph Convolutional Network to generate the final semantic
region contour (Sec. 3.3). As we shall show, our design choices result in a high-
performing system for accurate document region annotation.

Qualitatively and quantitatively, BoundaryNet outperforms a number of strong
baselines for the task of accurate boundary generation (Sec. 4). BoundaryNet
handles variable-sized images without resizing, in real-time, and generalizes across
document image datasets with diverse languages, script systems and dense, over-
lapping region layouts (Sec. 4). Via end-to-end timing analysis, we showcase
BoundaryNet’s superior annotation throughput compared to manual and fully-
automatic approaches (Sec. 5.2).

Source code, pre-trained models and associated documentation are available
at http://ihdia.iiit.ac.in/BoundaryNet/.

2 Related Work

Annotating spatial regions is typically conducted in three major modes – man-
ual, fully automatic and semi-automatic. The manual mode is obviously labor-
intensive and motivates the existence of the other two modes. Fully automatic ap-
proaches fall under the task categories of semantic segmentation [8] and instance
segmentation [13]. These approaches work reasonably well for printed [6,43] and
structured handwritten documents [3], but have been relatively less successful
for historical manuscripts and other highly unstructured documents containing
distorted, high-curvature regions [16,30].

Given the challenges with fully automatic approaches, semi-automatic vari-
ants operate on the so-called ‘weak supervision’ provided by human annotators.
The weak supervision is typically provided as class label [38,11], scribbles [5,9,15]
or bounding box [2] for the region of interest with the objective of predicting
the underlying region’s spatial support. This process is repeated for all image
regions relevant to the annotation task. In our case, we assume box-based weak

http://ihdia.iiit.ac.in/BoundaryNet/


4 Trivedi and Sarvadevabhatla

supervision. Among box-based weakly supervised approaches, spatial support is
typically predicted as a 2-D mask [2] or a boundary contour [1,24,27,7,10].

Contour-based approaches generally outperform mask-based counterparts
and provide the flexibility of semi-automatic contour editing [1,7,27,10,24]. We
employ a contour-based approach. However, unlike existing approaches, (i) Bound-
aryNet efficiently processes variable-sized images without need for resizing (ii)
Boundary points are adaptively initialized from an inferred estimate of region
mask instead of a fixed geometrical shape (iii) BoundaryNet utilizes skip connec-
tion based attentional guidance and boundary-aware distance maps to seman-
tically guide region mask production (iv) BoundaryNet also produces region
class label reducing post-processing annotation efforts. Broadly, our choices help
deal with extreme aspect ratios and highly distorted region boundaries typically
encountered in irregularly structured images.

3 BoundaryNet

Overview: Given the input bounding box, our objective is to obtain a precise
contour of the enclosed semantic region (e.g. text line, picture, binding hole).
BoundaryNet’s processing pipeline consists of three stages – see Fig. 2. In the first
stage, the bounding box image is processed by a Mask-CNN (MCNN) to obtain
a good quality estimate of the underlying region’s spatial mask (Sec. 3.1). Mor-
phological and computational geometric procedures are used to sample contour
points along the mask boundary (Sec. 3.2). A graph is constructed with contour
points as nodes and edge connectivity defined by local neighborhoods of each
contour point. The intermediate skip attention features from MCNN and con-
tour point location are used to construct feature representations for each graph
node. Finally, the feature-augmented contour graph is processed by a Graph
Convolutional Network (Anchor GCN - Sec. 3.3) iteratively to obtain final set
of contour points which define the predicted region boundary.

Semantic regions in documents are often characterized by extreme aspect ra-
tio variations across region classes and uneven spatial distortion. In this context,
it is important to note that BoundaryNet processes the input as-is without any
resizing to arbitrarily fixed dimensions. This helps preserve crucial appearance
detail. Next, we describe the components of BoundaryNet.

3.1 Mask-CNN (MCNN)

As the first step, the input image is processed by a backbone network (‘Skip
Attention Backbone’ in Fig. 2). The backbone has U-Net style long-range skip
connections with the important distinction that no spatial downsampling or
upsampling is involved. This is done to preserve crucial boundary information.
In the first part of the backbone, a series of residual blocks are used to obtain
progressively refined feature representations (orange blocks). The second part of
the backbone contains another series of blocks we refer to as Skip Attentional



BoundaryNet 5

Skip Attention
Backbone

Region Classi�er

“Line Segment”

Contourize Anchor GCN

Iterative Refinement
(2x) 

Region Mask

GCN node feature 

Output 
Contour

Mask 
ContourInput Image

Mask Cnn
(MCNN)

W

H

120 2

Skip Attention Backbone
  s

M

M

M

Anchor GCN

A

 �

n
n

 �

a

n

b

n

GCN 
(a,b)

3 x 3 ; 2 
(8)

 Res 
(16)

 
 
2

Mask
Decoder W

H

BoundaryNet

3 x 3 ; 1 
(a)

3 x 3 ; 1 
(a)

1 x 1;1 
(a)

Res
 (a)

 Res 
(32)

 Res 
(64)

 Res 
(128)

 SAG 
(16)

 SAG
(32)

 SAG 
(64)

 SAG 
(8)

 
 
6
4

 
 
1
2
8

 
 
5
1
2Adaptive

AvgPool
2 x 2

 3 x 3 ; 2  
(8)

3 x 3 ; 1 
(3)

Mask Decoder

ReLU

Elementwise Addition
Matrix Multiplication
Graph Feature Propagation

FC Layer

Convolution Layer

Deconvolution Layer

R Replication

Sigmoid

C Concatenation (Channel stack)

Pointwise multiplication

p = (x,y)

H/2

W/2 120

 Attn Gating
(a)

3 x 3 ; 1 
(a)

3 x 3 ; 1 
(a)

Skip Attentional Gating (SAG)
 (a)

3 x 3 ; 1 
(a)

C

p = (x,y)

1 x 1 ; 1 
(a/2)

1 x 1 ; 1 
(1)

R
1 x 1 ; 1 

(a/2)

Attn Gating 
 (a)

GCN 
(a,b)

GCN 
(a,b)

Res-GCN 
(a,b)

Res-GCN 
(120,120)

GCN 
(120,32)

6x
GCN 

(122,120)

C

Fig. 2: The architecture of BoundaryNet (top) and various sub-components (bot-
tom). The variable-sized H×W input image is processed by Mask-CNN (MCNN)
which predicts a region mask estimate and an associated region class (Sec. 3.1).
The mask’s boundary is determined using a contourization procedure (light
brown) applied on the estimate from MCNN. M boundary points are sampled
on the boundary (Sec. 3.2). A graph is constructed with the points as nodes and
edge connectivity defined by 6 k-hop neighborhoods of each point. The spatial
coordinates of a boundary point location p = (x, y) and corresponding back-
bone skip attention features from MCNN fr are used as node features for the
boundary point. The feature-augmented contour graph G = (F,A) is iteratively
processed by Anchor GCN (Sec. 3.3) to obtain the final output contour points
defining the region boundary. Note that all filters in MCNN have a 3× 3 spatial
extent. The orange lock symbol on region classifier branch indicates that it is
trained standalone, i.e. using pre-trained MCNN features.

Guidance (SAG). Each SAG block produces increasingly compressed (channel-
wise) feature representations of its input. To accomplish this feat without losing
crucial low-level feature information, the output from immediate earlier SAG
block is fused with skip features originating from a lower-level residual block
layer (refer to ‘Skip Attention Backbone’ and its internal module diagrams in
Fig. 2). This fusion is modulated via an attention mechanism (gray ‘Attn Gating’
block) [28].

The final set of features generated by skip-connection based attentional guid-
ance (magenta) are provided to the ‘Mask Decoder’ network which outputs
a region mask binary map. In addition, features from the last residual block
(Res-128) are fed to ‘Region Classifier’ sub-network which predicts the associ-
ated region class. Since input regions have varying spatial dimensions, we use
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Fig. 3: Contourization (Sec. 3.2): a - input image, b - thresholded initial estimate
from MCNN, c - after area-based thresholding and joining centroids of largest
connected components by an adaptive m = H

7 pixel-thick line where H is the
height of the input image, d - after morphological closing, contour extraction,
b-spline fitting and uniform point sampling, e - estimated contour (red) and
ground-truth (blue) overlaid on input image.

adaptive average pooling [14] to ensure a fixed-dimensional fully connected layer
output (see ‘Region Classifier’ in Fig. 2).

The input image is processed by an initial convolutional block with stride 2
filters before the resulting features are relayed to the backbone residual blocks.
The spatial dimensions are restored via a transpose convolution upsampling
within ‘Mask Decoder’ sub-network. These choices help keep the feature repre-
sentations compact while minimizing the effect of downsampling.

3.2 Contourization

The pixel predictions in the output from ‘Mask Decoder’ branch are thresholded
to obtain an initial estimate of the region mask. The result is morphologically
processed, followed by the extraction of mask contour. A b-spline representation
of mask contour is further computed to obtain a smoother representation. M
locations are uniformly sampled along the b-spline contour curve to obtain the
initial set of region boundary points. Figure 3 illustrates the various steps.

An advantage of the above procedure is that the set of mask-based boundary
points serves as a reasonably accurate estimate of the target boundary. There-
fore, it lowers the workload for the subsequent GCN stage which can focus on
refining the boundary estimate.

3.3 Anchor GCN

The positional and appearance-based features of boundary points from the con-
tourization stage (Sec. 3.2) are used to progressively refine the region’s boundary
estimate. For this, the boundary points are first assembled into a contour graph.
The graph’s connectivity is defined by 6k-hop neighbors for each contour point



BoundaryNet 7

node. The node’s s-dimensional feature representation is comprised of (i) the con-
tour point 2-D coordinates p = (x, y) (ii) corresponding skip attention features
from MCNN fr - refer to ‘GCN node feature’ in Fig. 2 for a visual illustration.

The contour graph is represented in terms of two matrices - feature matrix F
and adjacency matrix A [18,42]. F is a M×s matrix where each row corresponds
to the s-dimensional boundary point feature representation described previously.
The M×M binary matrix A encodes the 6k-hop connectivity for each boundary
point. Thus, we obtain the contour graph representation G = (F,A) (denoted
‘Residual Graph’ at bottom-right of Fig. 2). We briefly summarize GCNs next.

Graph Convolutional Network (GCN): A GCN takes a graph G as input
and computes hierarchical feature representations at each node in the graph
while retaining the original connectivity structure. The feature representation
at the (i + 1)-th layer of the GCN is defined as Hi+1 = f(Hi, A) where Hi is a
p×Fi matrix whose j-th row contains the i-th layer’s feature representation for
node indexed by j (1 6 j 6 N). f (the so-called propagation rule) determines the
manner in which node features of previous layer are aggregated to obtain current
layer’s feature representation. We use the following propagation rule [19]:

f(Hi, A) = σ(D
−1
2 ÃD

−1
2 HiWi) (1)

where Ã = A + I represents the adjacency matrix modified to include self-
loops, D is a diagonal node-degree matrix (i.e. Djj =

∑
m Ãjm) and Wi are

the trainable weights for i-th layer. σ represents a non-linear activation function
(ReLU in our case). Also, H0 = F (input feature matrix).

Res-GCN: The residual variant of GCN operates via an appropriate ‘resid-
ual’ modification to the GCN layer’s feature representation and is defined as
Hi+1 = f(Hi, A) +Hi.

The input contour graph features are processed by a series of Res-GCN blocks [22]
sandwiched between two GCN blocks. The Anchor GCN module culminates in
a 2-dimensional fully connected layer whose output constitutes per-point dis-
placements of the input boundary locations. To obtain the final boundary, we
perform iterative refinement of predicted contour until the net displacements are
negligibly small by re-using GCN’s prediction for the starting estimate at each
iteration [24].

3.4 Training and Inference

We train BoundaryNet in three phases.
First Phase: In this phase, we aim to obtain a good quality estimate of the
boundary contour from MCNN. For this, the binary prediction from MCNN is
optimized using per-pixel class-weighted binary focal loss [23]:

lBFL = αcy(1− p)γ · log p+ (1− y)pγ · log(1− p) (2)
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Table 1: Train, Validation and Test split for different region types.
Split Total Hole Line Segment Degradation Character Picture Decorator Library Marker Boundary Line

Train 6491 422 3535 1502 507 81 48 116 280
Validation 793 37 467 142 75 5 12 18 37
Test 1633 106 836 465 113 9 5 31 68

Fig. 4: Some examples of region image (top) and color-coded versions of fast
marching distance map (middle) and the attention map computed by final
SAG block of BoundaryNet (bottom). The relatively larger values at the crucial
boundary portions can be clearly seen in the attention map.

where y ∈ {0, 1} is ground-truth label, p is the corresponding pixel-level pre-
diction, αc = Nb/Nf is the ratio of background to foreground (region mask)
pixel counts and γ is the so-called focusing hyperparameter in focal loss. The
class-weighting ensures balanced optimization for background and foreground,
indirectly aiding contour estimation. The focal loss encourages the optimization
to focus on the harder-to-classify pixels.

To boost the precision of estimate in a more boundary-aware manner, we first
construct a distance map using a variant of the Fast Marching method [33]. The
procedure assigns a distance of 0 to boundary pixels and progressively higher
values to pixels based on contours generated by iterative erosion and dilation
of ground-truth region mask (see Figure 4. The distance map is inverted by
subtracting each entry from the global maximum within the map. Thus, the
highest weights are assigned to boundary pixels, with the next highest set of
values for pixels immediately adjacent to the boundary. The inverted distance
map is then normalized ([0, 1]) to obtain the final map Ψ . The class-weighted
binary focal loss spatial map LBFL is constituted from per-pixel losses lBFL
(Eq. 2) and further weighted by Ψ as follows:

LFM = (1 + Ψ)� LBFL (3)

where � stands for the Hadamard product. The above formulation is preferred
to solely weighting LBFL with Ψ to mitigate the vanishing gradient issue.

Second Phase: In this phase of training, MCNN’s weights are frozen and the
estimate of region mask is obtained as described previously (Sec. 3.1). The con-
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tour graph constructed from points on region mask boundary (Sec. 3.2) is fed
to Anchor GCN. The output nodes from Anchor GCN are interpolated 10×
through grid sampling. This ensures maximum optimal shifts towards ground-
truth contour for original graph nodes and avoids graph distortion.

Let G be the set of points (x-y locations) in ground-truth contour and B, the
point set predicted by Anchor GCN. Let E1 be the list of minimum Euclidean
distances calculated per ground-truth point gi ∈ G to a point in B, i.e. ei =
min
j
‖ gi− bj ‖, ei ∈ E1, bj ∈ B. Let E2 be a similar list obtained by flipping the

roles of ground-truth and predicted point sets. The Hausdorff Distance loss [31]
for optimizing Anchor GCN is defined as:

LC(E1, E2) = 0.5(
∑
i

ei +
∑
j

ej) (4)

where ej ∈ E2.

Third Phase: In this phase, we jointly fine-tune the parameters of both MCNN
and Anchor GCN in an end-to-end manner. The final optimization is performed
by minimizing LFT loss defined as: LFT = LC + λ LFM . As we shall see, the
end-to-end optimization is crucial for improved performance (Table 3).

The region classification sub-branch is optimized using categorical cross-
entropy loss (LrCE) after all the phases mentioned above. During this process, the
backbone is considered as a pre-trained feature extractor, i.e. backpropagation
is not performed on MCNN backbone’s weights.

3.5 Implementation Details

MCNN: The implementation details of MCNN can be found in Fig. 2. The
input H×W ×3 RGB image is processed by MCNN to generate a corresponding
H×W region mask representation (magenta branch in Fig. 2) and a region class
prediction (orange branch) determined from the final 8-way softmax layer of the
branch. In addition, the outputs from the SAG blocks are concatenated and the
resulting H

2 ×
W
2 ×120 output (shown at the end of dotted green line in Fig. 2) is

used to determine the node feature representations fr used in the downstream
Anchor GCN module.

For MCNN training, the focal loss (Eq. 2) is disabled at the beginning, i.e. γ =
0. The batch size is set to 1 with an initial learning rate of 3e−5. A customized
variant of Stochastic Gradient Descent with Restart [25] is conducted. Two fresh
restarts are performed by increasing learning rate 5× for 3 epochs and dropping
it back to counter potential loss saturation. The focal loss is invoked with γ = 2
when LFM (Eq. 3) starts to plateau. At this stage, the learning rate is set to
decay by 0.5 every 7 epochs.

Contourization: The region formed by pixels labelled as region interior in
MCNN’s output is morphologically closed using a 3×3 disk structuring element.
Major regions are extracted using area-based thresholding. The final region in-
terior mask is obtained by connecting all the major sub-regions through their
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Table 2: Region-wise average and overall Hausdorff Distance (HD) for different
baselines and BoundaryNet on Indiscapes dataset.

HD ↓ Hole Line Segment Degradation Character Picture Decorator Library Marker Boundary Line

BoundaryNet 17.33 6.95 20.37 10.15 7.58 51.58 20.17 16.42 5.45
Polygon-RNN++[1] 30.06 5.59 66.03 7.74 5.11 105.99 25.11 9.97 15.01

Curve-GCN[24] 39.87 8.62 142.46 14.55 10.25 68.64 32.11 19.51 22.85
DACN[7] 41.21 8.48 105.61 14.10 11.42 91.18 26.55 22.24 50.16

DSAC[27] 54.06 14.34 237.46 10.40 8.27 65.81 39.36 23.34 33.53

centroids. A b-spline curve is fit to the boundary of the resulting region and
M = 200 boundary points are uniformly sampled along the curve - this process
is depicted in Fig. 3.

Anchor GCN: Each boundary point’s 122-dimensional node feature is obtained
by concatenating the 120-dimensional feature column (fr in Fig. 2) and the
point’s 2-D coordinates p = (x, y) (normalized to a [0, 1] × [0, 1] grid). Each
contour point is connected to its 20 nearest sequential neighbors in the con-
tour graph, ten on each side along the contour (see ‘Mask Contour’ in Fig. 2),
i.e. maximum hop factor k = 10. The graph representation is processed by two
GCN and six residual GCN layers (see ‘Residual GCN’ in Fig. 2 for architec-
tural details). The resulting features are processed by a fully connected layer to
produce 2-D residuals for each of the boundary points. The iterative refinement
of boundary points is performed two times. During training, the batch size is set
to 1 with a learning rate of 1e−3.

End-to-end framework: For joint optimization, the batch size set to 1 with a
relatively lower learning rate of 1e−5. Weighting coefficient λ (in Eq. 4) is set to
200.

Throughout the training phases and for loss computation, the predicted
points and ground-truth are scaled to a unit normalized ([0, 1] × [0, 1]) canvas.
Also, to ensure uniform coverage of all region classes, we perform class-frequency
based mini-batch resampling and utilize the resultant sequences for all phases of
training.

4 Experimental Setup

Performance Measure: As performance measure, we use the Hausdorff Dis-
tance (HD) [20] between the predicted contour and its ground-truth counterpart
(Sec. 3.5). Note that smaller the HD, the better is the boundary prediction.
The per-region HD is obtained as the average over the HD of associated region
instances.

For all the models, we use performance on the validation set to determine the
optimal hyperparameters and determine architectural choices. Subsequently, we
optimize the models on the combined training and validation splits and conduct
a one-time evaluation on the test split.
Baselines: To perform a comparative evaluation of BoundaryNet, we include
multiple state-of-the-art semi-automatic annotation approaches - DSAC [27],
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BoundaryNet     HD: 22.0                  IoU: 83.3  

Curve-GCN        HD: 130.1   IoU: 73.0 

DACN                 HD: 116.1   IoU: 73.1

BoundaryNet     HD: 5.0   IoU: 77.1   

PolyRNN++        HD: 16.3   IoU: 83.4  

DACN                 HD: 8.6     IoU: 85.1   

   BoundaryNet
 HD: 14.9         IoU:84.3

Curve-GCN
HD: 53.2       IoU:51.3

      PolygonRNN++
HD: 50.4          IoU:73.5

                DACN
HD: 56.3        IoU:51.3

Curve-GCN        HD: 17.5   IoU: 84.1  

PolyRNN++       HD: 103.2   IoU: 72.4

A

B C

Fig. 5: Qualitative comparison of BoundaryNet with baselines on sample test
images from Indiscapes dataset. For each region, the ground-truth contour is
outlined in white. The IoU score is also mentioned for reference (see Sec. 5).

Polygon-RNN++ [1], Curve-GCN [24] and DACN [7]. These approaches exhibit
impressive performance for annotating semantic regions in street-view dataset
and for overhead satellite imagery. However, directly fine-tuning the baselines re-
sulted in bad performance due to the relatively fewer annotation nodes regression
and domain gap between document images and imagery (street-view, satellite)
for which the baselines were designed. Therefore, we use the original approaches
as a guideline and train modified versions of the baseline deep networks.
Evaluation dataset: For training and primary evaluation, we use Indiscapes [30],
a challenging historical document dataset of handwritten manuscript images. It
contains 526 diverse document images containing 9507 regions spanning the fol-
lowing categories: Holes, Line Segments, Physical Degradation, Character Com-
ponent, Picture, Decorator, Library Marker, Boundary Line, Page Boundary
(omitted for our evaluation). Details of the training, validation and test splits
can be viewed in Table 1.

5 Results

5.1 Indiscapes

Quantitative Baseline Comparison: As Table 2 shows, BoundaryNet out-
performs other baselines by a significant margin in terms of overall Hausdorff
Distance (HD). Considering that images in the test set have widths as large as
6800 pixels, the results indicate a high degree of precision for obtained contours.
The performance of BoundaryNet is slightly lower than the best on regions such
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Fig. 6: Semantic region boundaries predicted by BoundaryNet. The colors distin-
guish instances – they are not region labels (written in shorthand alongside the
regions). The dotted line separates Indiscapes dataset images (top) and those
from other document collections (bottom). Note: BoundaryNet has been trained
only on Indiscapes.

as ‘Holes’, ‘Library Marker’ and ‘Degradation’ due to the filtering induced by the
GCN. However, notice that the performance for region present most frequently
- ‘Line Segment’ - is markedly better than other baselines.

Qualitative Baseline Comparison: The performance of BoundaryNet and
top three baseline performers for sample test images can be viewed in Figure 5.
In addition to HD, we also mention the IoU score. As the results demonstrate,
HD is more suited than IoU for standalone and comparative performance assess-
ment of boundary precision. The reason is that IoU is an area-centric measure,
suited for annotating objects in terms of their rigid edges (e.g. objects found in
real-world scenery). As example B in Fig. 5 shows, a boundary estimate which
fails to enclose the semantic content of the region properly can still have a high
IoU. In contrast, semantic regions found in documents, especially character lines,
typically elicit annotations which aim to minimally enclose the region’s seman-
tic content in a less rigid manner. Therefore, a contour-centric measure which
penalizes boundary deviations is more suitable.
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Table 3: Performance for ablative variants of BoundaryNet. The + refers to
MCNN’s output being fed to mentioned ablative variants of AGCN.

Component Ablation type Default Configuration in BoundaryNet HD ↓

MCNN Max Residual Channels=64 Max Residual Channels=128 21.77
MCNN No Focal Loss Focal Loss 22.98
MCNN No Fast Marching weights Penalization Fast Marching weights Penalization 23.96
MCNN Normal skip connection, no attention gating Skip connection with attention gating 28.27
MCNN No AGCN AGCN 19.17
+AGCN 6 5-hop neighborhood 6 10-hop neighborhood 19.26
+AGCN 6 15-hop neighborhood 6 10-hop neighborhood 20.82
+AGCN 1× spline interpolation 10× interpolation 20.48
+AGCN 1 iteration 2 iterations 19.31
+AGCN 100 graph nodes 200 graph nodes 20.37
+AGCN 300 graph nodes 200 graph nodes 19.98
+AGCN Node features: backbone only fr(x, y) fr(x, y), (x, y) 20.50
+Fine-Tuning No end-to-end finetuning End to end finetuning 18.79

BoundaryNet – original 17.33

Qualitative Results (Image-level): Examples of document images with Bound-
aryNet predictions overlaid can be seen in Figure 6. The images above the dotted
line are from the Indiscapes dataset. The documents are characterized by dense
layouts, degraded quality (first image), ultra wide character lines (second image).
Despite this, BoundaryNet provides accurate annotation boundaries. Note that
BoundaryNet also outputs region labels. This results in amortized time and la-
bor savings for the annotator since region label need not be provided separately.
Region Classifier performance can be seen in Figure 7 (left).

Performance on other document collections: To determine its general util-
ity, we used BoundaryNet for semi-automatic annotation of documents from
other historical manuscript datasets (South-East Asian palm leaf manuscripts,
Arabic and Hebrew documents). The results can be viewed in the images below
the dotted line in Figure 6. Despite not being trained on images from these col-
lections, it can be seen that BoundaryNet provides accurate region annotations.

Ablations: To determine the contribution of various architectural components,
we examined lesioned variants of BoundaryNet for ablation analysis. The results
can be viewed in Table 3. As can be seen, the choices related to the MCNN’s loss
function, presence of error penalizing distance maps, number of points sampled
on mask boundary estimate, spline interpolation, all impact performance in a
significant manner.

5.2 Timing Analysis

To determine BoundaryNet utility in a practical setting, we obtained document-
level annotations for test set images from Indiscapes dataset. The annotations
for each image were sourced using an in-house document annotation system in
three distinct modes: Manual Mode (hand-drawn contour generation and re-
gion labelling), Fully Automatic Mode (using an existing instance segmenta-
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Fig. 7: (left) Confusion Matrix from Region classifier branch, (right) Document-
level end-to-end annotation duration distribution for various approaches de-
picted as a violin plot(the white dot represents mean duration - see Sec. 5.2).

tion approach [30] with post-correction using the annotation system) and Semi-
Automatic Mode (manual input of region bounding boxes which are subsequently
sent to BoundaryNet, followed by post-correction). For each mode, we recorded
the end-to-end annotation time at per-document level, including manual correc-
tion time. The distribution of annotation times for the three modes can be seen in
Figure 7 (right). As can be seen, the annotation durations for the BoundaryNet-
based approach are much smaller compared to the other approaches, despite
BoundaryNet being a semi-automatic approach. This is due to the superior qual-
ity contours generated by BoundaryNet which minimize post-inference manual
correction burden.

6 Conclusion

In this paper, we propose BoundaryNet, a novel architecture for semi-automatic
layout annotation. The advantages of our method include (i) the ability to pro-
cess variable dimension input images (ii) accommodating large variation in as-
pect ratio without affecting performance (iii) adaptive boundary estimate refine-
ment. We demonstrate the efficacy of BoundaryNet on a diverse and challenging
document image dataset where it outperforms competitive baselines. Finally,
we show that BoundaryNet readily generalizes to a variety of other historical
document datasets containing dense and uneven layouts. Going ahead, we plan
to explore the possibility of incorporating BoundaryNet into popular instance
segmentation frameworks in an end-to-end manner.
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