
Model Predictive Control for Target Tracking in 3D with a

DownwardFacing Camera Equipped Fixed Wing Aerial Vehicle

by

Pravin Mali, Arun Kumar Singh, Madhava Krishna, Sujit P.B.

Report No: IIIT/TR/2020/-1

Centre for Robotics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
August 2020



Model Predictive Control for Target Tracking in 3D with a Downward
Facing Camera Equipped Fixed Wing Aerial Vehicle

Pravin Mali1, Arun Kumar Singh2, Madhav Krishna1 and P.B. Sujit3

Abstract— In this paper, we consider the problem of tracking
a ground vehicle with a fixed-wing aerial vehicle (FWV)
equipped with a downward-facing camera. The complexity of
the problem stems from the highly nonlinear kinematics of the
FWV and the stall speed constraint. We propose a Model Pre-
dictive Control (MPC) approach for this problem that has two
main contributions. Firstly, we model the tracking requirement
through a novel constraint function that relates FWV’s position
and orientation to the field of view of the camera. Secondly, we
make a case for reformulating the underlying optimization of
the MPC as an unconstrained problem and solving it through
the state of the art gradient descent variants like ADAM and
RMSProp. Specifically, we show the real-time performance of
this optimizer while achieving good tracking performance under
various kinematic constraints. We validate our MPC through
extensive simulations, specifically highlighting the 3D spiral-like
trajectories obtained for the FWV when tracking a slow-moving
ground vehicle. We also present a quantitative analysis of the
efficacy of the different gradient descent variants.

I. INTRODUCTION

A. Problem Description

This paper deals with the problem of persistent tracking,
wherein a fixed-wing unmanned aerial vehicle (FWV) needs
to always maintain a moving target vehicle within its field of
view (FOV) as shown in Fig. 1. Persistent tracking is often
accomplished with a fixed-wing aerial vehicle because of
its ability to leverage the wind profile to perform long-range
flights with limited on-board power. However, the benefits of
a FWV in this application comes at the expense of increased
complexity in motion planning and control. For example,
due to stall speed constraint a FWV cannot reduce its speed
beyond a certain limit in order to sustain flight. This, in turn,
means that when tracking a slow-moving target vehicle, it
has to perform complex maneuvers (spiral-like) to maintain
tracking.

A large volume of existing works [1], [2], [3], [4], [5],
[6], [7] formulate persistent target tracking as a problem of
ensuring some relative distance and line-of-sight between
the FWV and the target vehicle. The underlying implicit
assumption here is that for the achieved relative position
and orientation, the FOV is either large enough to track the
vehicle or can be adapted appropriately by changing the pan-
tilt of the camera. This assumption simplifies the problem
by making the FOV at any given instant independent of
the orientation of the FWV. In sharp contrast, the problem
that we consider is more constrained and challenging. We

1. Robotics Research Center, IIIT-Hyderabad, India. 2. Institute of
Technology, University of Tartu. 3. IISER Bhopal, Bhopal, India. Emails:
pravin.mali@research.iiit.ac.in, arun.singh@ut.ee, mkrishn@iiit.ac.in, su-
jit@iiserb.ac.in

Fig. 1. A FWV tracking a ground vehicle. The FOV of the FWV camera is
modeled as a prism and thus its projection on the ground is a quadrilateral.

consider a downward-facing camera with limited FOV and
which is connected rigidly to the FWV. As a result, for
the given relative distance between the FWV and the target
vehicle, the FOV can be severely affected by the orientation
of the former. Furthermore, the evolution of relative position
and FWV orientation is itself coupled in a highly non-linear
manner through the so-called non-holonomic kinematics. Our
problem formulation is similar in spirit to [8], designed for
keeping static objects within the FOV of a multi-rotor drone.
This class of vehicles has simpler kinematics in addition to
the ability to hover in-place, leading to a substantially simpler
problem than that considered in this paper.
Contribution: Our solution approach is based on Model
Predictive Control (MPC) which entails solving an optimiza-
tion problem in a receding horizon manner. In this context,
we have two main contributions. Firstly, we formulate the
persistent tracking as a simple constraint that relates FWV’s
orientation, its relative distance with the target vehicle with
the camera FOV. Secondly, we reformulate our constrained
optimization as a non-smooth unconstrained problem and
solve it through state-of-the-art gradient descent variants like
ADAM [9] and RMSProp [10]. Although these optimizers
are quite popular in deep learning, their use in MPC has
been very limited. We are only aware of [11] that apply the
optimizer to off-line motion planning. In contrast, we believe
the low per-iteration complexity of these optimizers makes
them well suited to an MPC setup, wherein due to real-time
constraints, one can only afford to perform few iterations of
the underlying optimization. These optimizers also do not
require any computation of matrix factorization or inverse
making them suitable for the implementation of embedded
hardware [12]. Furthermore, matrix multiplication can be



easily accelerated on GPUs making our MPC approach well
suited for hardware like Jetson Nano1 that have a low-end
CPU but reasonably good GPUs. We validate our formulation
on several simulation experiments, specifically highlighting
the 3D spiral-like trajectories of FWV. We also present a
quantitative comparison of the performance of ADAM and
RMSProp in terms of constraint satisfaction and tracking
efficiency.

B. Related Work

The target tracking problem has been of interest for over
two decades in the robotics literature. One technique to track
targets is to develop guidance laws [1], [2], [3], [4], [5], [6],
[7]. The guidance laws take the target model and track it
while ensuring the target is within a radius of r units which
mimics a FOV constraint. however, actual FOV constraints
due to the FWV motion is not considered.

There have been several efforts in developing vehicle
controllers for a single UAV tracking targets in urban en-
vironments [13], [14], [15], [16], [17], [18], [19]. Zhao et
al. [18] developed a vision algorithm based on YOLO to
detect a target in an urban environment. A simple propor-
tional controller is used to track the target. Wantabi and
Fabiani [15] developed an optimal guidance framework for
tracking a target in an urban environment. However, optimal
guidance requires a target model and is also computationally
intensive. Semsch et al. [16] converted the surveillance
problem to obtain information at certain locations in an urban
environment into an art gallery problem taking visibility
constraints into account and then use a TSP-based approach
to find the path for the UAV. However, in this case, the
target tracking aspects are not considered. Ramirez et al.
[13] developed an information theoretic planner that has an
estimate of the target and this estimate is updated based on
ground sensors and UAV camera sensor. Kim and Crassidis
[14] assign circular paths to maximize the visibility of the
targets and the decision to changes these circular paths is
carried out online. Wu et al. [17] developed an improved
whale optimization framework to determine paths for the
UAV to maximize the energy obtained by the solar panels.
However, they do not consider the target tracking aspect.
Theodorakopoulos and Lacroix [19] developed an iterative
optimizing method to track the target. A set of trajectories
are predicted and evaluated. Based on the cost of these
trajectories taking the visibility constraint and the obstacle
avoidance into account, a path is determined and given to the
UAV for tracking. However, the paths obtained are generated
through a heuristic.

1https://developer.nvidia.com/embedded/
jetson-nano-developer-kit

II. FORMULATING TARGET TRACKING

A. FWV Kinematics

The discrete-time 3D kinematics of a FWV is given by the
following equations.

xt+1 = x0 +

t=n−1∑
t=0

f(ut), (1)

where the states xt = (xt, yt, zt, ψt) consists of the 3D
position and the heading angle of FWV. The control inputs
ut = (vt, γt, ψt) are taken as the airspeed, the flight path
angle and the bank-angle. Due to the specific nature of the
kinematics, the airspeed vt ≥ vmin should always be ensured
for the FWV to sustain flight. The motion model f is defined
as the following, where g refers to the acceleration due to
gravity.

f(ut) =


vt cos(ψt) cos γt∆t
vt sin(ψt) cos γt∆t
−vt sin γt∆t
g
vt

tanφt∆t

 (2)

B. MPC

We assume that the target vehicle is moving in the x−y plane
and we have an algorithm in place for predicting its trajectory
over a time horizon. With this context and considering a
planning horizon of t ∈ [0 n], the optimization underlying
our MPC can be represented through the following equations.

min
ut

c(xn, yn) +
∑
t

‖ut‖22 (3)

gbounds(ut) ≤ 0,∀t (4)
gfov(ut) ≤ 0,∀t (5)

(6)

c(xn, yn) = (xn − xtargetn )2 + (yn − ytargetn )2 (7)

Where, (xtargetn , ytargetn ) is the position of the target vehicle
in the x − y plane. The cost function (3) has two parts.
The first term aims to minimize the distance between the
FWV and the tracked vehicle at the end of the planning
horizon. This, in turn, encourages the FWV to bring the
tracked vehicle to the center of its FOV. The second term
in the cost function ensures the regularization of the control
input. The constraints (4) represent the kinematic bounds
on the velocity, flight path angle, the bank angle, and
their derivatives. The inequalities (5) represent the FOV
constraints to ensure that the tracked vehicle can be seen by
the downward-facing camera of the FWV at all time instants.

Constrained Optimization (3)-(5) is highly non-linear
and non-convex. Nevertheless, techniques like sequential
quadratic programming implemented in software like Scipy-
SLSQP [20] can be used to obtain a locally optimal solution.
But as mentioned earlier, we want to adopt a technique that
consists of just simple steps like matrix multiplication and
thus suitable for embedded hardware like Jetson Nano that
has good GPUs for accelerating matrix multiplication. As

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit


a first step towards this goal, we rephrase the optimization
(3)-(5) as an unconstrained problem by reformulating the
constraints through the Rectified Linear Unit Penalty (ReLU)
max(0, f).

minL(ut), (8)

where,

L(ut) = c(xn, yn) +
∑
t

∑
i

wλi λi +
∑
i

∑
t

wµi µi (9)

λi = max(0, gibounds), µi = max(0, gifov) (10)

The subscript i refers to the ith component of the respec-
tive constraints. The weights wλi , w

µ
i allows us to trade-off

constraint violation and the primary cost.

C. Kinematic Bounds

The constraint function gbounds consists of bounds on control
variables and their derivatives. Its various components are
described below

g1
bounds = vt ≤ vmax, −vt ≤ vmin (11)

g2
bounds = φt ≤ φmax, −φt ≤ φmin (12)

g3
bounds = γt ≤ γmax, −γt ≤ γmin (13)

g4
bounds = v̇t ≤ v̇max, −v̇t ≤ v̇min (14)

g5
bounds = φ̇t ≤ φ̇max, −φ̇t ≤ φ̇min (15)

g6
bounds = γ̇t ≤ γ̇max, −γ̇t ≤ γ̇min (16)

g7
bounds = ψ̇t ≤ ψ̇max, −ψ̇t ≤ ψ̇min (17)

The penalties formed with gibounds are given below

λ1 = max(0, vmin − vt) +max(0, vt − vmax) (18)
λ2 = max(0, φmin − φt) +max(0, φt − φmax) (19)
λ3 = max(0, γmin − γt) +max(0, γt − γmax) (20)
λ4 = max(0, v̇min − v̇t) +max(0, v̇t − v̇max) (21)

λ5 = max(0, φ̇min − φ̇t) +max(0, φ̇t − φ̇max) (22)
λ6 = max(0, γ̇min − γ̇t) +max(0, γ̇t − γ̇max) (23)

λ7 = max(0, ψ̇min − ψ̇t) +max(0, ψ̇t − ψ̇max) (24)

We use finite difference ut+1−ut

∆t to model the derivatives on
the control variables.

D. FOV Constraints

Fig. 1 shows the FOV of a downward-facing camera rigidly
attached to the body of FWV. The projection of FOV on the
x− y plane can be modeled as the quadrilateral PQRS. We
derive the FOV constraints by projecting the FOV prism to
x− z and y− z plane. The projection on the x− z plane is
shown in Fig.2
Let (xtargett , ytargett ) be the position of the target vehicle on
the x− y plane and the difference between the x-coordinate
of target vehicle and FWA ~dx = xt − xtargett .

Fig. 2. FOV diagram in x-z plane

For the target be in FOV, we must have
−−→
AD < ~dx <

−−→
CD (25)

From Fig.2, we have
−−→
CD = zt tan(θx + γt) (26)
−−→
AD = zt tan(−(θx − γt)) (27)

Therefore, the first half of the FOV constraint can be written
as

g1
fov : zt tan(−(θx − γt)) < ~dx < zt tan(θx + γt) (28)

Similarly, by projecting the FOV prism along the y − z
plane, we can derive the following the other half of the FOV
constraint.

g2
fov : zt tan(−(θy − φt)) < ~dy < zt tan(θy + φt) (29)

2θx and 2θy are the camera’s angle of view along x and
y axis respectively. The difference between the y-coordinate
of target and FWA be ~dy ,i.e., dy = yt − ytargett .

We formulate the following penalties around the FOV
constraints.

µ1 = max(0,−zt tan(γt + θx) + ~dx)

+max(0,−zt tan(−γt + θx)− ~dx)
(30)

µ2 = max(0,−zt tan(φt + θy) + ~dy)

+max(0,−zt tan(−φt + θy)− ~dy)
(31)

E. Soft Constraint on Height

From inequality (28), it is clear that the feasible region of the
FOV constraints depends on the height of the FWV above the
ground. This relationship is also naturally intuitive because
as the FWV gains height, the footprint of its FOV increases.
However, this might come at a poor resolution of the images
of the ground vehicle. Thus, we introduce a constraint
zmin ≤ zt ≤ zmax and the following corresponding penalty



to regulate the height of the FWV. We add (32) to the cost
function (9).

µh = wh(max(0, zmin−zt)+max(0, zt−zmax)),∀t. (32)

III. DEEP LEARNING INSPIRED GRADIENT DESCENT

Optimization (8) represents a non-smooth problem but it has
the same form as the common loss functions encountered
while training deep neural networks. Thus, state of the art
gradient descent variants like ADAM [9] and RmsProp [10]
are suitable for solving (8). These variants aim to approxi-
mate the curvature of the loss function without computing
the Hessian. We briefly summarize the steps in each of these
optimizers below.

A. ADAM

Representing, k as the iteration index, the steps of the ADAM
optimizer are given by the following equations [9].

mk = β1mk−1 + (1− β1)∇L (33)

vk = β2vk−1 + (1− β2)∇L2 (34)

m̃k =
mk

1− βk1
(35)

ṽk =
vk

1− βk2
(36)

ut+1 = ut − η
m̃k√
ṽk + ε

(37)

Steps (33)-(34) are the estimates of the mean and variance
of the gradient ∇L upto iteration k− 1. The steps (35)-(36)
corrects the bias in the mean and variance respectively. The
step (37) updates the solution at each iteration. The constant
ε is added to prevent division by zero.

B. RMSProp

The steps of the RMSProp are given by the following [10],
[21].

E[∇L2]k = 0.9E[∇L2]k−1 + 0.1E[∇L2]k (38)

ut+1 = ut − η
∇L√

E[∇L2
k] + ε

(39)

As shown, RMSProp keeps a moving average of the square
of the gradient (38) and uses it to update the solution in step
(39).

C. Real Time Computation and Warm-Start

Under real-time constraints, it is not possible to solve (8) till
convergence. It is common in MPC to run the optimizer for
only a fixed number of iterations and execute the obtained
control commands. This heuristic is popularly known as the
real-time iteration [22]. Another useful heuristic is to warm-
start the optimizer at the current iteration with the solutions
obtained at the previous iteration. In our context, our warm-
start strategy involves storing not only the past solutions but
also the vectors m, v used in ADAM and squared gradients
E[∇L2] used in RMSProp.

IV. SIMULATION RESULTS

The objective of this section is two-fold. Firstly, to qualita-
tively analyze the nature of the FWV trajectories for different
maneuvers of the ground vehicle. Secondly, to analyze the
performance of different gradient descent variants in terms
of constraint satisfaction.
Set-up: The following limits on the parameters of the FWA
are used in the simulation zt ∈ [10, 100] m, vt ∈ [4, 20] ms-1,
v̇t ∈ [0, 10] ms-2, γt ∈ [-π/6, π/6] rad, φt ∈ [-π/5, π/5] rad, γ̇t
∈ [0, 0.1π] rads-1, φ̇t ∈ [0, 0.1π] rads-1, ψ̇ ∈ [0, 0.5] rads-1,
θx = 0.26π rad, θy = 0.23π rad. The weights associated with
the constraint penalties are given below. The same numerical
values were used in all the simulation benchmarks and were
obtained through trial and error.

wλi =
[
1 2 1 0.5 0.5 0.5 0.5

]
wµi =

[
5 5

]
, wh = 100

The prediction and control horizon of our MPC was 5 and
at each step, only the first control input was executed on
the FWV. ADAM and RMSprop optimization techniques
were used to solve the optimization problem. The code was
implemented in Python3 with gradient computation being
performed through Autograd [23] library. Autograd uses the
automatic differentiation technique for gradients and thus can
handle non-smooth functions as well. The simulation was
performed on a laptop with Intel(R) Core(TM) i7-4770 CPU
@ 3.40GHz and 16GB RAM. We could perform 25 iterations
of ADAM and RMSprop to ensure an average re-planning
frequency of 10Hz. We consider two sets of benchmarks
depending on whether the target vehicle moves with constant
or variable velocity.

A. Constant Velocity Benchmark

Fig.3(a), 3(b) shows the first example in this benchmark
where the target vehicle is moving in a straight line with
a velocity equal to the maximum velocity of the FWV
(20ms−1). For such a set-up, one can intuitively imagine
that the FWV would be able to track the target vehicle by
just increasing its forward speed. The RMSprop optimizer
(Fig.3(b)) successfully produces this behavior. The trajec-
tory obtained with ADAM optimizer (Fig.3(a)) is slightly
different wherein the change of height is favored in place of
acceleration to maximum speed. This can be also reassured
by noting that the x− y position of the FWV is behind the
target vehicle at the end of the simulation.

Fig.4(a), 4(b) presents the second example in this bench-
mark where the target vehicle is moving with a velocity lower
than the minimum velocity of the FWV. It is clear that the
FWV cannot possibly track the target vehicle while moving
in a straight line. Thus, we see the FWV execute 3D spiral
trajectories around the target vehicle. This behavior agrees
with that obtained in the existing state of the art results [13],
[14], [15], [16], [17], [18], [19]. However, most of these
cited works consider the planar motion while Fig.4(a), 4(b)
exposes the full 3D behavior of the FWV.



x

0 200400600800100012001400

y

0
200
400
600800

100012001400

z

0
20
40
60
80
100
120
140

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(a)

x

0 200400600800100012001400

y

0
200
400
600800

100012001400

z

0
10
20
30

40

50

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Value of the violated constraint

0

20

40

60

80

100

Nu
m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed

λ1
λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(c)

0.00 0.05 0.10 0.15 0.20 0.25
Value of the violated constraint

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Nu

m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed

λ1
λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(d)

Fig. 3. Fig. 3(a) and 3(b) shows the trajectory generated by ADAM and RMSprop optimizer respectively. Fig. 3(c) and 3(d) shows the constraint violation
obtained with ADAM and RMSprop optimizer respectively. The x-axis represents the constraint residuals while the y-axis represents the frequency with
which residuals in a particular interval is encountered.

Constraint Violation: Fig.3(c), 3(d), 4(c), 4(d) shows the
constraint violation obtained with ADAM and RMSProp
optimizer in both the constant velocity examples. The x-
axis of these figures represents the numerical value of the
constraint residuals while the y-axis represents the number
of times a particular residual is encountered during our MPC
simulation. As can be seen, constraint residuals remain in
the range of [0, 1] for both ADAM and RMSprop optimizer,
with the performance of the latter being slightly better. The
residual for µh (see (32)) is significantly higher than the
other penalties. This is because, as mentioned earlier, the
restrictions on height were modeled as a soft constraint and
this reflected in our tuning of the weights wλi , w

µ
i , and wh.

Note, it is difficult to correlate the numerical values of these
weights with constraint residuals. For example, wλ1 = 1.0

may lead to lower residual λ1 than that obtained for µh with
wh = 100.

B. Variable Velocity Benchmark
In this benchmark, we consider more aggressive maneuvers
of the ground vehicle to test the limit of our MPC formu-
lation. In particular, the target vehicle moves with variable
velocity and moreover, the changes in its velocity are abrupt.

Fig.5(a), 5(b) shows the example where the target vehicle
is employing abrupt de-acceleration at every 100th step of
the simulation until it comes to a halt to a complete halt.
As can be seen, the RMSProp optimizer leads to a behavior
where the FWV moves in almost a straight line at the start.
This corresponds to the portion when the target vehicle
velocity is greater than the minimum velocity of the FWV.
At the end, the FWV has no option but to settle down to a



x

0 20 40 60 80 100
y

0
20

40
60
80
100

z

0
20
40
60
80
100

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(a)

x

0 20 40 60 80 100

y
0
20

40
60

80
100

z

0
20
40
60
80
100
120

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Value of the violated constraint

0

2

4

6

8

10

Nu
m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed

λ1
λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Value of the violated constraint

0

5

10

15

20

25

30

35
Nu

m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed

λ1
λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(d)

Fig. 4. Fig. 4(a) and 4(b) shows the trajectory generated by ADAM and RMSprop optimizer respectively. Fig. 4(c) and 4(d) shows the constraint violation
obtained with ADAM and RMSprop optimizer respectively. The axis notation is similar to Fig.3(c) and 3(d)

spiral trajectory encircling the target vehicle. The trajectory
obtained with ADAM optimizer is different at the start but
the end portion is similar to that obtained with RMSProp.

Fig.6(a), 6(b) shows the example where the target vehicle
starts accelerating from rest till it reaches the maximum
velocity of 21ms−1 which is also the maximum velocity
of the FWV. Since at the start, the target vehicle velocity is
smaller than the minimum velocity of the FWV, both ADAM
and RMSProp lead to 3D spiral trajectories around the target.
As the target vehicle velocity increases, the FWV trajectories
also becomes simpler.
Constraint Violation: Fig.5(c), 5(d), 6(c), 6(d) summarizes
the constraint violation observed in this benchmark. As in
constant velocity benchmark, the performance of RMSProp
is again better than ADAM. In fact, from Fig.5(c), it can
be seen that in the first example, µ2 has a high residual

at many instants during the simulation, indicating that the
target vehicle goes out of the FOV on multiple occasions.
For the second example, the difference between ADAM and
RMSProp in terms of constraint violation is minimal.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel MPC formulation
for tracking a ground vehicle with a FWV moving in 3D
space. A unique aspect of our formulation was to consider
a downward-facing camera rigidly connected to the body of
the FWV. We formulated a simple yet effective constraint
that relates FWV’s orientation and its relative position with
respect to the target vehicle to the FOV of the camera.
In contrast to many existing MPC formulations that use
sequential quadratic programming, we made the case of
applying gradient descent variants like ADAM and RMSProp



x

0 100 200 300 400

y

0
100

200
300

400

z

0
20
40
60
80
100
120
140
160
180

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(a)

x

0 100 200 300 400

y

0
100

200
300

400

z

0

20

40

60

80

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Value of the violated constraint

0

5

10

15

20

25

Nu
m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed

λ1
λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(c)

0.0 0.2 0.4 0.6 0.8
Value of the violated constraint

0

2

4

6

8

10

12

14

16
Nu

m
be

r o
f t
im

es
 co

ns
tra

in
t v

iol
at
ed λ1

λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(d)

Fig. 5. Fig. 5(a) and 5(b) shows the trajectory generated by ADAM and RMSprop optimizer respectively. Fig. 5(c) and 5(d) shows the constraint violation
obtained with ADAM and RMSprop optimizer respectively. The axis notation is similar to Fig.3(c) and 3(d)

to solve the underlying optimization of our MPC. In par-
ticular, we showed real-time performance with satisfactory
kinematic constraint satisfaction and high-quality tracking.
The computationally cheap steps of ADM and RMSProp
make our formulation well suited for on-board computation.

In the future, we will incorporate point mass dynamics into
our formulation. We are also extending the current work to
track multiple vehicles and account for possible occlusions
and obstacle avoidance. Experimental validation on a small
FWV is also a key part of our future endeavors.

REFERENCES

[1] R. Wise and R. Rysdyk, “Uav coordination for autonomous target
tracking,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2006, p. 6453.

[2] H. Choi and Y. Kim, “Uav guidance using a monocular-vision sensor
for aerial target tracking,” Control Engineering Practice, vol. 22, pp.
10–19, 2014.

[3] H. Oh, S. Kim, H.-S. Shin, B. A. White, A. Tsourdos, and C. A.
Rabbath, “Rendezvous and standoff target tracking guidance using
differential geometry,” Journal of Intelligent & Robotic Systems,
vol. 69, no. 1-4, pp. 389–405, 2013.

[4] N. Regina and M. Zanzi, “Uav guidance law for ground-based target
trajectory tracking and loitering,” in 2011 Aerospace Conference.
IEEE, 2011, pp. 1–9.

[5] H. Chen, K. Chang, and C. S. Agate, “Tracking with uav using tangent-
plus-lyapunov vector field guidance,” in 2009 12th International
Conference on Information Fusion. IEEE, 2009, pp. 363–372.

[6] P. Theodorakopoulos and S. Lacroix, “A strategy for tracking a ground
target with a uav,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2008, pp. 1254–1259.

[7] A. A. Pothen and A. Ratnoo, “Curvature-constrained lyapunov vector
field for standoff target tracking,” Journal of Guidance, Control, and
Dynamics, vol. 40, no. 10, pp. 2729–2736, 2017.

[8] M. Nieuwenhuisen and S. Behnke, “Search-based 3d planning and
trajectory optimization for safe micro aerial vehicle flight under sensor
visibility constraints,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 9123–9129.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.



x

0 200 400 600 800 1000

y
0
200

400
600

800
1000

z

0
25
50
75
100
125
150
175
200

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(a)

x

0 200 400 600 800 1000

y
0
200

400
600

800
1000

z

0
20
40
60
80
100
120
140

Trajectory of the FWA
Projection of the trajectory of the FWA on the ground
Trajectory of the target

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Value of the violated constraint

0

10

20

30

40

50

60

70

Nu
m
be

r o
f t
im

es
 co

ns
tra

int
 vi

ola
te
d λ1

λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Value of the violated constraint

0

5

10

15

20

25

30

35
Nu

m
be

r o
f t
im

es
 co

ns
tra

int
 vi

ola
te
d λ1

λ2
λ3
λ4
λ5
λ6
λ7
μ1
μ2
μμ

(d)

Fig. 6. Fig. 6(a) and 6(b) shows the trajectory generated by ADAM and RMSprop optimizer respectively. Fig. 6(c) and 6(d) shows the constraint violation
obtained with ADAM and RMSprop optimizer respectively. The axis notation is similar to Fig.3(c) and 3(d)

iclr (2015),” arXiv preprint arXiv:1412.6980, vol. 9, 2015.
[10] Y. Bengio, “Rmsprop and equilibrated adaptive learning rates for

nonconvex optimization,” corr abs/1502.04390, 2015.
[11] M. Brandao, K. Hashimoto, and A. Takanishi, “Sgd for robot motion?

the effectiveness of stochastic optimization on a new benchmark
for biped locomotion tasks,” in 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids). IEEE, 2017, pp.
39–46.

[12] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for
optimal control,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 6, pp. 2432–2442, 2013.

[13] J.-P. Ramirez-Paredes, E. A. Doucette, J. W. Curtis, and N. R. Gans,
“Urban target search and tracking using a uav and unattended ground
sensors,” in 2015 American Control Conference (ACC). IEEE, 2015,
pp. 2401–2407.

[14] J. Kim and J. L. Crassidis, “Uav path planning for maximum visibility
of ground targets in an urban area,” in 2010 13th International
Conference on Information Fusion. IEEE, 2010, pp. 1–7.

[15] Y. Watanabe and P. Fabiani, “Optimal guidance design for uav visual
target tracking in an urban environment,” IFAC Proceedings Volumes,
vol. 43, no. 15, pp. 69–74, 2010.

[16] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek, “Au-
tonomous uav surveillance in complex urban environments,” in 2009

IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology, vol. 2. IEEE, 2009, pp. 82–85.

[17] J. Wu, H. Wang, N. Li, P. Yao, Y. Huang, and H. Yang, “Path planning
for solar-powered uav in urban environment,” Neurocomputing, vol.
275, pp. 2055–2065, 2018.

[18] X. Zhao, F. Pu, Z. Wang, H. Chen, and Z. Xu, “Detection, tracking,
and geolocation of moving vehicle from uav using monocular camera,”
IEEE Access, vol. 7, pp. 101 160–101 170, 2019.

[19] P. Theodorakopoulos and S. Lacroix, “Uav target tracking using an ad-
versarial iterative prediction,” in 2009 IEEE International Conference
on Robotics and Automation. IEEE, 2009, pp. 2866–2871.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
et al., “Scipy 1.0: fundamental algorithms for scientific computing in
python,” Nature methods, pp. 1–12, 2020.

[21] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[22] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal
on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

[23] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: Effortless
gradients in numpy,” in ICML 2015 AutoML Workshop, vol. 238, 2015.


