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Abstract—In recent times, a few new low-cost sen-
sors have been introduced to the global market for
monitoring particulate matter (PM). In this paper, the
performance of three such low-cost PM sensors, namely
SDS011, Prana Air, and SPS30, for measuring PM2.5
and PM10 levels is evaluated against a standard refer-
ence Aeroqual Series-500. The test setup was exposed
to PM concentrations ranging from 30 µg/cm3 to 600
µg/cm3. The results were based on 1 min, 15 min, 30
min, and 1 hr average readings. The experiments were
carried out in indoor as well as outdoor environments.
The comparative evaluation was performed before and
after calibration. The performance of these sensors is
evaluated in terms of coefficient of determination (R2),
coefficient of variation (Cv) and root mean square error
(RMSE). Evaluation results show that these low-cost
sensors have good performance after calibration with a
reference sensor.

Index Terms—Coefficient of determination, Coeffi-
cient of variability, Low-cost PM sensor, performance
evaluation

I. Introduction
Particulate matter (PM) refers to the small particle

impurity suspended in the air. It is one of the major con-
tributors to air pollution. The high-grade PM monitoring
devices are usually bulky and expensive, such as instru-
ments based on Tapered Element Oscillating Microbal-
ance (TEOM) technology and Beta Attenuation Monitor
(BAM) [1]. They also require frequent servicing to get the
best performance. For the above-mentioned reasons, only
a few PM-level monitoring systems are deployed in a city.

Many low-cost sensors are now available in the global
market for monitoring PM2.5 and PM10 levels and are
mainly used in smart city projects [2]. These sensors are
compact, easy to handle, and require very low mainte-
nance. The deployment of these sensors can be in huge
numbers in a small area, increasing the spatial and tem-
poral resolution of the PM data. In [3, 4], a few approaches
have been discussed to improve the spatio-temporal reso-
lution of PM data using distributed networks of such low-
cost sensors. Due to the mass availability and production
of low-cost sensors, it is vital to examine their credibility.

Some experiments have already been performed in the
past for the evaluation of low-cost PM sensors using
the data from various weather stations in and around a
particular city as a reference [5, 6]. A study [7] shows that

the response of these sensors depend not only upon the
particle dimension but also on the type of particle. This
means that the sensors manufactured by the different com-
panies can have variations in their measurements of PM
levels. In [5], SDS011 (Nova Fitness), ZH03A (Winsen),
PMS7003 (Plantower), and OPC-N2 (Alphasense) were
used as the test sensors, and a TEOM based reference
instrument was utilized. This experiment was carried out
by using a stationary test setup near the weather station.
In [6], Plantower PMS 1003/3003 sensor was examined
in a wind tunnel and outdoor environment. Unlike the
existing literature, which mostly used a stationary setup,
we have used a portable setup to test the PM sensors
in few different parts of the city. This way sensors are
exposed to different types of particles from sources like
factories, vehicles, restaurants by taking the test setup and
the reference instrument near such places. In addition, this
paper evaluates two new sensors (Sensirion and Prana)
along with one well-studied sensor (SDS011).
The main contributions of this paper are
• The performance of three low-cost sensors, namely

SDS011 (Nova Fitness) [8], Prana Air (Prana) [9],
SPS30 (Sensirion) [10], is evaluated in this study.

• A mobile test setup is used to study the test sensors’
behavior when exposed to different kinds of particles
such as dust from the construction sites, traffic .

• The measurements and data analysis are performed
separately for indoor and outdoor environments.

• The performance evaluation of these sensors is carried
out in terms of coefficient of determination (R2),
coefficient of variation (Cv) and root mean square
error (RMSE).

The structure of this paper is as follows. Section II
briefly describes the hardware and software setup. Section
III describes the indoor and outdoor measurement cam-
paigns. Section IV presents the evaluation parameters used
to compare the test sensors using the data collected during
the experiments. Results and corresponding discussions
are presented in Section V while Section VI concludes this
paper.

II. Test Setup
This section contains information about the equipment

used for the experiment and the technical parameters used



to collect and analyze the data points.

A. Reference Instrument
The reference instrument that was used for this experi-

ment is Series-500 manufactured by Aeroqual [11]. It is a
portable air pollution monitoring device that can measure
PM2.5 and PM10 levels simultaneously with a minimum
time resolution of 1 min. It works on laser particle counter
(LPC) technology and is factory calibrated. A case study
[12] reports a very high correlation between this portable
monitor and higher specification environmental monitors.

B. Nodes
Three identical test nodes were created for the experi-

ment. Figs. 1 and 2 show the schematic view and actual
view, respectively, for each such node, which consists of
one unit of SDS011, Prana Air, and SPS30 each. ESP8266
based Wi-Fi enabled NodeMCU v1.0 microcontroller mod-
ule was used to interface these sensors.

C. Data Collection
Samples were collected at 2 s intervals, and all data

was pushed to Thingspeak, an MQTT-based IoT platform.
The Wi-Fi access point was created using a smartphone,
and a 4G cellular network was employed to access the
internet. All information was downloaded in .CSV format
from the Thingspeak platform for all three nodes. We
also downloaded the data from our standard reference
Series-500. The data was processed and analyzed using
the python programming language for 1 min, 15 min, 30
min, and 1 hr averaged readings.

III. Measurement Campaigns
In this paper, the performance evaluation was done in

indoor and outdoor environments. The following two sub-
sections briefly describe the process of both experiments.

A. Indoor Experiment
In this method, the test-setup was stationary and placed

near an open window to record the PM concentration for
one week continuously. The windows of the room remained
open for the whole duration of this experiment to keep
good ventilation.

B. Outdoor Experiment
In the outdoor experiment, all three nodes and the ref-

erence instrument Series-500 were placed inside a vehicle
with open windows. All devices were powered using a 5000
mAh power bank. The vehicle was taken to several parts
of the city to cover all kinds of areas, industrial, residential
and commercial, and places with high and low traffic
movement. A few halts for short intervals of 30-45 minutes
were made to collect the readings of that particular area.
The main objective was to evaluate the ability of sensors to
record the change in PM levels. Fig. 3 displays the PM2.5
levels at the locations chosen for this experiment.

Fig. 1: Schematic view of a node.

Fig. 2: Actual view of a node.

IV. Data Pre-processing and Performance
Evaluation Parameters

The data obtained from the test setup was filtered for
outliers before performing any analysis. All sensors work
in a specific humidity range, so all the readings that
were obtained beyond the operating humidity range were
removed.
The performance parameters used in this paper are

R2, Cv, and RMSE. The coefficient of determination R2

analyzes the ability to report the changes in PM levels in

Fig. 3: Measurement of outdoor PM2.5 levels.



comparison to the reference instrument. It is given in [13]
by

R2 = 1 −

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
, (1)

where yi denotes the observations, ȳ denotes the average
of the observations and ŷi is the prediction of yi using
the fitted model. The R2 values were calculated with raw
sensor output values as well as calibrated values. The
calibration of the test sensors with respect to the reference
sensor is done using simple linear regression.

Coefficient of variability Cv measures the reproducibility
or the variance across multiple units of the same sensor
and is given by

Cv = 1
N

N∑
i=1

σ̂i

µ̂i
× 100%, (2)

where N is the total number of samples, µ̂i denotes the
sample mean of readings of all three units of a particular
sensor at one moment of time and σ̂i is the average
standard deviation of all the copies of a sensor [14]. Cv

was calculated only on the raw data in this paper.
RMSE denoted by Erms is a metric representing the

average of the square root of the sum of squares of errors
and is given by.

Erms = 1
N

√√√√ N∑
i=1

(yi − ŷi)2, (3)

where ŷi is the prediction of yi using the fitted model.
RMSE was only calculated for the calibrated data in this
paper.

V. Results and Discussion
A. Indoor experiment
Based on approximately 200,000 data points, the per-

formance of the sensors is analyzed. All the sensors and
reference instruments data in the indoor setup plotted
against time are showed in Figs. 4 and 5 for PM2.5 and
PM10, respectively. The graphs in Figs. 4 and 5 show that
the sensors’ data and reference instruments’ data follow a
similar trend. The sensors underestimate the PM values
most of the time when compared to Aeroqual. It can
also be observed that the bias between the sensors and
the reference instrument is lower at lower PM values and
higher at higher PM values.

Tables I and II contain the average R2 values of all
three copies of the same sensor for PM2.5 and PM10 before
performing the calibration. A very high correlation value
was observed for all the sensors in this setup. All sensors
respond equally well while capturing the changes in PM2.5
levels. A minor drop in R2 values is observed in the
estimation of PM10 levels for all the sensors.

Table III indicates the Cv values for estimation of PM2.5
and PM10. It can be observed that this parameter is not
more than 10% for any sensor. SDS011 is found to have
the most variation of approximately 9% for both kinds of
particles, followed by Prana Air (≈ 5-7%), and SPS30 (≈
3%).

TABLE I: R2 values for PM2.5 for indoor experiment

Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.99 0.99 0.98
15 min 0.99 0.98 0.98
30 min 0.98 0.98 0.97

1 hr 0.97 0.97 0.96

TABLE II: R2 values for PM10 for indoor experiment

Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.87 0.98 0.98
15 min 0.98 0.90 0.90
30 min 0.98 0.90 0.90

1 hr 0.97 0.89 0.90

TABLE III: Cv values for PM2.5 and PM10 in % for indoor
experiment

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 9.6 5.73 2.75
PM10 9.05 6.64 2.95

B. Outdoor Experiment
The results obtained in this section are based on an

analysis of approximately 30,000 data points, collected at
2 s intervals, before calibration. Figs. 6 and 7 show the
plots for PM2.5 and PM10, respectively. The graphs show
that the bias between the sensors and reference instrument
is high, and sensors sometimes do not follow the same
trend. This might be due to the sudden increase in the
PM concentration and the change in the type of particle.
Tables IV and V contain the R2 values for PM2.5 and

PM10 respectively. The R2 and Cv values for mobile setup
were not calculated for 30 min and 1 hr intervals due
to insufficient data points. From these tables, the overall
response is observed to be less accurate as compared
to the results of the indoor experiment. It is observed
that SDS011 has the highest R2 value for both kinds of
particles. Prana Air and SPS30 have an almost similar
response for PM2.5 and PM10.
Table VI shows the Cv values obtained from the outdoor

experiment. There is a minor change in Cv values for
all sensors except SDS011 when compared to the indoor



Fig. 4: PM2.5 trend for indoor experiment.

Fig. 5: PM10 trend for indoor experiment.

Fig. 6: PM2.5 trend for outdoor experiment.

Fig. 7: PM10 trend for outdoor experiment.



experiment. The Cv values were observed to be in the
range of 3-9% approximately for PM2.5 and 3-20% for
PM10. It is seen that the SDS011 has the highest Cv value
for this experiment.

TABLE IV: R2 values for PM2.5 for outdoor experiment

Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.89 0.60 0.70
15 min 0.89 0.74 0.71

TABLE V: R2 values for PM10 for outdoor experiment

Averaging Sensor Name
Interval SDS011 Prana Air SPS30

1 min 0.73 0.61 0.70
15 min 0.87 0.68 0.65

TABLE VI: Cv values for PM2.5 and PM10 in % for outdoor
experiment

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 9.29 6.86 3.88
PM10 20.13 7.89 3.38

C. Calibrated values
This section contains results obtained after perform-

ing the calibration for the indoor experiment only. Data
points obtained from the outdoor experiment are in fewer
numbers, so they have been excluded from this section.
The R2 values for 1 hr averaged samples, after performing
calibration, were calculated as 0.92, 0.91, 0.86 for SDS011,
Prana Air, and SPS30, respectively. Table VII indicates
the Erms values for 1 hr averaged samples for all test
sensors. It was also observed to be reasonable for the
collected data.

Figs. 8-10 present the scatter plots of all units repre-
sented by different colors before and after performing the
calibration. These figures further explain the Erms values.
For the sensors having the least Erms values, Prana Air for
PM2.5 and SDS011 for PM10, the data points align very
well around the average value of the reference instrument.

TABLE VII: Erms values for 1 hr averaged readings

Particle Sensor Name
Dimension SDS011 Prana Air SPS30

PM2.5 3.40 1.80 2.63
PM10 2.42 8.3 8.8

VI. Conclusion
In this study, we found that the low-cost PM sensors

were able to follow the trend of the reference instrument
for most of the time with reasonably correlated values.
The sensors underestimated the PM values, which can
be corrected to some extent by performing calibration.
We were able to achieve low Erms values after doing the
calibration using a simple linear regression for the indoor
experiment. Also, different copies of the same sensor out-
put the PM values in a very close range, indicating a
low inter-unit variability for the sensors examined in this
paper. In general, it can be concluded that the new low-
cost PM sensors can be used for measuring the PM levels,
but calibration is required to get a better output.
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