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Abstract— We present a decentralized motion planning and
collision avoidance algorithm for multi-robot payload transport
systems (PTS). A PTS is a formation of loosely coupled non-
holonomic robots that cooperatively transport a deformable
payload. Each PTS is constrained to navigate safely in a
dynamic environment by inter-formation, environmental, and
intra-formation collision avoidance. Real-time collision avoid-
ance for such systems is challenging due to the deformability
of formations and high dimensional multi-robot non-convex
workspace. We resolve the above challenges by embedding
workspaces defined by a multi-robot collision avoidance algo-
rithm and multi-scale repulsive potential fields as constraints
within a decentralized convex optimization problem. Specifi-
cally, we present two main steps to plan the motion of each
formation. First, we compute collision-free multi-scale convex
workspaces over a planning horizon using a combination of
ORCA and repulsive potential fields. Subsequently, we compute
the motion plans of formation over a horizon by proposing a
novel formulation for collision avoidance, and we leverage a
model predictive controller (MPC) to solve the problem. The
results validate that our solution facilitates real-time navigation
of formations and computationally scales well with an increase
in the number of robots and formations used. The algorithm
is validated through extensive preliminary simulations, exper-
iments in the gazebo simulator, and a proof of concept using
real robots.

I. INTRODUCTION

In recent years, motion planning and navigation for pay-
load transportation through dynamic environments have re-
ceived increased attention [1][2][3][4]. In this paper, we
present a decentralized solution for collision avoidance of
deformable formations through dynamic environments. This
has applications in industries and warehouses for transporting
deformable payloads such as cloth, rope, pipes etc. Each
formation navigates through an environment having other
dynamic decision-making formations and static obstacles.
Computing trajectories for such systems in real-time is
challenging owing to the high dimensional configuration
space of multiple formations, non-convexities in workspaces,
and heterogeneity in the type of formation (number of robots,
size, deformable or non-deformable, etc.). Moreover, existing
solutions for navigation of formations do not consider het-
erogenous multi-formation collision avoidance. To overcome
the above problems, we propose the following key novelties.

1) Each formation uses the shared trajectories from other
formations to compute its deformations over a fixed
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planning horizon, using virtual repulsive potential fields
[3]. We derive upper and lower bounds on the radii of
influence of potential fields that change dynamically to
allow temporal deformations of the formation over the
planning horizon. Moreover, these deformations are also
constrained by the payload deformation limits.

2) Constraints over the robot control velocities at each
step of the planning horizon are computed using ORCA
[5] considering deformations of all the formations at
that corresponding step in the horizon. The computed
constraints are subsequently embedded into a model-
predictive controller formulation. The collision-free for-
mation control inputs are numerically computed in real-
time using convex optimization methods.

3) We additionally characterize failure scenarios for our
MPC and propose methods to resolve detected failure
scenarios.

In summary, we use existing approaches of (a) virtual po-
tential fields for predictive formation collision avoidance [3],
and (b) reactive collision avoidance guarantees from ORCA
[5], to develop predictive collision avoidance in the velocity
space of formations. We novelly embed these constraints into
a model-predictive control problem to provide a comprehen-
sive solution for multi-formation collision avoidance.

The leader agent of each formation computes its collision-
free trajectories by considering motions of neighboring for-
mations. Each leader agent receives the planned trajecto-
ries for a horizon of nearby formations. The formation is
deformed over the planning horizon using repulsive poten-
tial fields calculated from the received trajectories. Sub-
sequently, ORCA is leveraged to compute a multi-scale
convex workspace over the horizon for each formation.
Then, a novel formulation of decentralized model-predictive
controller (MPC) constrained by the computed workspaces
is developed, to solve for locally optimal collision-free tra-
jectories in real-time. This ensures inter-formation and static
obstacle collision avoidance. Finally, a decentralized leader-
follower algorithm is incorporated to compute the locally
optimal control inputs for the followers of the formation
which also ensures intra-formation collision avoidance. Our
approach scales well with the number of formations as it is
decentralized. We validate our algorithm through extensive
simulations and experiments in the Gazebo simulator.

We discuss the related work in Section II. The notations
and preliminaries are briefed in Section III. The presented
approach for motion planning and collision avoidance of
multi-robot payload transport systems is discussed in Section
IV. The simulation results are presented in Section V.
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Fig. 1: Configuration of formations over the PF-FORCA-MPC planning horizon at (a) t = T1, (b) t = T2, (c) t = T3

Finally, we conclude in Section VI.

II. RELATED WORK

Sequential convex programming [6] was utilized to iden-
tify collision-free formation configurations for a single for-
mation navigating through a dynamic environment. A dis-
tributed extension of this work was introduced in [7]. In
contrast, we propose a convex model-predictive controller
for formation navigation through an environment having
other dynamic decision-making agents and formations. In
[3], repulsive potential fields and a convex model-predictive
controller were leveraged to ensure obstacle-avoidance for
cooperative spatial manipulation of a rigid payload. In our
current work, we do not make assumptions on the type
of payload transported and solve a formation-level naviga-
tion problem for robots carrying both deformable and rigid
payloads. Moreover, the paper i) does not address multi-
formation collision avoidance, ii) deals only with rigid pay-
loads, and iii) does not use ORCA, and only uses potential
fields for collision avoidance. Thereby their approach does
not guarantee system safety.

The paper [8] utilized virtual force based communication
and velocity obstacles to plan the collision-free motion for
a single deformable payload and multiple robots. However,
the approach does not use MPC or plan the motion of
the formation through other deformable formations. In our
previous work [9], we proposed a multi-formation algorithm
for inter-formation and static obstacle avoidance. However,
the scope of the work is limited to rigid payloads and
moreover, it does not use predictive planning for formation
navigation.

Model-predictive control for ORCA was introduced in [10]
to perform predictive collision avoidance. However, the paper
considers only single agents and does not deal with payload
transportation or formation navigation constraints. Moreover,
the approach does not (a) identify cases where ORCA fails
to provide a regional constraint, (b) use a global path planner
to handle oscillations in ORCA planning, (c) consider non-
holonomic agents/robots.

III. BACKGROUND

A. Payload Transport Systems

A Payload transport system (PTS) is a formation of loosely
coupled non-holonomic robots that cooperatively transport a
deformable payload from one place to another. Each PTS
has a leader and a set of followers that maintain a desired

distance relative to the leader. Each PTS can carry payloads
of various sizes and can have different number of robots
in the formation. The terms PTS and formation are used
interchangeably in the paper.

Each formation Fi is defined by the number of followers,
maximum speed vmax

i ∈R which denotes the maximum speed
of the leader, maximum radius rmax

i which indicates the ra-
dius of the payload in undeformed state and minimum radius
rmin

i which is defined by the limits of deformation of payload.
rmax

i and rmin
i are equal for rigid payloads. We conservatively

approximate all the formation shapes to be circular. The
sampling time is ∆t and at each timestep t, each formation
Fi has a position pi(t) ∈ R2 which denotes the position of
the leader, radius ri(t) ∈R+ which denotes the radius of the
formation, velocity vi(t) ∈ R2 which denotes the velocity,
ppre f

i (t) ∈R2 which denotes the next immediate destination,
vpre f

i (t) ∈ R2 which denotes the preferred velocity i.e the
velocity with which it would move if there are no obstacles
in the surroundings. Ideally, it is a vector pointing towards
the ppre f

i (t) from pi(t) with a magnitude vmax
i and is given

by (1).

vpre f
i (t) = vmax

i
ppre f

i (t)−pi(t)

‖ppre f
i (t)−pi(t)‖

(1)

B. Leader-Follower Formation Control

A decentralized bioinspired neurodynamic based leader-
follower algorithm presented in [11] is incorporated in this
work for formation control where the followers compute their
control inputs using the command velocities and odometery
of the leader such that they maintain a desired distance and
angle w.r.t the leader.

C. Optimal Reciprocal Collision Avoidance for non-
holonomic robots (nh-ORCA)

nh-ORCA [12] is a robust decentralized collision avoid-
ance algorithm for non-holonomic robots built from the
concepts of ORCA [5], which deals with holonomic robots.
Each robot i constructs ORCAτ

i| j ∀ j 6= i and is given by (2),

ORCAτ

i| j =
{

vHi |
(
vHi −

(
vopt

i +0.5∗u
))

.n≥ 0
}

(2)

where vopt
i is the current velocity, u is the smallest change

required to the relative velocity of robots i and j to avoid
collision within τ time, and n denotes the outward normal
of the boundary of VOi| j at (vopt

i - vopt
j ) + u as shown in [5].

The holonomic velocity of the robot should lie in the convex



region PAHVi ,
vHi ∈ PAHVi (3)

which is approximated from a non-convex region SAHVi

which is the set of allowed holonomic velocities for which
there exists a control input within the set of non-holonomic
controls that guarantees at all times a tracking error lower
than the pre-defined maximum tracking error.

Now, the set of collision free velocities ORCAτ
i for robot

i is given by (4).

ORCAτ
i = PAHVi ∩ (

⋂
j 6=i

ORCAτ

i| j) (4)

The optimal collision-free holonomic velocity vHi of the
robot is given by (5).

v∗Hi
= argmin

vHi∈ORCAτ
i

‖ vHi −vpre f
i ‖ (5)

In dense cases, the linear program might be infeasible in
which case a 3D Linear program is solved to compute the
velocity and is given by (6),

v∗Hi
= argmin

v∈D(0,vmax
Hi

)

max(di| j(v)) (6)

where di| j(v) is the signed distance of velocity v to the edge
of the half plane ORCAτ

i| j. Finally, the holonomic velocity
v∗Hi

is mapped to non-holonomic control inputs (ui,ωi) as
shown in [12].

IV. OUR APPROACH

Let there be N Payload Transport Systems (PTS) and Q
static obstacles in the environment. The objective of each
PTS is to i) ensure that it reaches its desired destination
with minimum possible deviation from the desired trajectory,
ii) avoid collisions with other PTS, and static obstacles,
iii) navigate through narrow spaces while respecting the
deformation constraints of the payload being transported and
the formation kinematic constraints.

To address these objectives, we present a novel
PotentialField-Formation-ORCA-MPC (PF-FORCA-MPC)
algorithm. Each formation assumes that the other formations
use the same algorithm to plan their motions, and the main
steps for each formation n ∈ {1 . . .N} are as follows.

1) Global path planning to reach the desired destination
(Sec. IV-A).

2) Compute the net repulsive potential field vector over
the horizon based on positions and trajectories of static
obstacles and other formations (Sec. IV-B).

3) Deform the formation over the horizon in proportion to
the repulsive potential field magnitude (Sec. IV-C).

4) Compute ORCA constraints over the horizon using the
deformed formation sizes to avoid collisions with the
obstacles and other formations (Sec. IV-D).

5) Solve the proposed MPC problem to compute the lo-
cally optimal control input of the leader of the formation
(Sec. IV-E).

6) Compute the command velocities of the followers using
a Leader-Follower control algorithm (Sec. IV-F).

Fig. (??) illustrates how two formations navigate through
a narrow corridor using our proposed algorithm.

A. Global Path Planning

We compute a collision-free path for the formation Fi
from its respective source to destination using a global path
planning algorithm (RRT* [13]) and interpolate it to get
multiple waypoints. Our approach is agnostic to the type
of global path planner used. The ppre f

i (0) is the first point of
the interpolated path, vpre f

i (0) is computed as shown in (1).
The ppre f

i (t) is updated to the next point of the interpolated
path when the distance between the formation position pi(t)
and ppre f

i (t) is less than a constant threshold δ .

B. Artificial Repulsive Potential Fields

We modified the approach presented in [3] i) to handle
both deformable and rigid payloads unlike the paper which
only considers rigid payloads, ii) to use ORCA in com-
bination with potential fields for collision avoidance, iii)
and to propose novel upper and lower bounds on radii of
influence of potential fields which dynamically change over
the horizon.

We compute artificial repulsive potential field vectors over
the time horizon. The magnitude of the vector increases
hyperbolically with a decrease in distance to obstacles and
other formations in the vicinity, as shown in [3] . We use
this vector to deform the formation over the horizon and
navigate it through narrow spaces. The repulsive potential
P j

i on Formation Fi w.r.t obstacle j is defined as follows.

P j
i (d

j
i ) =


Pmax

i if d j
i < li

π

2

( y+cot(y)−π/2
ui−li

)
if li ≤ d j

i < ui

0, if d j
i ≥ ui

. (7)

Here, y = π

2

( d j
i −li

ui−li

)
, d j

i is the distance between Formation Fi
and obstacle j, li and ui define the minimum and maximum
radii of influence of the potential field. These radii are
computed as follows.

li(k) = rmin
i + rmin

j (8)

ui(k) = rmax
i + rmax

j +α
‖vi(k)−vpre f

i (k)‖
‖vpre f

i (k)‖
(9)

Here, rmin
i indicates the radius of formation at its maximum

possible deformation, and rmax
i indicates the radius of for-

mation in the undeformed state, k ∈ [1,H] represents a time-
step in the planning horizon. The last term in (9) defines
normalized velocity deviation from preferred velocity.

When the normalized velocity deviation is high, it implies
that the formations are nearly static and have deviated
from their preferred velocities due to the presence of other
formations and obstacles. This leads to an increase in po-
tential field region of influence, which leads to formation
deformation. The deformation over the horizon squeezes the
robot workspace and enables the planner to look ahead for
feasible trajectories. However, deviation in velocity from



preferred velocity does not always mean it has to deform in
order to move ahead. Hence, the constant α is specific to the
density of formations and obstacles in the environment. We
set the value of α as rmax

i in the simulations, which implies
that the radius of influence of the potential field is increased
by rmax

i when the formation is static. This is one of the key
novelties of our work which enables PF-FORCA-MPC to
deform formations predictively in real time.

The repulsive potential field fd
i (k) due to the influence of

other formations Fj is given by,

fd
i (k) =

N

∑
j

P
Fj
i (d j

i (k)) β
Fj
i (k) , (10)

where d j
i (k) = ‖pi(k)−p j(k)‖2 and β

Fj
i (k) = pi(k)−p j(k)

‖pi(k)−p j(k)‖2
∀k ∈

[1,H] is a unit vector pointing away from the formation. The
repulsive potential field due to the Q static obstacles is given
by,

fs
i (k) =

Q

∑
j

P
S j
i (d j

i (k)) β
S j
i (k) , (11)

where d j
i (k) = ‖pi(k)−p j(k)‖2 and β

S j
i (k) = pi(k)−p j(k)

‖pi(k)−p j(k)‖2
∀k ∈

[1,H]. Note that static obstacles are considered to be circular
in shape. However, any arbitrary polygon can be represented
by a collection of circles. The total repulsive potential field
ftotal
i is given by,

ftotal
i (k) = fd

i (k)+ fs
i (k) (12)

The potential field is clamped to a positive value Pmax
i

which denotes the maximum possible deformation in the
radius of a formation in a single timestep. This is specific to
the payload being carried. Pmax

i for formations carrying rigid
payloads is zero.

fr
i (k) =

{
ftotal
i (k) if ‖ftotal

i (k)‖< Pmax
i

Pmax
i

ftotal
i (k)
‖ftotal

i (k)‖ if ‖ftotal
i (k)‖ ≥ Pmax

i
(13)

Note that the potential field fr
i for formations carrying

rigid payloads is always zero. As a result, the radius of the
formation always remains constant and the formation does
not deform whatsoever. Hence, we can conclude that our
algorithm works for rigid payloads as well.

C. Computing Radius over the horizon
The formation is deformed by reducing the radius ri over

the horizon to reduce the region of influence of the poten-
tial field, which in turn enables the formation to navigate
through narrow and tight spaces. The deformation in radius
is applied over the horizon. The deformation rate is directly
proportional to the repulsive potential field ‖fr

i (k)‖. Since it
is essential for the payload to get back to its original size, we
include an expansion potential field f e

i (k), which increases
the radius. The radius of the formation Fi at any step k over
the horizon H is given as,

ri(k+1) = ri(k)−‖fr
i (k)‖+ γ f e

i (k) (14)

where γ is a positive constant. γ < 1 as deformation is of
higher priority than expansion, and we want the formation to

expand only when the repulsive potential field is negligible.
li and ui for computing f e

i (k) are rmin
i and rmax

i respectively.
Note that fr

i and f e
i for formations carrying rigid payloads

are zero.

D. Computing ORCA constraints over the horizon

Each formation Fi computes ORCAτ

i| j(k) as shown in Sec-
tion III-C ∀ j, ∀k ∈ [1,H] using the received predicted states
and control inputs for the horizon from other formations.

ORCAτ

i| j(k) refers to the collision avoidance constraints on
the control input vi(k) for the kth time step of the planning
horizon. Since we use repulsive potential fields over the
planning horizon, the formation geometries potentially have
different radii ri(k) over this horizon. Note that ORCAτ

i| j(k)
is a function of radii ri(k) and r j(k) which enables real-time
formation deformations for collision avoidance.

Hence, each formation Fi requires the radius of all the
other formations to compute ORCAτ

i| j(k) at each horizon step.
The two possible solutions to this are,

1) The formations explicitly communicate the radius over
the horizon to other formations.

2) The formation computes the radius over the horizon
of all the other formations using the communicated
trajectories.

Based on the communication and computation constraints,
we can choose either of the solutions. For simulations
presented in the paper, we chose the first solution.

E. Model Predictive Controller (MPC)

For the formation to navigate towards the destination
at preferred velocity, while avoiding collisions with other
formations, we present a novel MPC formulation to compute
the leader’s locally optimal control input. The MPC is
constrained by (a) linear translation dynamics, (b) inter-
formation collision avoidance, (c) environmental collision
avoidance, (d) position bounds and, (e) bounds on control
inputs. We discuss the cost function and formulation of the
MPC in the following subsections.

1) Cost Function: At time t, the desired position is given
by ppre f

i (t) and the desired velocity is given by vpre f
i (t). The

cost function for any step k ∈ [1,H] of the horizon at time t
is as given below.

Ci(k) = ((vi(k)−vpre f
i (k))Ωv(vi(k)−vpre f

i (k))>+

(pi(k+1)−ppre f
i (k+1))Ωp(pi(k+1)−ppre f

i (k+1))>)
(15)

In the MPC, we minimise the deviation of velocity and
position w.r.t the preferred velocity vpre f

i (t) and preferred
position ppre f

i (t).
2) MPC Formulation:

p∗i (2) . . .p
∗
i (H +1),v∗i (1) . . .v

∗
i (H) = arg min

vi(1)...vi(H)

H

∑
k=1

Ci(k)

(16)



such that ∀ k,

pi(k+1)> = Api(k)>+Bvi(k)>, (17)

vi(k) ∈
⋂
j 6=i

ORCAτ

i| j(k) (18)

vi(k) ∈ PAHVi , (19)

pmin
i ≤ pi(k+1)≤ pmax

i . (20)

The motion planning adheres to the following constraints.
1) Linear translational dynamics of the leader of formation

Fi given by (17),
2) collision avoidance constraints given by (18).
3) velocity bounds on vi as shown in (3).
4) position bounds on pi.
The dynamics matrix is given by A = I2×2, and the control

transfer matrix is given by B = ∆tI2×2 where I2×2 is an iden-
tity matrix, and ∆t is the sampling time. The output of the
MPC is the trajectory over the horizon [p∗i (2) · · ·p∗i (H +1)]
and the locally optimal control inputs [v∗i (1) · · ·v∗i (H)] over
the horizon. Note that regions in (18) and (19) are convex
making it a convex optimization problem. The formations
subsequently communicate with each other to transmit their
trajectory over the horizon. The planning horizon H is chosen
such that H.∆t < τ as given in [10]. ORCA implicitly
assumes that the robots move with uniform velocity in the
next τ time. We additionally optimize the velocity over the
ORCA time horizon τ in with MPC.

F. Computing Robot Control Inputs

Now that we have computed the locally optimal holonomic
control input v∗i (1) for the leader of the Formation Fi, we
map this to the non-holonomic control inputs (ui,ωi) as
illustrated in [12]. We then compute and apply the control
inputs to the followers of the formation using a decentral-
ized Leader-Follower algorithm presented in [11] where the
desired distance of each follower w.r.t leader is the radius of
formation ri(1) computed from (14). Finally, ppre f

i and vpre f
i

are updated based on the resulting state.

G. Failure Detection and Resolution

One of the key insights of our work is the detection and
resolution of failures of the model predictive controller.

1) MPC fails: In cluttered and complex environments
with a high number of formations and static obstacles in
the formation’s vicinity, the MPC fails to find a feasible
solution due to small formation workspaces enforced by
ORCA constraints over the horizon. There are two possible
cases which can lead to this.
Case 1 : The half-planes corresponding to the ORCA lines
of the first step of the horizon, i.e., k = 1, do not have a
common region.

In this case, we solve a 3-D linear program (LP) to
compute the control input only for the present time step. We
find the safest possible velocity, which deviates the least from
the ORCA constraints. We choose a velocity that minimizes
the maximum distance to any of the half-planes induced by

other formations, as given in [5]. The LP formulation is as
follows,

v∗i (t),d
∗
i = arg min

vi(t)∈PAHVi

max di| j(vi(t)) ∀ j (21)

where di| j(vi(t)) is the signed distance of velocity vi(t) to
the edge of the half plane ORCAτ

i| j(1). Note that the ORCA
constraints induced by static obstacles are not relaxed.
Case 2 : The half-planes corresponding to the ORCA lines
of the first step of the horizon, i.e., k = 1, have a common
region, but MPC failed due to tight ORCA constraints at
some step k > 1.

In this case, we solve a Quadratic Program (QP) to
compute the control input only for the current timestep while
minimizing a cost function. The LP formulation is as follows.

v∗i (t),p
∗
i (t +1) = arg min

vi(t)
((vi(t)−vpre f

i (t))Ωv(vi(t)−vpre f
i (t))>+

(pi(t +1)−ppre f
i (t +1))Ωp(pi(t +1)−ppre f

i (t +1))>)
(22)

subject to,

(pi(t +1))> = (Api(t))>+(Bvi(t))>, (23)

vi(t) ∈
⋂
j 6=i

ORCAτ

i| j(1) (24)

vi(t) ∈ PAHVi , (25)

pmin
i ≤ pi(t +1)≤ pmax

i . (26)

Now, once we compute the control input for the current
timestep, we compute the predicted states over the horizon by
assuming that the formation traverses with uniform velocity
throughout the horizon so that we could use these predicted
states to compute ORCA constraints for future timesteps.

V. RESULTS

In this section, we discuss the results of the presented
PF-FORCA-MPC algorithm. The MPC is solved using the
operator splitting quadratic program (OSQP) solver, which
runs the ADMM algorithm. The proposed algorithm is
implemented in Python and runs on the Intel Core i5-
5250U processor. The algorithm is validated using several
simulation environments varying in i) the no. of formations,
ii) no. of static obstacles, iii) size and configuration of
formations, iv) density and complexity. We first compare
the PF-FORCA-MPC algorithm presented in this paper with
the Leader-Follower-ORCA-RRT* (or FORCA) algorithm
presented in [9], then discuss a narrow corridor environment
and antipodal simulation. The values of the parameters α , γ ,
∆ and Pmax used in the algorithm are rmax

i , 0.1, 0.1(s) and
0.01 respectively.

A. Comparison of FORCA with PF-FORCA-MPC
In this section, we compare the performances of the

FORCA algorithm proposed in [9] with the PF-FORCA-
MPC algorithm proposed in this paper. We consider an
environment used in [9] with four formations and five static
obstacles where the formations navigate to reach their respec-
tive destinations while avoiding collisions with obstacles and
other formations.
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Fig. 2: Four formations with 7, 4, 6, 4 followers respectively. (a) Motion Trajectories with FORCA, (b) leader-follower distance with FORCA for Red formation, (c) Velocities
of robots with FORCA for Red formation, (d) Motion Trajectories with PF-FORCA-MPC, (e) leader-follower distance with PF-FORCA-MPC for Red formation, (f) Velocities
of robots with PF-FORCA-MPC for Red formation

Note that our algorithm works with rigid payloads as
well. In this simulation, we consider all the formations to
be rigid to compare the results with the FORCA algorithm,
which only deals with rigid payloads. rmax

i and rmin
i for the

formations are set to 0.4m. The planning horizon was set
as H = 10. The motion trajectories of the formations with
both the algorithms are shown in Fig. (2a) and Fig. (2d)
respectively.

The average radius of curvature of the paths of Red
and Blue formations while crossing each other with the
PF-FORCA-MPC algorithm is 5% less than that with the
FORCA algorithm. This can be seen in Fig. (2a) and (2d)
that the trajectory curves of Red and Blue formations while
avoiding collisions with each other is smoother with the PF-
FORCA-MPC algorithm. Similar is the case with Purple
and Yellow formations while they avoid collisions with
each other, where the average radius of curvature with PF-
FORCA-MPC is 6% less than with FORCA. Lower curvature
is more favorable for stable payload transport, and hence we
can conclude that the PF-FORCA-MPC algorithm ensures
smoother payload transport. Our solution shows the ability of
formations to look ahead into the future and take their present
action hence avoiding sudden jumps in their velocities and
trajectories.

The leader-follower distance graph is plotted for the red
formation using both the algorithms in Fig. (2b) and (2e).
Points A and B are marked in these figures corresponding to
the timestamps when i) the red formation deviates from its
desired path to avoid collision with the blue formation, ii)
the red formation returns to its desired path after crossing the
blue formation. We can infer from the plot that the leader-
follower distance curve in Fig. (2e) at Points A and B is
much smoother and stable without sudden jumps and less
deviation from its preferred distance, which is favorable for

carrying payloads. In contrast, the leader-follower distance
curve in Fig. (2b) has sudden jumps with a relatively more
deviation from the desired distance.

The velocity graph for red formation is plotted in Fig.
(2c) and (2f). It can be seen that the velocity curve between
the points A and B with the PF-FORCA-MPC algorithm is
smoother without sudden drops and closer to the preferred
velocity which is in contrast to the velocity curve with
the FORCA algorithm where the velocities drop suddenly,
indicating that the followers slow down suddenly to avoid a
collision.

B. Narrow corridor simulation
In this section, we illustrate a narrow corridor scenario

simulated in the Gazebo simulator. We consider an environ-
ment with two deformable PTS moving towards the opposite
sides of a narrow corridor of width 5m. Each PTS has four
followers in its formation. rmax

i and rmin
i are 2.4m and 1.2m,

respectively. The snapshots of the simulation at six different
timesteps are shown in Fig. (3). It is seen that the formations
successfully navigate to their destinations through the narrow
corridor while deforming themselves to avoid collision with
other formation and the wall.

A plot of the radius of formation F1 during the simulation
is shown in Fig. (4a) and the leader-follower distance for
the same formation is plotted in Fig. (4b). Points A, B, C
are marked corresponding to i) t = 11s when the formation
deviates from its desired path to avoid a collision, ii) t = 29s
when the formation is closest to F2 and iii) t = 35s when
the formation start expanding to its original size. At point A,
the radius of the formation starts to decrease, as seen in Fig.
(4a) in order to navigate through the corridor while avoiding
collision with formation F2 and the wall. Consequently, the
leader-follower distance of all the followers of the formation
starts decreasing, as seen in Fig. (4b). The followers choose
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Fig. 3: Snapshots of narrow corridor simulation in the Gazebo simulator with PF-FORCA-MPC at (a) t = 1s, (b) t = 11s, (c) t = 20s, (d) t = 29s, (e) t = 35s, (f) t = 50s. The
formation coming from the left side of the corridor is F1 and the formation coming from the right side is F2.
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Fig. 4: (a) Radius of formation F1, (b) Leader-Follower distance in F1, (c) Velocities of the robots in formation F1

appropriate velocities such that they maintain the desired
distance w.r.t the leader ensuring that payload stays intact
and can be seen at point A in Fig. (4c) . At point B, when
the formations are closest to each other, it can be seen from
Fig. (4a), (4b) that the radius of the formation and the leader-
follower distance is minimum so that both the formations can
cross each other without colliding. At point C, the radius
and leader-follower distance start increasing, which implies
that the formation is expanding after they have crossed each
other. The corresponding velocities chosen by the followers
are shown in Fig. (4c).

C. Antipodal Simulation

In this simulation, we consider 16 PTS carrying payloads,
each with unique deformability constraints where the rmax

i
of each formation Fi is 0.4m and rmin

i ∈ [0.2,0.4]. Each
formation has a varying number of followers between 3 to
5. The formations are located uniformly on a circle, and
the formations at antipodal positions are expected to swap
positions with each other. The planning horizon was set as
H = 10. The snapshots of the simulation are shown in Fig.
(5), the destinations of the formations are marked with the
same color for our reference. We can infer from the figure

that the formations successfully reached their destinations
while avoiding collisions with neighboring formations and
deforming themselves in dense scenarios to reach their
destinations faster.

We ran around 100 simulations and compared the time
taken by PTS to reach their respective destinations when i)
deformability of the payloads can be exploited, ii) deforma-
bility of the payloads is not exploited and all the formations
are assumed to be rigid even though they could be deformed.
It was seen that the percentage decrease in time taken for the
formations to reach their destinations when deformability
could be exploited using our algorithm is roughly around
10%. Hence, we can state that in environments with de-
formable PTS, our algorithm helps all the PTS (Rigid and
Deformable) reach their destinations faster.

We have tabulated the statistics of execution time per
iteration in high-density cases where there are 15 formations
(roughly 60 robots) in the radius of visibility in Table I. We
attain a low net average execution time tavg of 0.025 per
iteration. The computation time is seen to increase linearly
with an increase in the planning horizon H.
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Fig. 5: Snapshots of antipodal simulation with 16 formations at (a) t = 1s, (b) t = 9s, (c) t = 13s, (d) t = 21s
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Fig. 6: Snapshots of the Real-Robot experiment at (a) t = 1s, (b) t = 10s, (c) t = 20s, (d) t = 30s

TABLE I: Statistics of Execution Time per iteration

Optimization tavg(s) tmax(s) tmin(s) std
Potential Fields 0.002 0.004 0.0014 0.0004

ORCA 0.02 0.05 0.008 0.01
MPC and Formation 0.0025 0.008 0.0005 0.002

D. Real Robot Proof of Concept Experiment

To demonstrate the proof of concept of our algorithm in
the real world, we use three custom-built non-holonomic
differential drive robots to cooperatively move in a prede-
fined geometric formation and avoid static obstacles in a
narrow corridor. Each robot has an onboard Raspberry Pi
and an Arduino Uno board. The formation transports a virtual
deformable payload whose radius in the undeformed state is
1.4m and can deform up to a radius of 0.6m. The formation
uses the proposed PF-FORCA-MPC algorithm to navigate in
the environment with tight and narrow spaces. Specifically,
artificial repulsive potential fields act on the formation when
it approaches the narrow corridor due to static obstacles. As
a result, the formation deforms itself to navigate through the
narrow corridor. Snapshots of the experiment are shown in
Fig. (6). This proof-of-concept showcases the feasibility of
using our algorithm to perform real-time formation collision-
avoidance. This behavior is also visualized schematically in
Fig. (3). The video attached along with this paper showcases
the complete experiment.

VI. CONCLUSION

A novel decentralized PotentialField-Formation-ORCA-
MPC (PF-FORCA-MPC) algorithm is presented in this paper
to address the motion planning and collision avoidance of
multi-robot payload transport systems carrying deformable
payloads. The presented approach safely navigates forma-
tions (PTS) to their desired destinations in optimal time and
distance while ensuring inter-formation, intra-formation, and
environmental collision avoidance in addition to formation
deformation constraints. The proposed approach applies to
holonomic robots as well, provided a holonomic version
of formation controller is used [3][6]. The algorithm does

not make any assumptions regarding the size and number
of robots in the formation. Hence, it can be incorporated
by any general payload transport system of arbitrary size
and configuration as shown in the simulations. Being a
decentralized method, the algorithm scales well with an
increase in the number of robots. The efficacy of the algo-
rithm is demonstrated through extensive python and gazebo
simulations, and a proof of concept using real robots.
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