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Abstract— Approximate Computing has paved way for 
elaborate savings in design area and latency of modern system 
architectures processing images or signals, by a deliberate yet 
tolerable loss of functional accuracy. This paper thus proposes 
a design of an approximate multiplier based on the efficient 
Toom-Cook algorithm, that has a lower complexity of ࡻ(ࢊࢍ࢕࢒ࡺ(૛ିࢊ૚))  than (૛ࡺ)ࡻ	 , for order ࢊ	 . Inherent integer 
divisions in the algorithm has restricted its feasibility in 
hardware, unless without suitable approximation. On an 
average, the proposed multiplier achieves	૞૜%, ૚ૡ% and ૞ૠ% 
improvements in area, delay and power only with less than	૚% 
mean error. Owing to these benefits due to lower computational 
complexity, the multiplier can be configured to achieve 
significant savings with a high quality output and that suits well 
to the nature of the speech processing systems, hence the design 
works well for the epoch extraction system in speech. 

Keywords— Approximate Computing, Toom-Cook 
Multiplication, Epoch Extraction, Speech 

I. INTRODUCTION 

Biased human perceptions and redundancy in data can be 
translated into design simplifications, with controlled errors in 
the output, but achieve many-fold savings in chip design. The 
challenge arises in optimization of the design while 
maintaining this quality constraint, which is best addressed 
through approximate circuit design [1]. 

With exponential growth of data-intensive approaches and 
slowing down of the Moore’s law [2], [3], approximate 
computing provides an attractive option by exploiting the 
error resilience of such applications. Over the recent years, a 
number of techniques have been proposed for approximate 
addition and multiplication. A few of them are as follows. In 
[4], RoBA multiplier achieves simplification by rounding the 
input operands to nearest powers of 2  and as a result the 
multiplication requires only simple shifts and addition 
operations. However, the maximum error of 11%  is quite 
high and remains the same with upscaling of the multiplier, as 
large operands differ significantly from their rounded 
counterparts. In [5], the approximations are adopted in the 
partial product addition tree of the multiplier. However, the 
multiplier is more suited for shorter bit lengths. The proposed 
multiplier not only outperforms due to its lower complexity, 
but also shares similarities with the DRUM multiplier [6] in 
advantages of scalability, flexibility in the choice of the base 
multiplier, etc.  

The paper is organized as follows: In Section II, the Toom-
Cook algorithm is explained and the scope and motivation of 
the approximation that is achieved, is discussed. Section III 
deals with the design implementation details and Section IV 
presents the trade-offs and results. Section V discusses the 
application of the proposed multiplier in epoch extraction. 
Section VI summarizes and concludes.  

II. PROPOSED APPROXIMATE TOOM-COOK 

MULTIPLICATION 

Toom-Cook multiplication algorithm is proven to be faster 
than conventional multiplication as it has reduced number of 
sub-multiplications. From the hardware implementation point, 
the problem of divisions though by small numbers, offset the 
savings in the multiplications. The issue has been solved 
recently for modular multiplication [7], [8], however, normal 
integer multiplication is required in several processing cores, 
and for the algorithm to be realizable in this respect, must 
incorporate some approximations.  

The algorithm assumes polynomial representation of the 
input operands, around some base	ݔ = 2஻, selected based on 
the size of the input operands and the order d. The polynomial 
P(x) with coefficients ݌௜  evaluates the multiplicand. ܲ(ݔ) = ௞ିଵݔ௞ିଵ݌ + ⋯+ ଶݔଶ݌ +  ଴݌+ଵݔଵ݌

Similarly, Q(x) with ݍ௜  evaluates the multiplier. The final 
product is evaluated simply as R(x) = P(x).Q(x). 

൦ ൪(ଶ௞ିଶݔ)ܴ⋮(ଵݔ)ܴ(଴ݔ)ܴ = ێێۏ
ۍ ଴଴ݔ ଴ଵݔ … ଵ଴ݔ଴ଶ௞ିଶݔ ଵଵݔ … ⋮ଵଶ௞ିଶݔ ⋮ … ଶ௞ିଶ଴ݔ⋮ ଶ௞ିଶଵݔ … ۑۑےଶ௞ିଶଶ௞ିଶݔ

ې ൦ ܀ ଶ௞ିଶ൪ݎ⋮ଵݎ଴ݎ = ܚ୉܆ ⇒ ܚ	 =  ܀୉ିଵ܆

 The above equations show the evaluation of the product 
polynomial at different evaluation points. The evaluation 
matrix inverse (୉ିଵ܆)	  can thus provide the product 
polynomial coefficients ܚ	 , given the evaluated product at 
different points. The product R(x) is of degree 	2݇ − 2 , 
requiring 2݇ − 1 points to solve for its coefficients. Since ܆୉ 
is a Vandermonde matrix, its inverse in the form of upper and 
lower triangular matrices	(ି܃ଵିۺଵ), is given by the following 
equation [9]. 

݈௜,௝ = 0	(݅ < ݆), ݈଴,଴ = 1, ݈௜,௝ = ෑ ௝ݔ1 − ௠௜ݔ
௠ୀ଴,௠ஷ௝  

௜,௜ݑ = 1, ௜,଴ݑ = 0, ௜,௝ݑ = ௜ିଵ,௝ିଵݑ −  ௝ିଵݔ௜,௝ିଵݑ

The divisions arise due to the term	 ଵ௫ೕି௫೘, and are directly 

dictated by the choice of the evaluation points. Another 
constraint on this choice is based on the ease of evaluation of 
the input polynomials, i.e. P(x) and Q(x). The second 
constraint demands the points either be 0,±1,∞ (∞ is a valid 
option, as explained in [10]) or be chosen in powers of	2 so 
that operation be represented as a shift in hardware. However, 
this choice will disregard the first one as for some values 
of	ܽ, ܾ, let the term	 ଵ௫ೕି௫೘ = ଵଶೌିଶ್ , this cannot be in powers 
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of	2 unless	ܽ − ܾ = 1, which is not the case for the overall set 
of points chosen.  

One might suggest to approximate and choose points such 
that	2௔ି௕ ≫ 1. Since this is applicable only when the size of 
the input operands is quite large, even a slight difference will 
be magnified by the larger operand giving significant error 
deviation. The best solution, thus, is to approximate by 
limiting the use to the standard evaluation points only, i.e. 0,±1,∞. 

The first four coefficients of R(x) in the order of 
significance can be computed by evaluating it at	0, ±1,∞, 
which is sufficient to have a good quality output. A reduction 
in the number of evaluation points means the same reduction 
in the sub-multiplications. 

From [10], it is clear that an even number of evaluation 
points implies that the input operands are unbalanced. Also, 
with even points, it becomes easier to solve using the 
new ୉ିଵ܆	  due to the resulting symmetries. The degree of 
imbalance between P(x) and Q(x) is decided dynamically 
based on their coefficients. The significant advantage of this 
skewness in reduced error can be attributed from the following 
probability equation. 

௨ܲ(݊) = 1 − ݊ଶ + ∑ ((݊ − 2௧ିଵ)ଶ௡ିଵ௧ୀଵ(2௡(ݐ − 1)ଶ  

Neglecting the inputs to be zero, one can prove the above 
equation to yield the probability that any random set of input 
operands of size ݊  will be unbalanced after leading zero 
counting and shifting (as described in Section III). If	݊ = 8, 
then	 ௨ܲ(݊) = 	81.27%. Thus, this high chance favors the use 
of the proposed design.  

III. DESIGN OF APPROXIMATE TOOM-COOK MULTIPLIER 

The proposed design is illustrated in the Fig.1. In fixed-
point operands, the leading and ending zeroes do not 
contribute to the final product, except shift it by a finite 
number of bits. The multiplicand and multiplier input 
operands are thus first subjected to leading zero counting 
(LZC), discarding the leading zeroes. The LZC can be the 
same as in [6]. The paper [11] also gives an efficient low 
power implementation for the same. Ending zeroes and some 
lower significant bits are removed when the operands are split. 

 

Fig. 1. Approximate Toom-Cook Multiplier 

    

Fig. 2. Dynamic Selection of bits, ATM █ (݊ = 16, ܾ = 3, ݏ = 7.5) [(4b, 
1b) left] [(3b, 2b) right] and DRUM █ (݊ = 16, ܾ = 6) 

 Since the proposed algorithm uses only four 
evaluation points, the operands could be split or unbalanced 
only on the order (2ܾ, 3ܾ) , (3ܾ, 2ܾ) , (4ܾ, 1ܾ)  or (1ܾ, 4ܾ) 
[10], where ܾ  is the size of the base multiplier. Hence, for 
input operands of size	݊, the size ܾ is at most	݊/4. The degree 
of approximation can be increased by reducing the size b and 
hence increase savings in area, delay and power. The LZC 
reduced inputs are split on ܾ	and the order of splitting is 
chosen using simple OR logic and a small comparator. If 
second highest degree coefficient of the polynomial is zero, 
then the order is (4ܾ, 1ܾ) or	(1ܾ, 4ܾ), based on the input, for 
which the above special case arises. Normally, the order is (2ܾ, 3ܾ)  or 	(3ܾ, 2ܾ) , the choice is made by partially 
comparing (on truncated lengths) the third highest degree 
coefficients. The operational size ݏ is simply the average of 
the dynamic size of the operands. Note, the size of the base 

multiplier must be chosen such that	ܾ = ቒ ௦ଶ.ହቓ. 
 Fig. 2 helps to elucidate the concept of a better dynamic 
selection in the proposed design with a brief example, 
exploiting the inherent imbalance created due to LZC. This 
clearly implies a reduced error as compared to the DRUM 
multiplier for roughly the same area or vice versa. After 
determining the order of splitting, the remaining bits are 
truncated, i.e. only the highlighted bits enter into the 
multiplication process. 

 During the evaluation phase, the points 0 and	∞, do not 
require any evaluation. The evaluations at points ±1  are 
processed by a simple adder/subtractor. The evaluated results 
are multiplied point wise i.e. four accurate multiplications to 
yield the evaluations of the product. The choice of the base 
multiplier is designer-defined as in the case of DRUM. Since 
its size is divisible and thus smaller, the design could either be 
parallelized or be implemented in a sequential fashion, based 
on designer constraints. 

 The inverse evaluation overhead is also small. The final 
coefficients r are extracted by simple additions, subtractions 
or 1-bit shifts as given below. ݎ଴ = ܴ(0), ଵݎ = ቀ൫ܴ(1) − ܴ(−1)൯ ≫ 1ቁ − ଶݎ ,(∞)ܴ = ቀ൫ܴ(1) + ܴ(−1)൯ ≫ 1ቁ − ܴ(0), ଷݎ = ܴ(∞) 
 One might suggest for the special case of order being (4ܾ, 1ܾ) or	(1ܾ, 4ܾ), the evaluation and inverse evaluation 
phases are redundant. This is indeed the case, therefore, the 
operands are directly passed through and simply multiplied. 
Finally, the coefficients are shifted based on the total LZC 
count and the multiples of the size ܾ and are added (as per the 
polynomial equation given in Section II) to get the 
approximate product.  

IV. RESULTS AND DISCUSSIONS 

The proposed design is composed in Verilog HDL and 
synthesized at 32݊݉  technology using Synopsys Design 
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Compiler, with medium area effort. The supply voltage is set 
at 0.95ܸ and a temperature of 125℃ at SS process corner, to 
effectively test the design in terms of its performance, area and 
power. The accuracy calculation is done using ModelSim 
simulator, by exercising the design for about 200k randomly 
generated input combinations and measuring the difference 
between the accurate and the approximate product. Some of 
the popular error metrics for quality measurement are 
normalized mean error distance (NMED) and mean relative 
error distance (MRED) [5], [12].  ܰܦܧܯ = ݉݁ܽ݊	൫หܴ௔௖௖. − ܴ௔௣௣௥௢௫.ห൯(2௡ − 1)ଶ  

ܦܧܴܯ	 = ݉݁ܽ݊(หܴ௔௖௖. − ܴ௔௣௣௥௢௫.หܴ௔௖௖. ) 
Approximate multipliers have also been developed in 

papers [13], [14] and have been compared and contrasted 
effectively in [5], [6]. Here, we compare the proposed design 
with DRUM [6] and an accurate design optimized at the same 
constraints.  

Fig. 3 shows the relative error distribution for ATM with ߤ = 0.92	%  and ߪ	 = 0.6% . The error accumulation in the 
final output of a system depends on its structure. A system 
may realize a filter that continuously subtracts its previous 
samples from its present samples that may result in a good 
cancellation of the error, if the error is biased (Section V). It 
is therefore, important to appreciate the range of error ~3% 
which is certainly less in the proposed design. 

 

Fig. 3. Relative Error Distribution of ATM (݊ = 16, ܾ = 3, ݏ = 7.5)  and 
DRUM (݊ = 16, ܾ = 6) 	
 

 

Fig. 4. MRED and NMED comparison of ATM  and DRUM 

TABLE I.  POST-SYNTHESIS DESIGN PARAMETERS COMPARISON 

Design 
Size 

(n, b, s) 

Design 
Area 

 Critical (૛࢓ࣆ)
Path 
Delay 
(ns) 

Leakage 
Power 
 Total (ࢃࣆ)

Power 
 (ࢃࣆ)

Acc. 16 2228.2 3.71 92.0 713.7 

DRUM 16, 7 1633.5 3.48 58.8 309.3

ATM 16, 3, 7.5 1294.2 3.31 49.8 336.8

DRUM 16,9 1993.4 3.87 75.2 452.3

ATM 16, 4, 10 1671.9 3.42 67.0 539.4

Acc. 32 9205.6 6.64 368 3710 

DRUM 32, 11 4047.1 5.23 137 771.9

ATM 32, 5, 12.5 2482.3 4.84 95.3 794.8

DRUM 32, 13 4645.0 5.83 161 1031

ATM 32, 6, 15 2739.2 5.15 108 1028

 

The MRED and NMED are 0.198%	 and 0.049%  for 
ATM with	ܾ = 4. Better quality of the product does not justify 
a fair comparison in terms of the other performances. Fig.4 
illustrates the variation of the multiplier size of DRUM and 
intersecting its curve with the achieved accuracy for ATM. 
For example, this shows ATM and DRUM with ܾ = 4	and ܾ = 9, respectively, are almost equal in terms of MRED and 
NMED. Hence, they can be compared as shown in Table I.  

As clear from Table I, the ATM performs quite well except 
for some increase in dynamic power as compared to DRUM 
at low sizes, it is because of the associated overhead in 
evaluation and its inverse that becomes of less significance 
with increasing size. As compared to the accurate design, 
ATM with size parameters	ܾ	 = 	ݏ ,6	 = 	15 provides benefits 
of	70.2%, 22.4%, 70.6% and	72.3% in terms of area, delay, 
leakage power and total power, respectively. A feature of the 
proposed design is that it scales effectively while maintaining 
a certain level of precision, which is crucial for the design of 
large multipliers. 

V.  EPOCH EXTRACTION OF SPEECH USING ATM 

 Approximate circuit design has assumed compatibility 
with applications of image processing, machine learning and 
many more. In speech systems, approximations are realizable 
as evident in this section and also by a recent approach for 
speech recognition [15]. 

Epoch or glottal closure instant extraction is a vital task in 
speech processing systems [16], [17]. The epochs denote the 
closing of the vocal folds while speaking, extraction of which 
delves a deeper analysis into the speech signal. The paper [17] 
presents a stable zero-phase zero-frequency resonator that can 
tolerate some loss of precision. This motivates the use of the 
proposed multiplier in the design of the resonator. 

The epoch extraction procedure, as adopted for 
demonstrating the efficacy of ATM, is quite simple. Followed 
by pre-emphasis, the speech signal is passed through a 
resonator system described by the following difference 
equation. The vital multiplications in this application are those 
represented in the equation. (1 + ଶݎ4 + (݊)ݕ(ସݎ = (݊)ݔ + ଶݎ)ݎ2 + 1)൫ݕ(݊ − 1) ݊)ݕ+ + 1)൯ − ݊)ݕଶ൫ݎ − 2) + ݊)ݕ + 2)൯  
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Fig. 5. Epoch Extraction of speech using Accurate multiplier (݊	 = 	16) and ATM (݊	 = 16, ܾ = 3, ݏ = 6) 
Here, ݕ(݊) corresponds to the ZP-ZFR response and ݔ(݊) 

to the speech signal. The value ݎ is taken as 0.99 for the stable 
resonator. The trend in the response is removed and its 
downward peaks define the epochs. The reader is encouraged 
to refer [17] for more details.  

The CMU US slt (US female) Arctic database [18] 
containing 1132 dual channel signals composed of speech and 
the electroglottograph (EGG) signals, has been employed as 
the standard for testing and measuring the identification 
accuracy of epoch extraction using the proposed multiplier. 
EGG signals represent the ground truths for the extracted 
speech signals. 

Fig. 5 details the speech extraction process. As represented 
in a normalized manner, the speech signal is passed through 
an accurate and an approximate resonator. All the speech 
samples and ݎ are represented in an integer format by proper 
scaling so that they can be processed by the approximate 
multiplier. It is noticeable that the responses closely follow 
each other. Slight deviations in the epochs are also clear in the 
magnified version on the right. The deviations occur more in 
the unvoiced regions, which do not affect the accuracy much, 
as epochs in this region are unwanted and are ultimately 
discarded. 

Speech extraction quality metrics [16] are identification, 
miss and false alarm rates characterized based on whether an 
epoch, no epochs or multiple epochs are detected in a larynx 
cycle. 

From Fig. 6, it is clear that there is only a trivial change in 
the speech extraction quality while utilizing the proposed 
ATM provided the operational size ݏ  is higher than 	7.5 . 
However, a reduction in	ݏ  further from it, manifests into a 
rapid deterioration of the performance of the system. The 
identification accuracy also worsens from	0.17	݉ݏ. Hence, a 
proper choice of ݏ  is dictated by any given application. 
Although the design provides coarse variability precision 
tuning, it is sufficient for most applications. 

 

Fig. 6. Variation of Identification Accuracy, False Alarm Rate, Miss Rate 
and Identification Rate with reduction in operational size ݏ  of the 
Approximate Toom-Cook Multiplier (݊= 16) 

VI.  CONCLUSIONS 

 In this paper, a novel design of an approximate multiplier 
inspired by one of the faster multiplication algorithms, i.e. 
Toom-Cook algorithm is proposed and has been very 
successful in terms of savings of area, critical path delay and 
power. And at the same time, the design is easily scalable to 
high precisions, also keeping up with its performance. The 
efficacy of the proposed design is tested on the epoch 
extraction system in speech processing, and it only suffers a 
trivial degradation up to a certain size, which is indeed 
tolerable. 

ACKNOWLEDGEMENTS 

The authors acknowledge the efforts of Mohammad 
Hashim Javid and Krishna Gurugubelli for their support in 
development of the epoch extraction system using ATM.  

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES 
[1] J. Han and M. Orshansky, "Approximate computing: An emerging 

paradigm for energy-efficient design," 2013 18th IEEE European Test 
Symposium (ETS), Avignon, 2013, pp. 1-6. 

[2] Z. Abbas and M. Olivieri, “Impact of technology scaling on leakage 
power in nano-scale bulk CMOS digital standard cells,” 
Microelectronics Journal, vol. 45, no. 2, pp. 179–195, 2014. 

[3] Z. Abbas, A. Mastrandrea, and M. Olivieri, “A voltage-based leakage 
current calculation scheme and its application to nanoscale MOSFET 
and FinFET standard-cell designs,” IEEE Transactions on Very Large-
Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2549–2560, 2014. 

[4] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha and M. 
Pedram, "RoBA Multiplier: A Rounding-Based Approximate 
Multiplier for High-Speed yet Energy-Efficient Digital Signal 
Processing," in IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, vol. 25, no. 2, pp. 393-401, Feb. 2017. 

[5] H. Jiang, C. Liu, F. Lombardi and J. Han, "Low-Power Approximate 
Unsigned Multipliers With Configurable Error Recovery," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 
1, pp. 189-202, Jan. 2019. 

[6] S. Hashemi, R. I. Bahar and S. Reda, "DRUM: A Dynamic Range 
Unbiased Multiplier for approximate applications," 2015 IEEE/ACM 
International Conference on Computer-Aided Design (ICCAD), 
Austin, TX, 2015, pp. 418-425. 

[7] Z. Gu and S. Li, "A Division-Free Toom–Cook Multiplication-Based 
Montgomery Modular Multiplication," in IEEE Transactions on 
Circuits and Systems II: Express Briefs, vol. 66, no. 8, pp. 1401-1405, 
Aug. 2019. 

[8] J. Ding, S. Li and Z. Gu, "High-Speed ECC Processor Over NIST 
Prime Fields Applied With Toom–Cook Multiplication," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 
3, pp. 1003-1016, March 2019. 

[9] L. R. Turner, "Inverse of Vandermonde matrix with applications," 
NASA Lewis Research Center, Cleveland, Ohio, United States, Tech. 
Report. NASA-TN-D-3547, Aug. 1966. 

[10] M. Bodrato, "High Degree Toom'n'Half for Balanced and Unbalanced 
Multiplication," 2011 IEEE 20th Symposium on Computer Arithmetic, 
Tubingen, 2011, pp. 15-22. 

[11] G. Dimitrakopoulos, K. Galanopoulos, C. Mavrokefalidis and D. 
Nikolos, "Low-Power Leading-Zero Counting and Anticipation Logic 
for High-Speed Floating Point Units," in IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 837-850, 
July 2008. 

[12] J. Liang, J. Han and F. Lombardi, "New Metrics for the Reliability of 
Approximate and Probabilistic Adders," in IEEE Transactions on 
Computers, vol. 62, no. 9, pp. 1760-1771, Sept. 2013. 

[13] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park and N. S. 
Kim, "Energy-Efficient Approximate Multiplication for Digital Signal 
Processing and Classification Applications," in IEEE Transactions on 
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180-
1184, June 2015. 

[14] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading Accuracy for Power 
with an Underdesigned Multiplier Architecture," 2011 24th 
International Conference on VLSI Design, Chennai, 2011, pp. 346-351. 

[15] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia and L. Shi, "EERA-ASR: An 
Energy-Efficient Reconfigurable Architecture for Automatic Speech 
Recognition With Hybrid DNN and Approximate Computing," 
in IEEE Access, vol. 6, pp. 52227-52237, 2018. 

[16] K. S. R. Murty and B. Yegnanarayana, "Epoch Extraction From Speech 
Signals," in IEEE Transactions on Audio, Speech, and Language 
Processing, vol. 16, no. 8, pp. 1602-1613, Nov. 2008. 

[17]  K. Gurugubelli and A. K. Vuppala, "Stable Implementation of Zero 
Frequency Filtering of Speech Signals for Efficient Epoch Extraction," 
in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1310-1314, Sept. 
2019. 

[18] A. W. Black, “CMU_ARCTIC Databases,” Festvox. [Online]. 
Available: http://www.festvox.org/cmu_arctic/. [Accessed: 23-Sep-
2019]

 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on December 14,2020 at 06:03:07 UTC from IEEE Xplore.  Restrictions apply. 


