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Abstract—This paper proposes the use of copula theory for
cooperative spectrum sensing (CSS) of orthogonal frequency-
division multiplexing (OFDM) based primary user (PU). A
distributed detection model is assumed where secondary users
(SUs) employ autocorrelation detectors (ADs) for the detection of
a PU. In the presence of a PU, it is assumed that the observations
across different SUs and subsequently the decision statistics
are dependent. For the fusion of these dependent statistics,
different copulas such as t-copula, Gaussian, Clayton and Gumbel
are employed. In the presence of dependence among decision
statistics, significant improvement in detection performance is
observed while using copula theory instead of the traditional
assumption of independence. Simulation results are presented to
show the superiority of copula-based spectrum sensing.

Index Terms—Autocorrelation detector, cognitive radio, coop-
erative spectrum sensing, copula, dependence

I. INTRODUCTION

Spectrum sensing is an important component of cognitive
radio (CR) networks as it provides spectrum awareness re-
quired for cognitive processing. In the CR literature, several
schemes have been proposed for cooperative spectrum sensing
(CSS) based on different features such as energy, autocorrela-
tion, cyclostationarity, eigenvalues, etc., [1]–[4]. Most of this
work in the literature is based on the assumption of conditional
independence of observations across secondary users (SUs)
conditioned on the presence/absence of a primary user (PU).
The independence assumption simplifies the analysis as the
joint probability density function (pdf), which is required for
the log-likelihood ratio test (LLRT), can be described as the
product of the marginal pdfs. However, this assumption of
independence may not hold in practical scenarios. For exam-
ple, if there is a strong line of sight component between an
active PU and SUs, the observations will be highly dependent.
In such a scenario, finding the joint pdf turns out to be a
cumbersome task even for one-bit hard-decision statistics [5],
[6]. Motivated by this, the present paper investigates the use
of copula-theory based fusion rule for spectrum sensing where
the soft-decision statistics are highly dependent.

A copula is a multivariate probability distribution for which
the marginal distribution of each random variable is uniform
[7]. Copulas are used to model the dependence between several
random variables. In the literature, several copulas have been
proposed that model different dependence structures [8]. In

this paper, the following widely used copulas have been
considered: Gaussian, t-copula and copulas belonging to the
Archimedean family. In recent years, copula theory has found
wide applications in finance and economics [9], [10]. Copula
theory has also been used in distributed detection applications:
detection of nuclear radioactive sources [11], biometrics-based
automatic person recognition systems [12], classifier fusion
[13] and footstep detection [14], etc. However, copula theory
has not been applied to date to the problem of spectrum
sensing in the CR context, which is the focus of this paper.

The specific contributions of this paper are:

• The use of copula theory is proposed for distributed de-
tection of widely adopted orthogonal frequency-division
multiplexing (OFDM) signals without making the as-
sumption of independence among the sensor observations
or decision statistics across SUs in the presence of a PU.

• The copula-based fusion rule is derived at the fusion cen-
ter (FC) for the soft-decision statistics received from the
SUs under the Neyman-Pearson (NP) detection criterion,
which maximizes the probability of detection (Pd) under
a constraint on the false alarm probability (Pfa).

• Performance comparison is carried out for different
multivariate copulas such as Gaussian, t-copula and
Archimedean in terms of receiver operating characteris-
tics (ROC) for the case when the signal-to-noise ratio
(SNR) values are same at all the SUs. The performance
comparison is also carried out for the case when SNR
values are different at different SUs.

• To confirm the relative performance of each of the
considered copulas, Akaike information criterion (AIC)
[15], which is generally used for choosing the best fitting
copula [14], [16], is also calculated for each of the
considered copulas using the same data.

The paper is organized as follows. In Section II, the system
model is presented along with details of the autocorrelation
detector (AD) considered in this paper. In Section III, a brief
overview of copula theory and different copulas is given and
the copula-based fusion rule is derived. Section IV presents
the simulations results and Section V concludes the paper.
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Fig. 1. System model for the considered CSS using N autocorrelation
detectors (ADs).

II. SYSTEM MODEL

As shown in Fig. 1, the system model for the considered
CSS scenario consists of an OFDM based PU, N SUs and a
FC. The sensing channels are modeled as AWGN channels.
The SUs employing ADs send their respective test statistics
to the FC through reporting channels which are assumed to be
error-free. At the FC, a global decision is made with the help
of a suitable fusion rule, which is then relayed back to all the
SUs. Based on the relayed decision, the SUs can access the
channel if the PU signal has been declared absent.

In spectrum sensing, the presence or absence of a PU based
on locally observed signal samples can be formulated as a
binary hypothesis testing problem. There are two hypotheses:
H0, which denotes the absence of the PU signal andH1, which
denotes the presence of the PU signal. The considered signal
model is

H0 : xn[m] = wn[m]

H1 : xn[m] = s[m] + wn[m]
(1)

for m = 1, 2, . . . ,M1 and n = 1, 2, . . . , N . Here, xn[m],
wn[m], and s[m] are the samples of the received signal,
AWGN and OFDM-based PU signal, respectively at the nth

SU, where M1 is the number of received signal samples at
each SU. Note that the local observations of SUs, conditioned
onH1 hypothesis are “not” assumed to be independent of each
other. The noise samples wn[m] are assumed to be independent
from sensor to sensor and are modelled as a complex circularly
symmetric Gaussian random variables (CCSGRV) with zero
mean and σ2

w variance. The SNR is assumed to be the same
for all the detectors and σ2

w is assumed to be known.

A. Autocorrelation Detector (AD)

In this paper, the PU signal is assumed to be an OFDM
signal, in which a cyclic prefix of Tc symbols is added in
front of the data block of Td symbols to create one OFDM
symbol. Due to the presence of the cyclic prefix in an OFDM
symbol, the autocorrelation value for a lag Td is not zero,

Fig. 2. Relation between auto-correlation estimates under H0 and H1 at
SNR = 5 dB when N = 2.

unlike AWGN whose autocorrelation value is zero for any
non-zero lag value.

The AD employed in this paper is taken from [17] such that
the autocorrelation estimate An from M1 =M + Td received
signal samples at the nth SU is given by

An =
1

M

M∑
m=1

xn[m]x∗n[m+ Td],

where ‘*’ stands for conjugate. The nth SU (or AD) then sends
the soft-decision test statistic Bn to the FC as given in [17]
by

Bn =
|An + c|2

σ2
An
/2

. (2)

In (2), σ2
An

is given under the two hypotheses as

H0 : σ2
An

=
1

M
σ4
w,

H1 : σ2
An

=
1

M
[(σ2

s + σ2
w)

2 + 2α2σ4
s ],

where σ2
s is the variance of s[m] while

c =
ασ2

w

(1 + 2α2) · SNR + 2
and α =

Tc
Td + Tc

.

The distribution of Bn is given in [17] by

H0 : Bn ∼ χ

(
2,

2Mc2

σ4
w

)
,

H1 : Bn ∼ χ

(
2,

2M(ασ2
s + c)2

(σ2
s + σ2

w)
2 + 2α2σ4

s

)
.

(3)

Here, χ(k,λ) represents a non-central chi-square distribution
with k degrees of freedom and non-centrality parameter λ.



B. Independence-based Fusion Rule

Let B = [B1, B2, . . . , BN ] denote the vector of test statis-
tics received at the FC from N ADs. The LLRT is given in
[18] as

L(B) = log
p(B;H1)

p(B;H0)

H1

≷
H0

η. (4)

Under the independence assumption, the joint pdfs under H1

and H0 in (4) can be written as the product of marginals to
give the independence-based fusion rule as

Li(B) = log

 N∏
n=1

p(Bn;H1)

p(Bn;H0)

 H1

≷
H0

ηi,

where p(Bn;H1) and p(Bn;H0) are the marginal pdfs of Bn
under H1 and H0 respectively.

As illustrated in Fig. 2 for a certain case, test statistics can
be assumed to be independent under H0 but not under H1. So,
it is expected that a different fusion rule that does not operate
under the assumption of independence will perform better as
it will represent the actual situation more accurately. In this
paper, we employ copula theory to obtain the fusion rule.

The dependence between the test statistics in this paper is
modelled using Kendall’s tau (τ ), which is a non-parametric
rank-based measure of dependence, defined in [8] as

τ =
nc − nd
nc + nd

,

where nc and nd are the numbers of concordant pairs and
discordant pairs respectively. For a given pair (ai, bi) and
(aj , bj), let us define z = (ai − aj)(bi − bj). This pair is
concordant if z > 0 and discordant if z < 0. Note that the
widely used Pearson’s correlation coefficient, which handles
only linear dependence, can not be used as the dependence
between the test statistics can be non-linear [14].

III. COPULA-BASED COOPERATIVE SENSING

In this section, a quick overview is first given on the basics
of copula theory followed by the proposed copula-based CSS.
Later, the AIC criterion for copula selection is presented.

A. Basics of Copula Theory

Copula is defined as a cumulative distribution function (cdf)
with uniform marginals. It helps in representing multivariate
distribution functions in terms of marginal distribution func-
tions. The role of copula in finding such a representation is
described by the following theorem [10]:

Theorem 3.1 (Sklar’s Theorem): Consider an N -
dimensional continuous cdf F with continuous marginal
cdfs F1, F2, . . . , FN . There exists a unique copula C such
that for all yn in [−∞,∞]

F (y1, y2, . . . , yN ) = C
(
F1(y1), F2(y2), . . . , FN (yN )

)
. (5)

On the other hand, consider a copula C and marginal cdfs
F1, F2, . . . , FN . Then F , as defined in (5), is a multivariate
cdf with marginals F1, F2, . . . , FN .

TABLE I
COPULA DENSITIES FOR DIFFERENT COPULAS CONSIDERED IN THIS PAPER

Copulas Copula density c(u) = c(u1, u2, . . . , uN )

t-copula 1

|Σ|1/2

Γ

(
ν +N

2

)
Γ

(
ν

2

)


Γ

(
ν

2

)
Γ

(
ν + 1

2

)

N

×

(
1 +

yTΣ−1y

ν

)−(ν+N)/2

∏N
i=1

(
1 +

y2i
ν

)−(ν+1)/2

Gaussian
1

|Σ|1/2
exp

[
−yT (Σ−1 − I)y

2

]

Clayton
(
max

(∑N
i=1 u

−α
i − 1, 0)

))−(1/α)
Gumbel exp

[
−
(∑N

i=1 (− lnui)
θ
)(1/θ)]

Independence 1

Assuming that the copula C is differentiable, differentiating
both sides of (5), we obtain the multivariate pdf

f(y) =

 N∏
n=1

f(yn)

 c
(
F1(y1), . . . , FN (yN )

)
, (6)

where y = (y1, y2, . . . , yN ) and c(.) is known as the copula
density given in [10] by

c(u) =
∂N
(
C(u1, . . . , uN )

)
∂u1 . . . ∂uN

,

where u is a vector of uniform random variables (RVs) ui such
that ui = Fi(yi). Using (6), the joint density function can be
constructed given the marginal densities and by incorporating
dependency through copula density.

There are several copula functions that have been proposed
in the literature and consequently, there are several possibilities
of forming a joint pdf based on the choice of copula. Table I
provides the copula densities for different copulas [8] used in
this paper to model the joint distribution of the test statistics
under the H1 hypothesis. Here, I is the identity matrix. Copu-
las mentioned in Table I model the dependence between RVs
using different parameters that are estimated from Kendall’s
tau τ . Σ is the correlation matrix of RVs y with diagonal
entries being one and non-diagonal entries being the linear
correlation parameter ρ, which is defined in terms of τ [7] as

ρ = sin(
πτ

2
). (7)

For Clayton and Gumbel copulas, the parameters α and θ are
defined in terms of τ [8] as

α =
2τ

1− τ
and θ =

1

1− τ
. (8)

The degree of freedom ν parameter in t-copula allows one
to increase or decrease the amount of tail dependence of the
variables. While copula theory provides the basic framework,
one needs to select the most suitable copula along with its
parameters for the problem at hand.



B. Copula-based Fusion Rule

In this paper, the problem of handling the dependence
between test statistics is solved by replacing the independence-
based fusion rule with a copula-based fusion rule. Using (6),
the pdf under H1 in (4) can be rewritten to give the copula-
based fusion rule as

Lc(B) = log


(∏N

n=1 p(Bn;H1)
)
· c(u)(∏N

n=1 p(Bn;H0)
)

 H1

≷
H0

ηc, (9)

where c(u) is the copula density under H1 and u is given by
u =

[
F1(B1), . . . , FN (BN )

]
. Here c(u) is one of the copula

densities mentioned in Table I, Fn is the marginal non-central
chi-square cdf of Bn under H1. Note that under H0, as test
statistics are independent, the joint pdf will still be the product
of marginal pdfs.

C. AIC for Copula Selection

In (9), the distribution under H1 is the product of the
marginals and the copula density. As marginals are indepen-
dent of the copula used, the criterion to fit the pdf under H1

relies on the choice of the copula. Now, given the Bn values,
the copula which fits the best is to be found among several
competing copulas. AIC is a measure of the relative goodness
of fit of a model and has been used in this paper to decide on
the best fitting copula [14], [16]. It is defined in [15] as

AIC = −2l(γn) + 2q, (10)

where, q is the number of parameters that can be adjusted to
make the copula fit the data and l(γn) is the maximized value
of the log likelihood function l(γ) over parameters γ given by

γn = argmax
γ

r∑
k=1

cγ(uk). (11)

Here, r is the number of realizations. While the AIC value is
computed for different copulas with the same data, the best
fitting copula is the one with the least AIC value.

IV. SIMULATION RESULTS

In this section, comparison of the CSS performance of
different copula-based fusion rules is carried out. The inputs
to the IFFT at the transmitter are chosen from a QPSK
constellation. The IFFT size is chosen to be 32. Therefore,
Td = 32. The cyclic prefix is chosen as Tc = Td/4 = 8.
The number of received signal samples is chosen as M = 80.
For the performance comparison of the copula-based fusion
rules derived in (9) using different copulas, ROC curves are
plotted by fixing σ2

s = 1 and varying σ2
w resulting in different

values of Kendall’s tau τ which is calculated empirically
using 10, 000 realizations. For a particular value of Pfa, the
threshold of the NP detector is calculated empirically using
the same number of realizations. Monte-Carlo realizations
considered for the AIC computations and the ROC plots is
r = 10, 000. Pd for a particular value of Pfa in the ROC plot
is calculated by dividing the count of number of times Lc(B)
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Fig. 3. ROC curves for different copulas when N = 3. It can be observed
that the Gumbel copula performs the best followed by Gaussian, t-copula and
Clayton.

is greater than the threshold by the number of Monte-Carlo
realizations r. First, the ROC curves are plotted for the case
when the SNR is the same at different SUs. Next, results are
presented for the case when the SNR is different at different
SUs.

A. Same SNR at different SUs

Fig. 3 compares the performance of the copula-based fusion
rules for N = 3 and different values of τ . Here, ν = 6 is
used for the t-copula. For both the values of τ = 0.5 (SNR
= 7 dB) and τ = 0.3 (SNR = 3 dB), the Gumbel copula
performs the best followed by Gaussian, t-copula and Clayton.
These trends in the ROC curves are in agreement with the AIC
values for different copulas in Table II. The AIC value is the
least for the Gumbel Copula which implies that it is the best
fitting copula among the copulas considered. As such, only
the Gumbel copula is considered for the rest of the simulation
results among the copulas used in Fig. 3 for the case when
SNR is the same at different SUs.

Fig. 4 compares the performance of the copula-based fusion
rule with that of the independence-based fusion rule for N = 3
and different values of τ . The performances of both schemes
are similar for τ = 0.01 (SNR = −8 dB). This is expected

TABLE II
AIC VALUES FOR DIFFERENT COPULAS WHEN N = 3. NOTE THAT THIS

TABLE CORRESPONDS TO FIG. 3. IT CAN BE OBSERVED THAT THE COPULA
FOR WHICH THE AIC VALUE IS THE LEAST PERFORMS THE BEST IN FIG. 3

AND VICE VERSA.

τ Gaussian copula t-copula Gumbel copula Clayton copula

0.5 -1.32e04 -1.19e04 -1.41e04 -4.71e03

0.3 -3.65e03 -3.29e03 -4.43e03 -1.32e03
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Fig. 4. ROC curves for copula-based fusion rule and independence-based
fusion rule when N = 3. It can be observed that the copula-based fusion
rule performs better than the independence-based fusion rule when the test
statistics are highly dependent.

as for weak dependence, the test statistics can be assumed to
be independent. However, for the cases of higher dependence
(τ = 0.3 and 0.5) among the test statistics, the copula-based
fusion rule outperforms the independence-based fusion rule.
So, by incorporating dependence into the fusion rule and not
assuming independence, CSS performance improves signifi-
cantly. Moreover, the performance improvement increases with
increase in dependence.

Fig. 5 compares the performance of the copula-based fusion
rule with that of the independence-based fusion rule for
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Fig. 5. ROC curves for Gumbel copula-based fusion rule and independence-
based fusion rule for τ = 0.5 and different values of cooperative SUs (N = 3
and N = 5). It can be observed that detection performance improves with
increase in N .
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Fig. 6. ROC curves for copula-based fusion rule and independence-based
fusion rule for N = 3 and different SNR at different SUs (−5 dB, 0 dB and
5 dB). It can be observed that the copula-based fusion rule performs better
than the independence-based fusion rule.

τ = 0.5 and different values of cooperating SUs (N = 3
and N = 5). Also as a reference, single user case N = 1 is
also presented. It can be seen that cooperation improves the
sensing performance as compared to the single-user case. The
performance improvement over the single-user case increases
with increase in the number of cooperating users. Even in
this case, the performance of the copula-based fusion rule is
much better as compared to the independence-based fusion
rule. Also, the performance of the Gumbel copula-based fusion
rule with N = 3 is better than the independence-based fusion
rule with N = 5. It can also be seen that the single-user
case performs better than the independence-based fusion rule
with N = 3 and N = 5 for higher values of Pfa. This loss in
the CSS performance of the independence-based fusion rule is
caused by the use of independence assumption in the presence
of heavily dependent test statistics.

B. Different SNR at different SUs

For the system model considered in Fig. 1, there can be
a case when the SNR is different at different SUs. To deal
with this scenario, the value of τ is calculated for each pair of
SUs to capture the pairwise dependence between the SUs. For
Gaussian copula and t-copula, linear correlation parameter ρ
for every pair of SUs is calculated using (7). The correlation
matrix Σ is then calculated with diagonal entries being one
and non-diagonal entries being the different pairwise linear
correlation parameters ρ’s. However, in such a scenario of
different SNR at different SUs, Gumbel and Clayton copulas
can not be used directly as these copulas can not model the
pairwise dependence. The α and θ parameters in (8) of Clayton
and Gumbel copulas are not a matrix because of which the
pairwise dependence captured using different pairwise τ ’s can
not be used in these copulas.



Fig. 6 compares the performance of copula-based fusion
rule with that of independence-based fusion rule for N = 3
and different SNRs at different SUs. The SNRs considered
at different SUs are −5 dB, 0 dB and 5 dB. Values of
different pairwise τ ’s are τ12 = 0.06, τ13 = 0.09 and
τ23 = 0.24. Among the copulas which can model the pairwise
dependence, Gaussian copula and t-copula (ν = 6) perform
nearly the same. The copula-based fusion rule which captures
the pairwise dependence performs better as compared to the
independence-based fusion rule. These trends in the ROC
curves are in agreement with the AIC values for different
copulas in Table III.

TABLE III
AIC VALUES FOR DIFFERENT COPULAS WHEN N = 3. NOTE THAT THIS

TABLE CORRESPONDS TO FIG. 6. IT CAN BE OBSERVED THAT THE COPULA
FOR WHICH THE AIC VALUE IS THE LEAST PERFORMS THE BEST IN FIG. 6

AND VICE VERSA.

N Gaussian copula t-copula

3 -1.44e03 -7.5e02

V. CONCLUSION

In this paper, a novel copula-based fusion rule was pro-
posed for CSS of OFDM-based PU signal using dependent
autocorrelation-based test statistics. By incorporating depen-
dence into the fusion rule, significant performance improve-
ment was observed in the sensing performance as compared
to assuming independence among the SUs’ test statistics. The
performance improvement is seen to be a function of the
dependence among the test statistics. Among different copulas
compared, the Gumbel copula was shown to have the best
performance followed by Gaussian, t-copula and Clayton in
the scenario of same SNR at different SUs. Moreover, for the
case when SNR is same at different SUs, the performance
of the Gumbel copula-based fusion rule was found to be
better than the independence-based fusion rule even when the
number of cooperating users is less for the Gumbel copula-
based fusion rule (N = 3) compared to the independence-
based fusion rule (N = 5). For the case when SNR is different
at different SUs, Gaussian Copula was shown to have the best
performance followed by t-copula. The trends in the ROC
curves are found to be in agreement with the AIC values
computed for different copulas for both the scenarios.
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