
ATM: Approximate Toom-Cook Multiplication for Speech

Processing Applications

by

Salman Ahmed, Deepthi Amuru, Zia Abbas

Report No: IIIT/TR/2020/-1

Centre for VLSI and Embeded Systems Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
October 2020

ATM: Approximate Toom-Cook Multiplication for
Speech Processing Applications

Mohammed Salman Ahmed, Deepthi Amuru, Zia Abbas

Center for VLSI and Embedded Systems Technologies (CVEST)
International Institute of Information Technology (IIIT) Hyderabad

Hyderabad, India
Email: salman.ahmed@research.iiit.ac.in, deepthi.amuru@research.iiit.ac.in, zia.abbas@iiit.ac.in

Abstract— Approximate Computing has paved way for
elaborate savings in design area and latency of modern system
architectures processing images or signals, by a deliberate yet
tolerable loss of functional accuracy. This paper thus proposes
a design of an approximate multiplier based on the efficient
Toom-Cook algorithm, that has a lower complexity of ࡻ(ࢊࢍ࢕࢒ࡺ(૛ିࢊ૚)) than (૛ࡺ)ࡻ	 , for order ࢊ	 . Inherent integer
divisions in the algorithm has restricted its feasibility in
hardware, unless without suitable approximation. On an
average, the proposed multiplier achieves	૞૜%, ૚ૡ% and ૞ૠ%
improvements in area, delay and power only with less than	૚%
mean error. Owing to these benefits due to lower computational
complexity, the multiplier can be configured to achieve
significant savings with a high quality output and that suits well
to the nature of the speech processing systems, hence the design
works well for the epoch extraction system in speech.

Keywords— Approximate Computing, Toom-Cook
Multiplication, Epoch Extraction, Speech

I. INTRODUCTION

Biased human perceptions and redundancy in data can be
translated into design simplifications, with controlled errors in
the output, but achieve many-fold savings in chip design. The
challenge arises in optimization of the design while
maintaining this quality constraint, which is best addressed
through approximate circuit design [1].

With exponential growth of data-intensive approaches and
slowing down of the Moore’s law [2], [3], approximate
computing provides an attractive option by exploiting the
error resilience of such applications. Over the recent years, a
number of techniques have been proposed for approximate
addition and multiplication. A few of them are as follows. In
[4], RoBA multiplier achieves simplification by rounding the
input operands to nearest powers of 2 and as a result the
multiplication requires only simple shifts and addition
operations. However, the maximum error of 11% is quite
high and remains the same with upscaling of the multiplier, as
large operands differ significantly from their rounded
counterparts. In [5], the approximations are adopted in the
partial product addition tree of the multiplier. However, the
multiplier is more suited for shorter bit lengths. The proposed
multiplier not only outperforms due to its lower complexity,
but also shares similarities with the DRUM multiplier [6] in
advantages of scalability, flexibility in the choice of the base
multiplier, etc.

The paper is organized as follows: In Section II, the Toom-
Cook algorithm is explained and the scope and motivation of
the approximation that is achieved, is discussed. Section III
deals with the design implementation details and Section IV
presents the trade-offs and results. Section V discusses the
application of the proposed multiplier in epoch extraction.
Section VI summarizes and concludes.

II. PROPOSED APPROXIMATE TOOM-COOK

MULTIPLICATION

Toom-Cook multiplication algorithm is proven to be faster
than conventional multiplication as it has reduced number of
sub-multiplications. From the hardware implementation point,
the problem of divisions though by small numbers, offset the
savings in the multiplications. The issue has been solved
recently for modular multiplication [7], [8], however, normal
integer multiplication is required in several processing cores,
and for the algorithm to be realizable in this respect, must
incorporate some approximations.

The algorithm assumes polynomial representation of the
input operands, around some base	ݔ = 2஻, selected based on
the size of the input operands and the order d. The polynomial
P(x) with coefficients ݌௜ evaluates the multiplicand. ܲ(ݔ) = ௞ିଵݔ௞ିଵ݌ + ⋯+ ଶݔଶ݌ + ଴݌+ଵݔଵ݌

Similarly, Q(x) with ݍ௜ evaluates the multiplier. The final
product is evaluated simply as R(x) = P(x).Q(x).

൦ ൪(ଶ௞ିଶݔ)ܴ⋮(ଵݔ)ܴ(଴ݔ)ܴ = ێێۏ
ۍ ଴଴ݔ ଴ଵݔ … ଵ଴ݔ଴ଶ௞ିଶݔ ଵଵݔ … ⋮ଵଶ௞ିଶݔ ⋮ … ଶ௞ିଶ଴ݔ⋮ ଶ௞ିଶଵݔ … ۑۑےଶ௞ିଶଶ௞ିଶݔ

ې ൦ ܀ ଶ௞ିଶ൪ݎ⋮ଵݎ଴ݎ = ܚ୉܆ ⇒ ܚ	 = ܀୉ିଵ܆

 The above equations show the evaluation of the product
polynomial at different evaluation points. The evaluation
matrix inverse (୉ିଵ܆)	 can thus provide the product
polynomial coefficients ܚ	 , given the evaluated product at
different points. The product R(x) is of degree 	2݇ − 2 ,
requiring 2݇ − 1 points to solve for its coefficients. Since ܆୉
is a Vandermonde matrix, its inverse in the form of upper and
lower triangular matrices	(ି܃ଵିۺଵ), is given by the following
equation [9].

݈௜,௝ = 0	(݅ < ݆), ݈଴,଴ = 1, ݈௜,௝ = ෑ ௝ݔ1 − ௠௜ݔ
௠ୀ଴,௠ஷ௝

௜,௜ݑ = 1, ௜,଴ݑ = 0, ௜,௝ݑ = ௜ିଵ,௝ିଵݑ − ௝ିଵݔ௜,௝ିଵݑ

The divisions arise due to the term	 ଵ௫ೕି௫೘, and are directly

dictated by the choice of the evaluation points. Another
constraint on this choice is based on the ease of evaluation of
the input polynomials, i.e. P(x) and Q(x). The second
constraint demands the points either be 0,±1,∞ (∞ is a valid
option, as explained in [10]) or be chosen in powers of	2 so
that operation be represented as a shift in hardware. However,
this choice will disregard the first one as for some values
of	ܽ, ܾ, let the term	 ଵ௫ೕି௫೘ = ଵଶೌିଶ್ , this cannot be in powers

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore. Restrictions apply.

of	2 unless	ܽ − ܾ = 1, which is not the case for the overall set
of points chosen.

One might suggest to approximate and choose points such
that	2௔ି௕ ≫ 1. Since this is applicable only when the size of
the input operands is quite large, even a slight difference will
be magnified by the larger operand giving significant error
deviation. The best solution, thus, is to approximate by
limiting the use to the standard evaluation points only, i.e. 0,±1,∞.

The first four coefficients of R(x) in the order of
significance can be computed by evaluating it at	0, ±1,∞,
which is sufficient to have a good quality output. A reduction
in the number of evaluation points means the same reduction
in the sub-multiplications.

From [10], it is clear that an even number of evaluation
points implies that the input operands are unbalanced. Also,
with even points, it becomes easier to solve using the
new ୉ିଵ܆	 due to the resulting symmetries. The degree of
imbalance between P(x) and Q(x) is decided dynamically
based on their coefficients. The significant advantage of this
skewness in reduced error can be attributed from the following
probability equation.

௨ܲ(݊) = 1 − ݊ଶ + ∑ ((݊ − 2௧ିଵ)ଶ௡ିଵ௧ୀଵ(2௡(ݐ − 1)ଶ

Neglecting the inputs to be zero, one can prove the above
equation to yield the probability that any random set of input
operands of size ݊ will be unbalanced after leading zero
counting and shifting (as described in Section III). If	݊ = 8,
then	 ௨ܲ(݊) = 	81.27%. Thus, this high chance favors the use
of the proposed design.

III. DESIGN OF APPROXIMATE TOOM-COOK MULTIPLIER

The proposed design is illustrated in the Fig.1. In fixed-
point operands, the leading and ending zeroes do not
contribute to the final product, except shift it by a finite
number of bits. The multiplicand and multiplier input
operands are thus first subjected to leading zero counting
(LZC), discarding the leading zeroes. The LZC can be the
same as in [6]. The paper [11] also gives an efficient low
power implementation for the same. Ending zeroes and some
lower significant bits are removed when the operands are split.

Fig. 1. Approximate Toom-Cook Multiplier

Fig. 2. Dynamic Selection of bits, ATM █ (݊ = 16, ܾ = 3, ݏ = 7.5) [(4b,
1b) left] [(3b, 2b) right] and DRUM █ (݊ = 16, ܾ = 6)

 Since the proposed algorithm uses only four
evaluation points, the operands could be split or unbalanced
only on the order (2ܾ, 3ܾ) , (3ܾ, 2ܾ) , (4ܾ, 1ܾ) or (1ܾ, 4ܾ)
[10], where ܾ is the size of the base multiplier. Hence, for
input operands of size	݊, the size ܾ is at most	݊/4. The degree
of approximation can be increased by reducing the size b and
hence increase savings in area, delay and power. The LZC
reduced inputs are split on ܾ	and the order of splitting is
chosen using simple OR logic and a small comparator. If
second highest degree coefficient of the polynomial is zero,
then the order is (4ܾ, 1ܾ) or	(1ܾ, 4ܾ), based on the input, for
which the above special case arises. Normally, the order is (2ܾ, 3ܾ) or 	(3ܾ, 2ܾ) , the choice is made by partially
comparing (on truncated lengths) the third highest degree
coefficients. The operational size ݏ is simply the average of
the dynamic size of the operands. Note, the size of the base

multiplier must be chosen such that	ܾ = ቒ ௦ଶ.ହቓ.
 Fig. 2 helps to elucidate the concept of a better dynamic
selection in the proposed design with a brief example,
exploiting the inherent imbalance created due to LZC. This
clearly implies a reduced error as compared to the DRUM
multiplier for roughly the same area or vice versa. After
determining the order of splitting, the remaining bits are
truncated, i.e. only the highlighted bits enter into the
multiplication process.

 During the evaluation phase, the points 0 and	∞, do not
require any evaluation. The evaluations at points ±1 are
processed by a simple adder/subtractor. The evaluated results
are multiplied point wise i.e. four accurate multiplications to
yield the evaluations of the product. The choice of the base
multiplier is designer-defined as in the case of DRUM. Since
its size is divisible and thus smaller, the design could either be
parallelized or be implemented in a sequential fashion, based
on designer constraints.

 The inverse evaluation overhead is also small. The final
coefficients r are extracted by simple additions, subtractions
or 1-bit shifts as given below. ݎ଴ = ܴ(0), ଵݎ = ቀ൫ܴ(1) − ܴ(−1)൯ ≫ 1ቁ − ଶݎ ,(∞)ܴ = ቀ൫ܴ(1) + ܴ(−1)൯ ≫ 1ቁ − ܴ(0), ଷݎ = ܴ(∞)
 One might suggest for the special case of order being (4ܾ, 1ܾ) or	(1ܾ, 4ܾ), the evaluation and inverse evaluation
phases are redundant. This is indeed the case, therefore, the
operands are directly passed through and simply multiplied.
Finally, the coefficients are shifted based on the total LZC
count and the multiples of the size ܾ and are added (as per the
polynomial equation given in Section II) to get the
approximate product.

IV. RESULTS AND DISCUSSIONS

The proposed design is composed in Verilog HDL and
synthesized at 32݊݉ technology using Synopsys Design

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore. Restrictions apply.

Compiler, with medium area effort. The supply voltage is set
at 0.95ܸ and a temperature of 125℃ at SS process corner, to
effectively test the design in terms of its performance, area and
power. The accuracy calculation is done using ModelSim
simulator, by exercising the design for about 200k randomly
generated input combinations and measuring the difference
between the accurate and the approximate product. Some of
the popular error metrics for quality measurement are
normalized mean error distance (NMED) and mean relative
error distance (MRED) [5], [12]. ܰܦܧܯ = ݉݁ܽ݊	൫หܴ௔௖௖. − ܴ௔௣௣௥௢௫.ห൯(2௡ − 1)ଶ

ܦܧܴܯ	 = ݉݁ܽ݊(หܴ௔௖௖. − ܴ௔௣௣௥௢௫.หܴ௔௖௖.)
Approximate multipliers have also been developed in

papers [13], [14] and have been compared and contrasted
effectively in [5], [6]. Here, we compare the proposed design
with DRUM [6] and an accurate design optimized at the same
constraints.

Fig. 3 shows the relative error distribution for ATM with ߤ = 0.92	% and ߪ	 = 0.6% . The error accumulation in the
final output of a system depends on its structure. A system
may realize a filter that continuously subtracts its previous
samples from its present samples that may result in a good
cancellation of the error, if the error is biased (Section V). It
is therefore, important to appreciate the range of error ~3%
which is certainly less in the proposed design.

Fig. 3. Relative Error Distribution of ATM (݊ = 16, ܾ = 3, ݏ = 7.5) and
DRUM (݊ = 16, ܾ = 6) 	

Fig. 4. MRED and NMED comparison of ATM and DRUM

TABLE I. POST-SYNTHESIS DESIGN PARAMETERS COMPARISON

Design
Size

(n, b, s)

Design
Area

 Critical (૛࢓ࣆ)
Path
Delay
(ns)

Leakage
Power
 Total (ࢃࣆ)

Power
 (ࢃࣆ)

Acc. 16 2228.2 3.71 92.0 713.7

DRUM 16, 7 1633.5 3.48 58.8 309.3

ATM 16, 3, 7.5 1294.2 3.31 49.8 336.8

DRUM 16,9 1993.4 3.87 75.2 452.3

ATM 16, 4, 10 1671.9 3.42 67.0 539.4

Acc. 32 9205.6 6.64 368 3710

DRUM 32, 11 4047.1 5.23 137 771.9

ATM 32, 5, 12.5 2482.3 4.84 95.3 794.8

DRUM 32, 13 4645.0 5.83 161 1031

ATM 32, 6, 15 2739.2 5.15 108 1028

The MRED and NMED are 0.198%	 and 0.049% for
ATM with	ܾ = 4. Better quality of the product does not justify
a fair comparison in terms of the other performances. Fig.4
illustrates the variation of the multiplier size of DRUM and
intersecting its curve with the achieved accuracy for ATM.
For example, this shows ATM and DRUM with ܾ = 4	and ܾ = 9, respectively, are almost equal in terms of MRED and
NMED. Hence, they can be compared as shown in Table I.

As clear from Table I, the ATM performs quite well except
for some increase in dynamic power as compared to DRUM
at low sizes, it is because of the associated overhead in
evaluation and its inverse that becomes of less significance
with increasing size. As compared to the accurate design,
ATM with size parameters	ܾ	 = 	ݏ ,6	 = 	15 provides benefits
of	70.2%, 22.4%, 70.6% and	72.3% in terms of area, delay,
leakage power and total power, respectively. A feature of the
proposed design is that it scales effectively while maintaining
a certain level of precision, which is crucial for the design of
large multipliers.

V. EPOCH EXTRACTION OF SPEECH USING ATM

 Approximate circuit design has assumed compatibility
with applications of image processing, machine learning and
many more. In speech systems, approximations are realizable
as evident in this section and also by a recent approach for
speech recognition [15].

Epoch or glottal closure instant extraction is a vital task in
speech processing systems [16], [17]. The epochs denote the
closing of the vocal folds while speaking, extraction of which
delves a deeper analysis into the speech signal. The paper [17]
presents a stable zero-phase zero-frequency resonator that can
tolerate some loss of precision. This motivates the use of the
proposed multiplier in the design of the resonator.

The epoch extraction procedure, as adopted for
demonstrating the efficacy of ATM, is quite simple. Followed
by pre-emphasis, the speech signal is passed through a
resonator system described by the following difference
equation. The vital multiplications in this application are those
represented in the equation. (1 + ଶݎ4 + (݊)ݕ(ସݎ = (݊)ݔ + ଶݎ)ݎ2 + 1)൫ݕ(݊ − 1) ݊)ݕ+ + 1)൯ − ݊)ݕଶ൫ݎ − 2) + ݊)ݕ + 2)൯

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Epoch Extraction of speech using Accurate multiplier (݊	 = 	16) and ATM (݊	 = 16, ܾ = 3, ݏ = 6)
Here, ݕ(݊) corresponds to the ZP-ZFR response and ݔ(݊)

to the speech signal. The value ݎ is taken as 0.99 for the stable
resonator. The trend in the response is removed and its
downward peaks define the epochs. The reader is encouraged
to refer [17] for more details.

The CMU US slt (US female) Arctic database [18]
containing 1132 dual channel signals composed of speech and
the electroglottograph (EGG) signals, has been employed as
the standard for testing and measuring the identification
accuracy of epoch extraction using the proposed multiplier.
EGG signals represent the ground truths for the extracted
speech signals.

Fig. 5 details the speech extraction process. As represented
in a normalized manner, the speech signal is passed through
an accurate and an approximate resonator. All the speech
samples and ݎ are represented in an integer format by proper
scaling so that they can be processed by the approximate
multiplier. It is noticeable that the responses closely follow
each other. Slight deviations in the epochs are also clear in the
magnified version on the right. The deviations occur more in
the unvoiced regions, which do not affect the accuracy much,
as epochs in this region are unwanted and are ultimately
discarded.

Speech extraction quality metrics [16] are identification,
miss and false alarm rates characterized based on whether an
epoch, no epochs or multiple epochs are detected in a larynx
cycle.

From Fig. 6, it is clear that there is only a trivial change in
the speech extraction quality while utilizing the proposed
ATM provided the operational size ݏ is higher than 	7.5 .
However, a reduction in	ݏ further from it, manifests into a
rapid deterioration of the performance of the system. The
identification accuracy also worsens from	0.17	݉ݏ. Hence, a
proper choice of ݏ is dictated by any given application.
Although the design provides coarse variability precision
tuning, it is sufficient for most applications.

Fig. 6. Variation of Identification Accuracy, False Alarm Rate, Miss Rate
and Identification Rate with reduction in operational size ݏ of the
Approximate Toom-Cook Multiplier (݊= 16)

VI. CONCLUSIONS

 In this paper, a novel design of an approximate multiplier
inspired by one of the faster multiplication algorithms, i.e.
Toom-Cook algorithm is proposed and has been very
successful in terms of savings of area, critical path delay and
power. And at the same time, the design is easily scalable to
high precisions, also keeping up with its performance. The
efficacy of the proposed design is tested on the epoch
extraction system in speech processing, and it only suffers a
trivial degradation up to a certain size, which is indeed
tolerable.

ACKNOWLEDGEMENTS

The authors acknowledge the efforts of Mohammad
Hashim Javid and Krishna Gurugubelli for their support in
development of the epoch extraction system using ATM.

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] J. Han and M. Orshansky, "Approximate computing: An emerging

paradigm for energy-efficient design," 2013 18th IEEE European Test
Symposium (ETS), Avignon, 2013, pp. 1-6.

[2] Z. Abbas and M. Olivieri, “Impact of technology scaling on leakage
power in nano-scale bulk CMOS digital standard cells,”
Microelectronics Journal, vol. 45, no. 2, pp. 179–195, 2014.

[3] Z. Abbas, A. Mastrandrea, and M. Olivieri, “A voltage-based leakage
current calculation scheme and its application to nanoscale MOSFET
and FinFET standard-cell designs,” IEEE Transactions on Very Large-
Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2549–2560, 2014.

[4] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha and M.
Pedram, "RoBA Multiplier: A Rounding-Based Approximate
Multiplier for High-Speed yet Energy-Efficient Digital Signal
Processing," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 2, pp. 393-401, Feb. 2017.

[5] H. Jiang, C. Liu, F. Lombardi and J. Han, "Low-Power Approximate
Unsigned Multipliers With Configurable Error Recovery," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no.
1, pp. 189-202, Jan. 2019.

[6] S. Hashemi, R. I. Bahar and S. Reda, "DRUM: A Dynamic Range
Unbiased Multiplier for approximate applications," 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
Austin, TX, 2015, pp. 418-425.

[7] Z. Gu and S. Li, "A Division-Free Toom–Cook Multiplication-Based
Montgomery Modular Multiplication," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 8, pp. 1401-1405,
Aug. 2019.

[8] J. Ding, S. Li and Z. Gu, "High-Speed ECC Processor Over NIST
Prime Fields Applied With Toom–Cook Multiplication," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no.
3, pp. 1003-1016, March 2019.

[9] L. R. Turner, "Inverse of Vandermonde matrix with applications,"
NASA Lewis Research Center, Cleveland, Ohio, United States, Tech.
Report. NASA-TN-D-3547, Aug. 1966.

[10] M. Bodrato, "High Degree Toom'n'Half for Balanced and Unbalanced
Multiplication," 2011 IEEE 20th Symposium on Computer Arithmetic,
Tubingen, 2011, pp. 15-22.

[11] G. Dimitrakopoulos, K. Galanopoulos, C. Mavrokefalidis and D.
Nikolos, "Low-Power Leading-Zero Counting and Anticipation Logic
for High-Speed Floating Point Units," in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 837-850,
July 2008.

[12] J. Liang, J. Han and F. Lombardi, "New Metrics for the Reliability of
Approximate and Probabilistic Adders," in IEEE Transactions on
Computers, vol. 62, no. 9, pp. 1760-1771, Sept. 2013.

[13] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park and N. S.
Kim, "Energy-Efficient Approximate Multiplication for Digital Signal
Processing and Classification Applications," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180-
1184, June 2015.

[14] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading Accuracy for Power
with an Underdesigned Multiplier Architecture," 2011 24th
International Conference on VLSI Design, Chennai, 2011, pp. 346-351.

[15] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia and L. Shi, "EERA-ASR: An
Energy-Efficient Reconfigurable Architecture for Automatic Speech
Recognition With Hybrid DNN and Approximate Computing,"
in IEEE Access, vol. 6, pp. 52227-52237, 2018.

[16] K. S. R. Murty and B. Yegnanarayana, "Epoch Extraction From Speech
Signals," in IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 8, pp. 1602-1613, Nov. 2008.

[17] K. Gurugubelli and A. K. Vuppala, "Stable Implementation of Zero
Frequency Filtering of Speech Signals for Efficient Epoch Extraction,"
in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1310-1314, Sept.
2019.

[18] A. W. Black, “CMU_ARCTIC Databases,” Festvox. [Online].
Available: http://www.festvox.org/cmu_arctic/. [Accessed: 23-Sep-
2019]

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore. Restrictions apply.

