
E-PODS: A Fast Heuristic for Data/Service Delivery in
Vehicular Edge Computing

by

Akshaj Gupta, Joseph John Cherukara, Deepak Gangadharan, BaekGyu Kim, Oleg Sokolsky,
Insup Lee

Report No: IIIT/TR/2021/-1

Centre for Others
International Institute of Information Technology

Hyderabad - 500 032, INDIA
April 2021

E-PODS: A Fast Heuristic for Data/Service Delivery in Vehicular Edge Computing

Akshaj Gupta∗, Joseph John Cherukara∗, Deepak Gangadharan∗, BaekGyu Kim†, Oleg Sokolsky‡ and Insup Lee‡
∗IIIT Hyderabad, †Toyota Motor North America, ‡University of Pennsylvania

Email: ∗{akshaj.gupta, joseph.cherukara}@research.iiit.ac.in, ∗deepak.g@iiit.ac.in, †baekgyu.kim@toyota.com,
‡{sokolsky, lee}@cis.upenn.edu

Abstract—With the rise in state-of-the-art communication
modes for vehicles such as vehicle to vehicle (V2V), vehicle
to infrastructure (V2I) and vehicle to cloud (V2C), modern
vehicles are increasingly being connected to cloud and fog/edge
nodes. These vehicle connectivity modes have enabled the
realization of Vehicular Edge Computing (VEC) paradigm,
whereby vehicles can leverage fog/edge node resources for
storage/computation. In a VEC system, vehicles receive very
important and large quantity of data from edge nodes, which
is termed as data delivery. In addition, edge nodes can execute
some services and send the results back to the vehicle, which
is called service delivery. Fast and efficient edge resource
allocation for data/service delivery is important in order to
serve as many vehicles as possible in the VEC system. However,
edge resource allocation is complex with large number of edges
and vehicles, while also considering vehicle flow parameters.
In this work, we propose Edge-Pairwise Optimal Data/Service
Delivery (E-PODS), which is a fast and efficient heuristic
for data/service delivery. Through experiments with synthetic
and real vehicular traces, we demonstrate that E-PODS is
considerably faster than the optimal approach, while making
resource allocations that are close to optimal in terms of total
edge bandwidth cost and number of serviced vehicles.

Keywords-V2I; Vehicular Edge Computing, Resource Allo-
cation, Road Side Units, Connected Vehicles, Bandwidth Cost

I. INTRODUCTION

In the past few years, the automotive industry has focused
its research and development on technologies that enable
the realization of connected and automated vehicles. This
effort has seen lots of innovation in the development of novel
networking technologies and applications that enhance driver
safety and experience, such as intelligent driving, driver be-
haviour analysis and predictive maintenance. Many of these
applications either receive large amounts of data [1] from
cloud or are computation intensive functions [2]. Therefore,
storage and computation resources are very critical to the
efficient execution of these applications. Although it is best
to execute these applications on the vehicle platform to
minimize latency, it may be computationally infeasible due
to the limited capacity of storage and compute resources
available as many concurrently running applications result
in resource contention.

One solution to the computation problem has been to
offload the execution of an application partially or entirely
to the cloud server (known as mobile cloud computing
(MCC) [3]) due to its massive computational capacity. The
results of the computation are then sent back to the vehicle.

However, this approach results in excessive turnaround time
due to communication latency. Additionally, with more ve-
hicles offloading their computation, there will be contention
for communication bandwidth. The above two problems
are addressed by the paradigm of Mobile Edge Comput-
ing (MEC) [4] and further by Vehicular Edge Computing
(VEC) [2] in the context of vehicles. In VEC, there are
edge nodes, which sit in between the cloud and the vehicles
and are physically located closer to the vehicles. Any data
(such as update data [5], [6]) that is sent from the cloud to
a group of vehicles can be sent via the edge nodes, which
will result in reduction of bandwidth usage as the same data
need not be sent multiple times to different vehicles. The
vehicles can then retrieve their data as they pass through
the coverage area of the edge. Similarly, computation can
be offloaded [2] from the vehicle to the edge instead of the
cloud, which considerably reduces the turnaround time.

In the context of edge computing-based data/service deliv-
ery to the vehicles, one important question that needs to be
answered is how to allocate resources on the edge nodes. In
our problem, the edge nodes are road side units (RSUs).
The storage, computational and bandwidth capacities of
the RSUs are constrained in comparison to the resource
capacities on the cloud. Therefore, it is essential to allocate
the edge resources such that maximum number of vehicles
are serviced at minimal cost. The main contributions of this
work are as follows:

1) Firstly, we derive the optimal allocation of data for a
vehicle to a pair of two edges.

2) Then, we use the above optimal allocation and de-
sign a fast and efficient heuristic called E-PODS for
data/service delivery to N vehicles over M edges.

3) We demonstrate the effectiveness of the proposed E-
PODS heuristic in comparison to the baseline optimal
approach and show that it has far less run time com-
plexity and is near optimal in terms of total bandwidth
cost and number of serviced vehicles.

II. RELATED WORK

The research that is closest to our work are the papers
on data delivery from infrastructure to vehicles [7] and
online resource allocation to deliver services like compu-
tation offloading [8] for mobile nodes. In [7], the authors
propose a trajectory-based forwarding scheme to deliver data
from infrastructure nodes to moving vehicles in vehicular

978-1-7281-8964-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 9
3r

d
V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
21

-S
pr

in
g)

 |
97

8-
1-

72
81

-8
96

4-
2/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
21

-S
pr

in
g5

12
67

.2
02

1.
94

48
64

9

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

adhoc networks. An online edge cloud resource allocation
algorithm is proposed in [8], which considers arbitrary user
movement and variation in resource prices. Due to arbitrary
user movement, the cloud does not a priori know the route
that the vehicle will take. In contrast, it is a very likely
scenario that a driver knows beforehand the route to the
destination. In such circumstances, the cloud can exploit the
route information to deploy data/service, which has been
used in [7]. However, both these techniques do not consider
any vehicle flow model, which characterizes the movement
of traffic near the edge or between edges.

Our prior work [9] proposed an optimization framework
considering vehicle flow model in order to allocate resources
on the edge for data/service delivery. However, the time
complexity of the optimization framework is very high. In
this work, we address the above problem by proposing a
near optimal fast heuristic to perform data/service delivery
to vehicles via edge nodes/RSUs.

III. PROBLEM FORMULATION

In this section, we describe the VEC system consisting
of the vehicle model, edge model and the delay model. The
cloud is connected to all the edges to deliver any data or
service requested by the vehicles. Each edge connected to
the cloud has a coverage area under which it can serve the
request of the vehicles passing through that edge. A request
to the cloud can be either for some data that needs to be
downloaded or some computation offloading to the edge by
the vehicle.

In our work, we consider that a request by a vehicle
is served only by the edges, i.e., we only consider V2I
communication mode. The data requested by a vehicle can
be divided into several chunks and delivered to the vehicle
through different edges. However, for service delivery only
one of the edges in the route serves the request of the vehicle.
We also consider that the cloud receives information about
the route from the vehicles. Therefore, the cloud can send
the required information for data and service delivery to the
appropriate edges through which the vehicle passes.

A. VEC Model

Let us consider that there are N vehicles and M edges in
our VEC model. Further, we will define our VEC model in
terms of vehicle model, edge model and delay model.

Vehicle Model: The vehicle model is defined by a tuple
α = 〈Vi, xi,j ,Mi, Si〉. Here, Vi denotes the ith vehicle. The
vector xi,j contains the route information of the vehicle.
If vehicle Vi passes through the edge Ej then xi,j is 1
otherwise the value of xi,j is 0. The total data size that
a vehicle requests for download is represented as Mi. Si is
another tuple which has the information about the service
request of a vehicle. Si is defined by 〈di, ri, pi〉, where
di is the data that needs to be transferred to the edge for
processing, ri is the data received by the vehicle from the

edge and pi is the number of processing units(in terms of
VMs) required by the vehicle.

Edge Model: The edge model is defined by the tu-
ple β = 〈Ej , Lj ,Mj , Pj , Bj ,M

occ
j , P occ

j 〉. Ej is the jth
numbered edge. Lj is the coverage area of the edge. Mj is
the memory capacity and Pj is the processing capacity(in
terms of VMs) of the edge. Bj is the network bandwidth
provided by the edge. Some of the resources of an edge
may be already occupied. Therefore, we denote Mocc

j as
the occupied memory and P occ

j as the occupied processing
capacity of the edge. These resources get utilized when a
vehicle requests for data or service delivery.

Delay Model: The delay model is denoted by γ =
〈t trvi,j , t commi,j〉. t trvi,j is the earliest time taken by
a vehicle Vi to reach the edge Ej after sending the request
for some data download. The time taken by the cloud to send
the data chunk to the edge Ej is denoted by t commi,j . In
case of service delivery the information that needs to be sent
by the cloud to the edges is a binary value and therefore the
time taken is negligible.

A vehicle data request can be served by multiple edges
where each edge stores a part of the total data requested
termed the data chunk. The data chunk that an edge Ej

delivers to a vehicle Vi is denoted by the decision variable
mi,j . For a service request, the decision variable is servi,j .
If an edge Ej processes a service request of a vehicle Vi,
then the value of servi,j will be 1, otherwise it will be 0.

A request for data download by a vehicle to the cloud
contains the vehicle id Vi, route xi,j and size of the data
Mi. In case of service delivery, the request to the cloud
contains vehicle id Vi, route xi,j and the service request Si.

Our goal is to find the values of mi,j and servi,j while
minimizing the total bandwidth cost of all the edges.

B. Optimization Framework

Now we present the optimization framework which was
introduced in a previous work [9]. Firstly, we present the
objective function followed by the constraints that need to
be satisfied for successful data and service delivery. The
optimization problem is given by

minimize
M∑
j=1

bwcost
j (1)

s.t.
mi,j = 0, i = 1..N, j = 1..M : xi,j = 0

mi,j ≥ 0, i = 1..N, j = 1..M : xi,j = 1

mi,j ≤Mi, i = 1..N, j = 1..M : xi,j = 1

(2)

M∑
j=1

mi,j × xi,j =Mi, i = 1..N (3)

M∑
j=1

servi,j × xi,j = 1, i = 1..N (4)

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

mi,j × t commi,j ≤ mi,j × t trvi,j ,
i = 1..N, j = 1..M

(5)

N∑
j=1

mi,j +Mocc
j ≤Mj , j = 1..M (6)

N∑
j=1

servi,j × (di + ri) +Mocc
j ≤Mj , j = 1..M (7)

N∑
j=1

servi,j × pi + P occ
j ≤ Pj , j = 1..M (8)

mi,j ≤ Dmin,data
i,j , i = 1..N, j = 1..M (9)

servi,j ∗ (di + ri) ≤ Dmin,serv
i,j , i = 1..N, j = 1..M (10)

where bwcost
j = δ × (1 + bwutil

j)2,

bwutil
j =

vi,j
Lj ×Bj

N∑
i=1

mi,j +
1

Bj

N∑
i=1

di + ri

(
Lj

vi,j
− tpi)

,

Dmin,data
i,j =

Bj

kjam
j ×vi,j

and Dmin,serv
i,j =

Bj×(
Lj
vi,j

−tpi)

kjam
j ×Lj

.

The objective function shown in Eq. (1) is the total band-
width cost function considering all the edges in the VEC
system. We use a non linear pricing model for bandwidth
cost based on a pricing model in [10] used to balance
bandwidth load across all edges. Here, Eq. (2) represents
range constraint in which upper limit for data chunk mi,j

is Mi and lower limit is 0. Eq. (3) and Eq. (4) represent
accumulation constraints. In Eq. (3), the sum of data chunks
received by a vehicle from all the edges should be equal to
the required data Mi. In Eq. (4), it is ensured that only
one edge can provide the service request of the vehicles, in
case of service delivery. The constraint in Eq. (5) ensures
that the data chunk reaches to the edge before the vehicle
reaches to the same edge. The constraints in Eq. (6), Eq. (7)
and Eq. (8) represent the edge resource constraints where
the total allocated resources (memory, processing units) at
an edge should be less than or equal to the total available
resources. In Eq. (9) and Eq. (10), bandwidth schedulability
constraints are ensured in which the data received by a
vehicle should not exceed the minimum number of bytes
that the vehicle can receive while in the coverage area of
the edge. These constraints were discussed in detail in the
previous work [9].

IV. E-PODS: HEURISTIC BASED DATA/SERVICE
DELIVERY

In this section, we present a novel fast and efficient
heuristic for data/service delivery called E-PODS. E-PODS
algorithm is based on obtaining edge-pairwise optimal solu-
tions for data/service delivery, i.e., deriving optimal solutions
for each vehicle considering pairs of edges at every iteration
until all the edges are considered. The time complexity
grows rapidly if we increase the number of edges beyond a
pair in every iteration, which coincides with the optimization
framework if M edges are considered.

In real-time scenarios, a large number of vehicles can
enter the VEC network and request for data/service de-
livery. In order to derive the optimal resource allocations
for data/service delivery, the optimization performed in the
cloud must be fast enough to handle several vehicle requests.
With increase in the number of vehicles, the time complex-
ity for optimization framework would grow exponentially.
Hence, we attempt to address this issue by proposing the
fast heuristic approach E-PODS.

Let us recall that the bandwidth cost for an edge Ej is

bwcost
j = δ × (1 +

aj
kj

)2 (11)

where δ is the bandwidth cost factor, aj is the total mem-
ory used at the edge Ej for all the vehicles (requiring
data/service delivery) passing through the edge. kj is a
constant for an edge whose value is vi,j

Lj×Bj
as vi,j , Lj and

Bj are all constants for a particular edge. The following
theorem provides us the optimal allocation of data for a
vehicle considering a pair of edges.

Theorem 1. Given a vehicle Vi with data requirement Mi

and a pair of edges with a1 and a2 as their total memory
used, the minimum total bandwidth cost considering the 2
edges E1 and E2 is obtained when the first edge is allocated
the value below

m1 =

1
k2

− 1
k1

+
Mi+a2

k2
2

− a1
k2
1

1

k2
1
+ 1

k2
2

, if m1 > 0

0, otherwise

Here k1 and k2 are the constants described above for the
edges E1 and E2 respectively.

Proof: Let us assume that m1 is the amount of memory
allocated on edge E1 and Mi - m1 amount of memory is
allocated on edge E2. Then the total bandwidth cost will be
given by

Cost = δ(1 +
m1 + a1
k1

)2 + δ(1 +
Mi −m1 + a2

k2
)2 (12)

The above equation is quadratic in nature for variable m1.
Therefore, it attains a minimum value when its derivative

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

w.r.t. m1 is zero. On equating its derivative with zero we
get

1

k1
+

1

k21
(m1 + a1) =

1

k2
+

1

k22
(Mi −m1 + a2) (13)

On solving Eq. (13) we get,

m1 =

1
k2
− 1

k1
+ Mi+a2

k2
2
− a1

k2
1

1
k2
1
+ 1

k2
2

(14)

If the above expression becomes negative then we take 0 as
the solution for m1 since memory cannot be negative.

Now we present the E-PODS algorithm using Theorem 1
which considerably reduces time complexity. In Algorithm
1, we calculate the mi,j values for all the vehicles passing
through the edges using the Theorem 1. In Algorithm 1,
we first find the number of edges that each vehicle goes
through denoted by Ci as shown in line 1. Then, we compute
the demand ratio of each vehicle as Mi/Ci, where Mi

is the data requirement of vehicle Vi. The demand ratio
signifies the magnitude of resource requirement of each
vehicle per edge. Then, we sort all the vehicles in increasing
order of their demand ratio as shown in line 2. We iterate
through this list and for each vehicle we prepare a list of
edges that the vehicle passes through as shown in lines
19 and 20. Then we sort the list of edges in descending
order of their available memory as presented in line 21
obtaining SortedList. We iterate through this SortedList
and calculate the value of m1 using the first two edges in
the list as shown in the function CalculateData from lines
7 to 18 using Theorem 1.

In the function CalculateData, we check for the edge
resource and bandwidth schedulability constraints for m1 as
shown in lines 14 to 16. Then we write this value m1 in the
allocation matrix MemMatrix and increase the value of
memory occupancy for edge e1 by m1 as shown in lines 26
and 27. If only two edges are left in the list then we assign
the memory value Mi−m1 to the last edge as shown in line
30 and increase the value of memory used for edge e2 by m2

as shown in line 31. Then we update the value of Mi with
Mi −m1 as m1 amount of data requirement is fulfilled by
edge e1 as shown in line 34. Finally, we remove this edge e1
from the SortedList and iterate again with the remaining
edges. This algorithm is used to calculate the mi,j values
for data delivery. In case of service delivery, since only one
of the edges serves the request of the vehicle, we find the
solution using brute force approach.

The time complexity for E-PODS is O(NM2 logM +
N logN). Initially, as we sort the list of all vehicles in
increasing order of their demand ratio we get the term
O(N logN) in the complexity. In the algorithm, as we
iterate over all the vehicles and for each vehicle we iterate
over the edges it passes through, the complexity becomes
O(NM). Further, as we sort the list of edges for each
vehicle, the complexity multiplies by O(M logM) and

Algorithm 1: Calculating mi,j values for all the
vehicles
Result: mi,j values for all the vehicles

1 Ci ← Number of edges through which the vehicle
Vi passes.

2 Vset ← Sorted list of vehicles in increasing order of
their demand ratio which is Mi

Ci

3 A← List of memory used for all the edges.
4 K ← List of kj =

vi,j

Lj×Bj
for each of the edge Ej

5 AvlMem← List of available memory for all the
edges

6 MemMatrix← Empty matrix of size N ×M for
mi,j values

7 Function CalculateData(List,M):
8 e1 ← List[0]
9 e2 ← List[1]

10 m1 ←
1

K[e2]
− 1

K[e1]
+

M+A[e2]

K[e2]2
− A[e1]

K[e1]2

1
K[e1]2

+ 1
K[e2]2

11 if m1 <0 then
12 m1 = 0
13 end
14 if m1 > Dmin,data

i,j || m1 > AvlMem[e1] then
15 m1 = min(Dmin,data

i,j , AvlMem[e1])

16 end
17 return m1, e1, e2
18 End Function
19 while vi in Vset do
20 EdgeList← List of edges through which vi

passes
21 SortedList← Sorted EdgeList in descending

order of available memory
22 Mi ← Data required by vehicle vi
23 len← length of SortedList
24 for j = 0; j ≤ len− 2; j ++ do
25 m1, e1, e2 ← CalculateData(SortedList,Mi)

26 MemMatrix[vi][e1]← m1

27 A[e1]+ = m1

28 AvlMem[e1] = AvlMem[e1]−m1

29 if j==len-2 then
30 MemMatrix[vi][e2]←Mi −m1

31 A[e2]+ =Mi −m1

32 AvlMem[e2] = AvlMem[e2]−(Mi−m1)
33 end
34 Mi ←Mi −m1

35 SortedList.remove(e1)
36 end
37 end

becomes O(NM2 logM). After summation we get the total
complexity as O(NM2 logM +N logN).

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, firstly we present the experimental setup.
The results obtained by E-PODS heuristic and a baseline
optimal approach are then presented and inferences are
drawn from them. First, we conducted our experiments on a
synthetic data set and then we used the vehicular traces from
a real data set of Luxembourg city [11] from SUMO. We
conducted our experiments in Matlab and the optimization
solvers for the baseline approach were SDPT3 and Gurobi.
The baseline case here will be the optimal allocation that
we get by using the above mentioned optimization tools.

A. Synthetic Data set

40 60 80 100 120 140 160 180

100

200

300

400

Number of Edges

N
um

be
r o

fV
eh

ic
le

s

BaseLine
E-PODS

(a)

40 60 80 100 120 140 160 180

20

40

60

80

Number of Edges

B
an

dw
id

th
C

os
t

Baseline
E-PODS

(b)

100 120 140 160

0

200

400

600

800

1,000

Number of Edges

Ti
m

e
Ta

ke
n

(i
n

se
c)

Baseline
E-PODS

(c)

Figure 1: Synthetic data set results. (a) maximum number
of vehicles served successfully for a given number of edges,
(b) total bandwidth cost for a given number of edges, and
(c) run-time complexity

In this subsection, we discuss the experiment and results
for the synthetic data set. We modeled our edge network in
square grids of different sizes. Below is the list of values
that we generated synthetically, for the parameters.

• We used different values for the number of edges, M
ranging from 36 (6×6) up to 169 (13×13).

• The routes of 450 vehicles were generated randomly
such that the vehicles pass through different edges.

• The vehicle density at jam (kjamj) was taken as 35.
• Memory requirement (Mi) of each vehicle was gener-

ated randomly between 60 Mbits to 80 Mbits.
• Coverage distance (Lj) of the edges was randomly

generated using uniform distribution between 0.6 miles
to 1.6 miles.

• Memory capacity (Mj) of the edges was randomly
generated between 400 Mbits to 500 Mbits using uni-
form distribution and the occupied memory (Mocc

j) was
randomly generated between 0 Mbits to 150 Mbits.

• The computation capacity of the edges (Pj in number
of VMs) was randomly generated between 24 and 40
using uniform distribution and occupied computation
capacity was randomly generated between 1 and 3.

• The vehicle’s processing requirement (pi) was ran-
domly generated between 1 and 10 and the processing
time (tpi) was randomly generated between 1 - 10 sec.

• The data that the vehicle sends (di) to the edge and the
data that it receives (ri) from the edge were randomly
generated between 1 Mbits to 15 Mbits.

• The bandwidth of the edges (Bj) was randomly gener-
ated between 8 Mbps to 15 Mbps.

• Free flowing velocity (vfj) of the vehicles was randomly
generated between 50mph to 70mph as taken from [12].

In synthetic dataset 100% of the vehicles request for data
download. The results obtained from the experiments and
our inferences from them are described below.

Maximum number of vehicles served with varying
number of edges: For a given number of edges in a
network, there is a maximum limit to the number of vehicles
that can be serviced under the constraints. The higher the
value, the better is the resource allocation. We compare
this maximum limit while using our E-PODS heuristic and
the given baseline approach. From the plot in Fig. 1(a)
we can see that even though the baseline accommodates
more vehicles, E-PODS serves almost similar number of
vehicles. In the worst case, E-PODS serves only 9.6% less
vehicles than the baseline approach (24 vehicles less) for 81
edges. We can also observe that the difference in number of
vehicles serviced successfully is larger for higher number of
edges. This is because the total number of vehicles has also
increased thereby making it more difficult to accommodate
them.

Variation of bandwidth cost with varying number of
edges: In this section, we present the total bandwidth cost
that is incurred for data delivery with varying number of
edges while using E-PODS and the baseline approaches.
Currently, we do not use a monetary value to compute
bandwidth cost. We observe an increase in the bandwidth
cost with increasing number of edges for both methods.
It can seen from the plot in Fig. 1(b) that the E-PODS
method has a slightly greater bandwidth cost compared to
the baseline, with the worst case being a difference of 1.51
units for 169 edges, which is only 1.8% higher.

Time taken/Complexity of the method: In this section
we present a comparison of the time complexity to obtain
edge resource allocation using the baseline approach and our
proposed E-PODS heuristic. We can observe from the plot in
Fig. 1(c) that there is a significant reduction in the time taken
by E-PODS when compared to the baseline approach. The
time taken is in the order of milliseconds for E-PODS while
it is in the order of several 100 seconds for the baseline.
On an average, the baseline approach takes 580.29 secs
more than the E-PODS heuristic to obtain edge resource
allocations. Both methods show an increase in the time taken
with increase in number of edges even though the increase
is very small and in milliseconds for our proposed E-PODS
heuristic.

B. Real Data set

In this part, we present our experiments and results for
the baseline approach and our proposed E-PODS heuristic
using a real case scenario. For this scenario, we used the
data set of traffic traces from Luxembourg city [11] that

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

80 90 100 110 120

240

260

280

300

320

340

360

Number of Edges

N
um

be
r o

fV
eh

ic
le

s

Baseline
E-PODS

(a)

80 90 100 110 120

40

45

50

55

Number of Edges
B

an
dw

id
th

C
os

t

Baseline
E-PODS

(b)

80 90 100 110 120

0

200

400

600

800

1,000

Number of Edges

Ti
m

e
Ta

ke
n

(i
n

se
c)

Baseline
E-PODS

(c)

Figure 2: Real Dataset Results. (a) Maximum number of
vehicles serviced successfully for a given number of edges,
(b) Total bandwidth cost for a given number of edges and
(c) Run-Time Complexity

was simulated using SUMO. From this data set, we obtained
the route of the vehicles, the distances that these vehicles
are covering and the number of vehicles. The number of
edges were varied from 80 to 120 in steps of 20. The other
parameters such as the coverage distances (Lj), memory
capacity (Mj), processing capacity (Pj), bandwidth (Bj)
etc., were generated similarly as discussed in the synthetic
data set due to unavailability of these parameters in the real
data set. Here, 80% of the vehicles request for data download
while 20% of the vehicles request for service delivery. This
ratio remains same for all the number of edges and vehicles.
We now present the results for the real case scenario below.

Maximum number of vehicles served with varying
number of edges: In this result, we show the variation
of successfully served number of vehicles with increasing
number of edges. From the plot in Fig. 2(a) we can see
that, the baseline serves more vehicles than E-PODS. In the
worst case, E-PODS serves only 3.6% less vehicles (i.e., 9
vehicles less) than the baseline approach for the case of 80
edges.

Variation of bandwidth cost with varying number
of edges: It can be seen from the plot in Fig. 2(b) that
our proposed E-PODS heuristic incurs a slightly greater
bandwidth cost compared to the baseline approach. In the
worst case the bandwidth cost using E-PODS heuristic is
0.707 units higher for 120 edges, which is only 1.25%
higher than the bandwidth cost using baseline approach. The
bandwidth cost increases with the increase in the number of
edges for both approaches.

Time taken/Complexity of the method : We can
observe from the above plot in Fig. 2(c) that there is a
significant reduction in the time taken to run E-PODS when
compared to the baseline approach. The time taken is in the
order of milliseconds for E-PODS while it is in the order of
seconds for the baseline approach. The average reduction in
the time taken is 692.053 sec using the E-PODS heuristic
compared to the baseline approach. Both methods show an
increase in the time taken with an increase in the number of
edges, even though the increase is minimal with E-PODS.

VI. CONCLUSION

In this work, we proposed a fast and efficient heuristic for
data/service delivery called E-PODS. The proposed E-PODS

heuristic consists of an algorithm to allocate edge resources
to the vehicles in a network with lesser time complexity
than previously proposed optimization framework. Finally,
we conducted experiments with both synthetic and real data
set and demonstrated that E-PODS had considerably lesser
time complexity, while the number of vehicles serviced and
bandwidth cost were comparable to the optimal approach.

REFERENCES

[1] Y.-C. Liu and B. Kim, “An optimization framework to select
edge servers for automotive connected services,” in IEEE
Vehicular Networking Conference (VNC), 2019, pp. 1–2.

[2] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Ve-
hicular edge computing and networking: A survey,” Mobile
Networks and Applications, pp. 1–24, 2020.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey
of mobile cloud computing: architecture, applications, and
approaches,” Wireless communications and mobile computing,
vol. 13, no. 18, pp. 1587–1611, 2013.

[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile
edge computing: A survey,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 450–465, 2017.

[5] T. Carlfalk, “How does edge computing benefit
connected cars?” https://www.wirelesscar.com/
how-does-edge-computing-benefit-connected-cars/, 2019.

[6] S. Shurpali, “Role of edge computing in connected
and autonomous vehicles,” https://www.einfochips.com/blog/
role-of-edge-computing-in-connected-and-autonomous-vehicles/,
2020.

[7] J. Jeong, S. Guo, Y. Gu, T. He, and D. H. Du, “Trajectory-
based statistical forwarding for multihop infrastructure-to-
vehicle data delivery,” IEEE Transactions on Mobile Com-
puting, vol. 11, no. 10, pp. 1523–1537, 2012.

[8] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online re-
source allocation for arbitrary user mobility in distributed
edge clouds,” in 37th IEEE International Conference on
Distributed Computing Systems, 2017, pp. 1281–1290.

[9] D. Gangadharan, O. Sokolsky, I. Lee, B. Kim, C.-W. Lin,
and S. Shiraishi, “Bandwidth optimal data/service delivery
for connected vehicles via edges,” in 11th IEEE International
Conference on Cloud Computing (CLOUD), 2018, pp. 106–
113.

[10] A. Ghavami, Z. Li, and H. Shen, “On-demand bandwidth
pricing for congestion control in core switches in cloud
networks,” in 9th IEEE International Conference on Cloud
Computing (CLOUD), 2016, pp. 867–870.

[11] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic
(lust) scenario: 24 hours of mobility for vehicular networking
research,” in IEEE Vehicular Networking Conference (VNC),
2015, pp. 1–8.

[12] W. L. Tan, W. C. Lau, O. Yue, and T. H. Hui, “Analytical
models and performance evaluation of drive-thru internet sys-
tems,” IEEE Journal on Selected Areas in Communications,
vol. 29, no. 1, pp. 207–222, 2011.

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on June 19,2021 at 12:12:24 UTC from IEEE Xplore. Restrictions apply.

