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ABSTRACT
Pattern mining is an important task of data mining and involves the

extraction of interesting associations from large databases. How-

ever, developing fast and efficient parallel algorithms for handling

large volumes of data is a challenging task. The MapReduce frame-

work enables the distributed processing of huge amounts of data

in large-scale distributed environment with robust fault-tolerance.

In this paper, we propose a parallel algorithm for extracting cov-

erage patterns. The results of our performance evaluation with

real-world and synthetic datasets demonstrate that it is indeed fea-

sible to extract coverage patterns effectively under the MapReduce

framework.
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1 INTRODUCTION
Pattern mining [1, 15] is an important task of data mining and in-

volves the extraction of interesting associations from large databases.

It has significant applications in market basket analysis, recommen-

dation systems, and internet advertising. In pattern mining based

applications, databases are typically huge; this necessitates fast and

scalable pattern mining algorithms. This problem can be addressed

by the development of parallel algorithms in large-scale distributed

environments. In the literature, the MapReduce framework [7] has

been introduced for enabling the distributed processing of huge

amounts of data on a large number of machines in geographically
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distributed environments with robust fault-tolerance. Computa-

tions in the MapReduce framework are distributed among worker

machines and are described by the map and reduce functions. The
map function processes key-value pairs and the reduce function
merges all the values associated with the same key.

Another useful type of pattern is the coverage pattern [15], which

has several important and diverse applications in areas such as ban-

ner advertising [17], search engine advertising [4, 5] and visibility

mining [8]. Given a transactional database and a set of data items,

coverage pattern (CP ) is a set of items covering a certain percentage

of transactions by minimizing overlap among the transactions cov-

ered by each item of the pattern. In the literature, a level-wise CP
mining algorithm, designated as CMine [15], and a pattern growth

approach called CPPG [16] have been proposed to extractCPs from
transactional databases.

Incidentally, MapReduce-based pattern mining approaches have

been proposed for extracting frequent patterns [11, 18, 19], periodic

frequent patterns [3], utility patterns [12, 14, 23] and sequential pat-

terns [6, 10, 21]. MapReduce-based pattern mining was first studied

in the context of frequent patterns by means of an iteration-based

apriori MapReduce algorithm [1, 20]. In this paper, we propose a

new algorithm, designated as CMineMR, for the parallelization of

the CMine coverage pattern mining algorithm under the MapRe-

duce framework. The results of our performance evaluation with

real-world and synthetic datasets demonstrate that it is indeed fea-

sible to extract coverage patterns effectively by using our proposed

MapReduce-based CMineMR algorithm.

The remainder of this paper is organized as follows. In Section 2,

we discuss background information concerning coverage patterns.

In Section 3, we present the proposed approach. In Section 4, we

report the performance evaluation. Finally, we conclude in Section

5 with directions for future work.

2 BACKGROUND INFORMATION
This section discusses background information concerning cover-

age patterns.

2.1 Model of Coverage Patterns
Let I = {i1, i2....., in } be the set of items, DB be the transactional

database. Each transaction T in DB comprises a set of items i.e.,

T ⊆ I . |DB | represents the total number of transactions in database

DB. T ip represents the set of transactions, which contains the item

ip . |T
ip | represents the number of transactions containing ip .
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The concept of coverage patterns incorporates the following

notions: relative frequency, coverage set, coverage support and

overlap ratio. We shall now discuss each of these notions.

Definition 1. Relative frequency of item ip . The fraction of
transactions containing a item ip is called the Relative Frequency (RF)

of ip and is computed as RF(ip ) =
|T ip |

|DB |
.

An item is considered to be frequent if its RF ≥ minRF , where
minRF is a user-specified threshold.

Definition 2. Coverage set CSet(X) of a pattern X. Given a
pattern X = {ip , ..., iq , ir }, (1 ≤ p,q, r ≤ n), CSet(X) is the set of all
transactions containing at least one item of pattern X, i.e.,CSet(X ) =

T ip ∪T iq ∪ ...T ir .
Definition 3. Coverage support CS(X) of a pattern X. Given
X = {ip , ..., iq , ir }, (1 ≤ p,q, r ≤ n), CS(X) is the ratio of the size of

CSet(X ) to |DB | i.e., CS(X ) =
|CSet (X ) |

|DB |

Definition 4. Overlap ratio OR(X) of a pattern X. Given X =
{ip , ..., iq , ir }, (1 ≤ p,q, r ≤ n) and |T ip | ≥ ... ≥ |T iq | ≥ |T ir |,
OR(X) is the ratio of the number of common transactions between
CSet(X − ir ) and T ir to the number of transactions having item ir ,

i.e., OR(X ) =
|CSet (X−ir )∩T ir |

|T ir |

A pattern is interesting if it has high CS since it covers more

number of transactions. Suppose we want to increase the coverage

by adding a new item ik to the pattern X . The addition of item

ik will be more interesting if it adds more number of transactions

for the coverage set CSet(X ) of pattern X . In essence, adding a

new item ik to pattern X could be interesting if there is a minimal

overlap. Thus, a pattern having less OR could be more interesting.

Definition 5. Coverage pattern (CP ). A patternX = {ip , ..., iq , ir },
(1 ≤ p,q, r ≤ n) and |T ip | ≥ ... ≥ |T iq | ≥ |T ir | is called a cover-
age pattern if OR(X ) ≤ maxOR, CS(X ) ≥ minCS and RF (ik ) ≥
minRF ∀ik ∈ X , wheremaxOR andminCS are user-specified thresh-
old values of maximum overlap ratio and minimum coverage support
respectively.

Given a set I of items, transactional database DB,minRF ,minCS
andmaxOR, the problem of miningCPs is to discover the complete

set of CPs .

About sorted closure property: The overlap ratio satisfies downward
closure property if the items are ordered in descending order of

their frequencies respective. Such a property is called the sorted

closure property [13].

Sorted closure property. Let X = {ip , ..., iq , ir }, (1 ≤ p,q, r ≤

n) be a pattern such that |T ip | ≥ ... ≥ |T iq | ≥ |T ir |. If OR(X ) ≤

maxOR, all of the non-empty subsets ofX containing ir and having
size ≥ 2 will also have overlap ratio less than or equal tomaxOR.

An item a is said to be a non-overlap item w.r.t. a pattern X if

OR(X ,a) ≤ maxOR and RF (ik ) ≥ minRF ∀ik ∈ {X ,a}. The notion
of non-overlap pattern (NOP ) is defined as follows.

Definition 6. Non-overlap pattern (NOP): A patternX = {ip , ...,

iq , ir }, (1 ≤ p,q, r ≤ n) and |T ip | ≥ ... ≥ |T iq | ≥ |T ir | is called
a non-overlap pattern if OR(X ) ≤ maxOR and RF (ik ) ≥ minRF
∀ik ∈ X .

2.2 CMine Algorithm
Similar to the apriori algorithm [1], CMine [15] is an iterative

multi-pass algorithm for extracting CPs from a given transactional

database. In case of CMine, NOPs of size k are used to explore size

k+1 patterns. As NOPs satisfy sorted closure property, we extract

NOPs , which satisfy themaxOR constraint. Next,CPs are extracted
by applying theminCS constraint.

Let Ck , NOPk and CPk denote the candidate, non-overlap and

coverage patterns of size k respectively. At the kth iteration, NOPs
and CPs of size k are computed. GivenminCS ,maxOR, andminRF
values, the steps of CMine algorithm for extracting CPs from the

transactional database DB can be summarized as follows:

(1) First iteration: The frequency of each item is computed by

scanning DB. After scanning, CP1 and NOP1 are computed

by checking relative frequency. Item is added to NOP1 if

RF ≥ minRF , and added toCP1 if RF ≥ minCS . The items in

NOP1 are sorted in descending order of their frequencies.

(2) Second iteration and beyond: Starting from k=2, the fol-
lowing step is repeated until Ck=ϕ. Ck is generated by com-

puting NOPk−1 ▷◁ NOPk−1 (self-join). After scanning DB,
NOPk and CPk are computed by checking OR and CS of

candidate patterns in Ck accordingly.

3 PROPOSED APPROACH
This section presents the proposed approach.

3.1 Basic Idea
We distribute DB across N machines and extract the CPs in a dis-

tributed manner. Let X = {i1, i2, ..., in } be a pattern, N be the

number of machines and DBi represent the i
th

partition of DB. The
basic idea is to extract the CPs by checking the values of CS and

OR by accessing the partitions of DB.
The main issue is to compute the OR value of a candidate pat-

tern in a distributed manner. Notably, as the value of OR(X ) is a

fraction, i.e., OR(X ) =
|CSet (X−in )∩T in |

|T in |
, it cannot be computed by

adding the OR values from the partitions of DB. However, OR(X )

can be computed efficiently by computing the numerator and the

denominator of OR(X ) independently under the MapReduce frame-

work. It can be observed that the denominator |T in | of OR is the

frequency of a item. Hence, it is possible to compute the respective

frequencies of all of the items in the first phase of MapReduce and

store these frequencies in each of the N machines. Moreover, the

value CSet(X ) can be computed by aggregating the corresponding

coverage sets from the partitions of DB stored in each machine

in a distributed manner. Once the frequency of the nth item in is

with every machine, the value of OR(X ) =
|CSet (X−in )∩T in |

|T in |
can

be computed in a distributed manner. Notably, the value of CS(X )

in DB can be computed in a distributed environment by adding the

coverage support values in each partition of the DB.
The overview of the proposed approach under MapReduce is as

follows. We distribute DB into N machines. In the first iteration, we

compute relative frequency values of all items using one phase of

MapReduce. We broadcast frequencies of all items to all machines.

In the second iteration, we compute the CPs of size two by using

one phase of MapReduce. From the third iteration onwards, we

employ two phases of MapReduce; one phase is for generating

candidate patterns, while the other phase is for computing CPs .
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3.2 CMineMR Algorithm
Similar to the CMine algorithm, our proposedMapReduce algorithm

is also an iterative algorithm. At the kth iteration of the proposed

CMineMR algorithm, NOPs and CPs of size k are computed. The

input to the algorithm consists of a transactional database DB,
minRF ,minCS andmaxOR. First, DB is segmented into multiple

partitions and each partition is loaded onto each machine.

(i) First iteration: In this iteration we explain the generation of

NOP1 and CP1. Each mapper reads each transaction of the data

partition andmaps each item to 1. Reducer groups all the item counts

of each item into a list, which we designate as count-list . Then item

frequencies are computed by adding counts in count-list of an each

item. Algorithm 1 depicts the procedure to compute frequencies of

size one itemsets. The NOP1 and CP1 are computed by comparing

the relative frequencies withminRF andminCS respectively. The

frequencies of NOP1 are broadcast among all machines; this is used

in the subsequent iterations.

Algorithm 1 First iteration-Computing CP1, NOP1 (DB)

procedure Map(key = null,value = DBi )
for each ti in DBi do:

for each ik in ti do:
output < ik , 1 >

procedure Reduce(key = ik , value = count-list(ik ))
for each count in count-list(ik ) do:

ik . f req += count

(ii) Second iteration: In this iteration, we explain the generation

of NOP2, CP2. In the second iteration, the candidate patterns are

computed by joining the non-overlap patterns of the first iteration.

The C2 are broadcast across all machines. The OR, CS of C2 are

computed using one MapReduce phase.

For each transaction (ti ) and candidate pattern (P ),mapper maps

the P to [x,y] of the form: <P,[x,y]>. The first component x is 1 if

ti has at least one item of the P . The second component y is 1 if ti
has the least frequent item of P and at least one item among the

remaining items. Reducer groups all the counts of each pattern into

a list, which we designate as counts-list . Then the corresponding

integers of each P are added. Algorithm 2 depicts the procedure

to compute the size of coverage set and the numerator of overlap

ratio of candidate patterns of size k (k > 1). After reduction, the

CS of P is computed by dividing the first component with the total

number of transactions. The OR of P is computed by dividing the

the second component with the frequency of the least frequent

item (broadcast in the first iteration).

(iii) Third iteration and beyond: In this iteration, we explain the

generation of NOPk ,CPk (k > 2). From the third iteration onwards,

Ck are generated using oneMapReduce phase. TheOR andCS ofCk
are computed using another MapReduce phase. This procedure of

two MapReduce phases is repeated until no new candidate patterns

are generated.

For each pattern P in NOPk−1, mapper maps the pattern having

the firstk-2 items of P to the least frequent item of P . Reducer groups
all the least frequent items based on the key into a list, which we

designate as item-list . For each size k-2 pattern, Ck are generated

Algorithm 2 kth iteration-Computing CPk , NOPk (DB, Ck )

procedure Map(key = null,value = DBi )
for each ti in DBi do:

for each P = {i1, i2, ..., ik } in Ck do:
if ∃im,m ∈ [1,k − 1] : im ∈ ti and ik ∈ ti then

output < P, [1, 1] >
else if ∃im,m ∈ [1,k] : im ∈ ti then

output < P, [1, 0] >

procedure Reduce(key = P , value = counts-list(P))
for each count in count-list(P) do:

P .count[0] += count[0]
P .count[1] += count[1]

by iterating over the item-list as shown in Algorithm 3. Algorithm

3 depicts the procedure to computeCk . The value ofCk is broadcast

across all machines. TheCS andOR ofCk are computed by another

MapReduce operation, which is similar to the Second iteration.

Algorithm 3 kth (k > 2) iteration-Computing Ck (NOPk−1)

procedure Map(key = null,value = NOPk−1)
for each X = {i1, i2, ..ik−1} in NOPk−1 do:

output < {i1, i2, .., ik−2}, ik−1 >

procedure Reduce(key = X , value = item-list(X ))

for each im in item-list(X ) do:
for each in in item-list(X ) do:

if Freq(im ) < Freq(in ) then
{i1, i2, .., ik−2, im, in }

4 PERFORMANCE EVALUATION
We have conducted experiments by implementing our proposed

CMineMR algorithm as well as the reference CMine algorithm in

Python 2.7. The CMineMR algorithm is written using Apache Spark

architecture [22] and it is performed in a cluster of 24 machines,

with 2 GB memory each. The experiments on the reference CMine

algorithm [15] are performed in one machine of the cluster.

Table 1: Parameters used in our experiments

Dataset Parameter

Default

value

Variations

step-

size

BMS-POS

N/of Machines

(NM)

8

[4,6,8,10,

12,16,20,24]

-

|DB| 515,596 - -

minRF 0.065 [0.065, 0.095] 0.01

minCS 0.5 [0.1, 0.9] 0.1

maxOR 0.6 [0.1, 0.9] 0.1

Synthetic

N/of Machines

(NM)

8

[4,6,8,10,

12,16,20,24]

-

|DB| 100,000 - -

minRF 0.045 [0.045, 0.06] 0.0025

minCS 0.3 [0.1, 0.9] 0.1

maxOR 0.3 [0.05, 0.5] 0.05
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The experiments were conducted on two datasets. The first

dataset is BMS-POS [9] dataset, which is a click-stream dataset

of an e-commerce company; this dataset has 515,596 transactions

and 1656 distinct items. The second dataset is the T10I4D100K,

which is a synthetic dataset [2] generated by a dataset generator.

This dataset has 100,000 transactions and 870 distinct items.

Our experiments are conducted by varying the number of ma-

chines (NM),maxOR,minCS andminRF . Table 1 summarizes the

parameters used in our experiments. As the performance metric,

we use execution time (ET ), which is the total processing time (in

seconds) for extracting CPs during the course of the experiment.
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Figure 3: Effect of variations in minCS
(i) Effect of variations in NM: Figure 1 depicts the effect of varia-
tions inNM . For BMS-POS, the results are shown in Figure 1(a). The

ET of CMineMR decreased rapidly till NM=8 due to a large amount

of parallel computation in extracting CPs . However, the change in
ET decreases with increase in NM and reaches saturation when

16 machines are used due to increase in the communication cost.

The proposed CMineMR algorithm is 3.2 times faster than CMine

algorithm when NM is 8. Similar trend is observed in Synthetic

dataset as shown in Figure 1(b).

(ii) Effect of variations in maxOR: Figure 2 depicts the effect of
variations inmaxOR. For BMS-POS, the results are shown in Figure

2(a). The ET of CMine and CMineMR increases with the increase in

maxOR, as the number of non-overlap patterns generated increases,

thereby eventually increasing the runtime of the algorithms. The ET
of CMineMR is 2.1 times faster than that of CMine algorithm when

maxOR is 0.9 due to a significant amount of parallel computation

in extracting CPs . The results for Synthetic dataset are shown in

Figure 2(b).

(iii) Effect of variations in minCS: Figure 3 depicts the effect of
variations inminCS . For BMS-POS, the results are shown in Figure

3(a). Notably, the CPs in each iteration are generated by checking

minCS of NOPs , thereby leading to no significant changes in ET
for CMine and CMineMR due to variations inminCS , as shown in

Figure 3(a). The results for Synthetic dataset are depicted in Figure

3(b).
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Figure 4: Effect of variations in minRF

(iv) Effect of variations in minRF: Figure 4 depicts the effect of
variations inminRF . The results for BMS-POS, Synthetic datasets

are depicted in Figures 4(a) and 4(b) respectively. The decrease in

ET for CMine and CMineMR with increase inminRF represents

the decrease in the number of size-one frequent itemsets (items sat-

isfyingminRF ). For BMS-POS, the gradual decrease in ET indicates

that there are small changes in the number of size-one frequent

itemsets with increase inminRF . However, for Synthetic dataset,
there is a sudden fall in ET , which indicates that most of the items

are having comparable frequencies.

5 CONCLUSION
In pattern mining, developing fast and efficient parallel algorithms

handling large volumes of data becomes a challenging task. In this

paper, we have introduced the problem of parallel mining in the

context of coverage patterns and proposed the CMineMR algorithm

for efficiently extracting the knowledge of coverage patterns. The

results of our performance evaluationwith real-world and Synthetic

dataset demonstrate that it is indeed feasible to extract coverage

patterns effectively using our proposed CMineMR algorithm under

the MapReduce framework. As part of future work, we plan to

develop parallel algorithms for pattern growth approach towards

extracting coverage patterns. Furthermore, we plan to investigate

the parallel coverage pattern extraction by considering issues such

as skew in transactional databases and load-balancing.
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