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Abstract. Scene text recognition in low-resource Indian languages is
challenging because of complexities like multiple scripts, fonts, text size,
and orientations. In this work, we investigate the power of transfer learn-
ing for all the layers of deep scene text recognition networks from En-
glish to two common Indian languages. We perform experiments on the
conventional CRNN model and STAR-Net to ensure generalisability. To
study the effect of change in different scripts, we initially run our ex-
periments on synthetic word images rendered using Unicode fonts. We
show that the transfer of English models to simple synthetic datasets of
Indian languages is not practical. Instead, we propose to apply transfer
learning techniques among Indian languages due to similarity in their
n-gram distributions and visual features like the vowels and conjunct
characters. We then study the transfer learning among six Indian lan-
guages with varying complexities in fonts and word length statistics. We
also demonstrate that the learned features of the models transferred from
other Indian languages are visually closer (and sometimes even better)
to the individual model features than those transferred from English. We
finally set new benchmarks for scene-text recognition on Hindi, Telugu,
and Malayalam datasets from IIIT-ILST and Bangla dataset from MLT-
17 by achieving 6%, 5%, 2%, and 23% gains in Word Recognition Rates
(WRRs) compared to previous works. We further improve the MLT-17
Bangla results by plugging in a novel correction BiLSTM into our model.
We additionally release a dataset of around 440 scene images containing
500 Gujarati and 2535 Tamil words. WRRs improve over the baselines
by 8%, 4%, 5%, and 3% on the MLT-19 Hindi and Bangla datasets and
the Gujarati and Tamil datasets.

Keywords: Scene text recognition · transfer learning · photo OCR ·
multi-lingual OCR · Indian Languages · Indic OCR · Synthetic Data.

1 Introduction

Scene-text recognition or Photo-Optical Character Recognition (Photo-OCR)
aims to read scene-text in natural images. It is an essential step for a wide

https://github.com/firesans/STRforIndicLanguages
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Fig. 1: Clockwise from top-left; “Top: Annotated Scene-text images, Bottom:
Baselines’ predictions (row-1) and Transfer Learning models’ predictions (row-
2)”, from Gujarati, Hindi, Bangla, Tamil, Telugu and Malayalam. Green, red,
and “ ” represent correct predictions, errors, and missing characters, respectively.

variety of computer vision tasks and has enjoyed significant success in several
commercial applications [9]. Photo-OCR has diverse applications like helping the
visually impaired, data mining of street-view-like images for information used
in map services, and geographic information systems [2]. Scene-text recognition
conventionally involves two steps; i) Text detection and ii) Text recognition. Text
detection typically consists of detecting bounding boxes of word images [4]. The
text recognition stage involves reading cropped text images obtained from the
text detection stage or from the bounding box annotations [13]. In this work, we
focus on the task of text recognition.

The multi-lingual text in scenes is a crucial part of human communication
and globalization. Despite the popularity of recognition algorithms, non-Latin
language advancements have been slow. Reading scene-text in such low resource
languages is a challenging research problem as it is generally unstructured and
appears in diverse conditions such as scripts, fonts, sizes, and orientations. Hence
a large amount of dataset is usually required to train the scene-text recognition
models. Conventionally, the synthetic dataset is used to deal with the problem
since a large number of fonts are available in such low resource languages [13].
The synthetic data may also serve as an exciting asset to perform controlled
experiments, e.g., to study the effect of transfer learning with the change in
script or language text. We investigate such effects for transfer from English to
two Indian languages in this work, i.e., Hindi and Gujarati. We also explore the
transferability of features among six different Indian languages. We share 2500
scene text word images obtained from over 440 scenes in Gujarati and Tamil to
demonstrate such effects. In Fig. 1, we illustrate the sample annotated images
from our datasets, and IIIT-ILST and MLT datasets, and the predictions of our
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models. The overall methodology we follow is that we first generate the synthetic
datasets in the six Indian languages. We describe the dataset generation process
and motivate the work in Section 2. We then train the two deep neural networks
we introduce in Section 3 on the individual language datasets. Subsequently,
we apply transfer-learning on all the layers of different networks from one lan-
guage to another. Finally, as discussed in Section 4, we fine-tune the networks
on standard datasets and examine their performance on real scene-text images
in Section 5. We finally conclude the work in Section 6. The summary of our
contributions are as follows:

1. We investigate the transfer learning of complete scene-text recognition mod-
els i) from English to two Indian languages and ii) among the six Indian
languages, i.e., Gujarati, Hindi, Bangla, Telugu, Tamil, and Malayalam.

2. We also contribute two datasets of around 500 word images in Gujarati and
2535 word images in Tamil from a total of 440 Indian scenes.

3. We achieve gains of 6%, 5%, and 2% in Word Recognition Rates (WRRs) on
IIIT-ILST Hindi, Telugu, and Malayalam datasets in comparison to previous
works [13,20]. On the MLT-19 Hindi and Bangla datasets and our Gujarati
and Tamil datasets, we observe the WRR gains of 8%, 4%, 5%, and 3%,
respectively, over our baseline models.

4. For the MLT-17 Bangla dataset, we show a striking improvement of 15% in
Character Recognition Rate (CRR) and 24% in WRR compared to Bušta
et al. [2], by applying transfer-learning from another Indian language and
plugging in a novel correction RNN layer into our model.

1.1 Related Work

We now discuss datasets and associated works in the field of photo-OCR.
Works of Photo-OCR on Latin Datasets: As stated earlier, the pro-

cess of Photo-OCR conventionally includes two steps: i) Text detection and ii)
Text recognition. With the success of Convolutional Neural Networks (CNN)
for object detection, the works have been extended to text detection, treat-
ing words or lines as the objects [28,38,12]. Liao et al. [10] extend such works
to real-time detection in scene images. Karatzas et al. [8] and Bušta et al. [1]
present more efficient and accurate methods for text detection. Towards read-
ing scene-text, Wang et al. [31] propose an object recognition pipeline based
on a ground truth lexicon. It achieves competitive performance without the
need for an explicit text detection step. Shi et al. [21] propose a Convolutional
Recurrent Neural Network (CRNN) architecture, which integrates feature ex-
traction, sequence modeling, and transcription into a unified framework. The
model achieves remarkable performances in both lexicon-free and lexicon-based
scene-text recognition tasks. Liu et al. [11] introduce Spatial Attention Residue
Network (STAR-Net) with spatial transformer-based attention mechanism to re-
move image distortions, residue convolutional blocks for feature extraction, and
an RNN block for decoding the text. Shi et al. [23] propose a segmentation-free
Attention-based method for Text Recognition (ASTER) by adopting Thin-Plate-
Spline (TPS) as a rectification unit. It tackles complex distortions and reduces
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the difficulty of irregular text recognition. The model incorporates ResNet to
improve the network’s feature representation module and employs an attention-
based mechanism combined with a Recurrent Neural Network (RNN) to form the
prediction module. Uber-Text is a large-scale Latin dataset that contains around
117K images captured from 6 US cities [37]. The images are available with line-
level annotations. The French Street Name Signs (FSNS) data contains around
1000K annotated images, each with four street sign views. Such datasets, how-
ever, contain text-centric images. Reddy et al. [16] recently release RoadText-1K
to introduce challenges with generic driving scenarios where the images are not
text-centric. RoadText-1K includes 1000 video clips (each 10 seconds long at 30
fps) from the BDD dataset, annotated with English transcriptions [33].

Works of Photo-OCR on Non-Latin Datasets: Recently, there has been
an increasing interest in scene-text recognition for non-Latin languages such as
Chinese, Korean, Devanagari, Japanese, etc. Several datasets like RCTW (12k
scene images), ReCTS-25k (25k signboard images), CTW (32k scene images),
and RRC-LSVT (450k scene images) from ICDAR’19 Robust Reading Competi-
tion (RRC) exist for Chinese [24,36,34,26]. Arabic datasets like ARASTEC (260
images of signboards, hoardings, and advertisements) and ALIF (7k text images
from TV Broadcast) also exist in the scene-text recognition community [29,32].
Korean and Japanese scene-text recognition datasets include KAIST (2, 385 im-
ages from signboards, book covers, and English and Korean characters) and
DOST (32k sequential images) [7,5]. The MLT dataset available from the IC-
DAR’17 RRC contains 18k scene images (around 1 − 2k images per language)
in Arabic, Bangla, Chinese, English, French, German, Italian, Japanese, and
Korean [15]. The ICDAR’19 RRC builds MLT-19 over top of MLT-17 to con-
tain 20k scene images containing text from Arabic, Bangla, Chinese, English,
French, German, Italian, Japanese, Korean, and Devanagari [14]. The RRC also
provides 277k synthetic images in these languages to assist the training. Mathew
et al. [13] train the conventional encoder-decoder, where Convolutional Neural
Network (CNN) encodes the word image features. An RNN decodes them to
produce text on synthetic data for Indian languages. Here an additional con-
nectionist temporal classification (CTC) layer aligns the RNN’s output to la-
bels. The work also releases an IIIT-ILST dataset for testing that reports Word
Recognition Rates (WRRs) of 42.9%, 57.2%, and 73.4% on 1K real images in
Hindi, Telugu, and Malayalam, respectively. Bušta et al. [2] proposes a CNN (and
CTC) based method for text localization, script identification, and text recog-
nition. The model is trained and tested on 11 languages of MLT-17 dataset.
The WRRs are above 65% for Latin and Hangul and are below 47% for the
remaining languages. The WRR reported for Bengali is 34.20%. Recently, an
OCR-on-the-go model and obtain the WRR of 51.01% on the IIIT-ILST Hindi
dataset and the Character Recognition Rate (CRR) of 35% on a multi-lingual
dataset containing 1000 videos in English, Hindi, and Marathi [20]. Around 2322
videos in these languages recorded with controlled camera movements like tilt,
pan, etc., are additionally shared at https://catalist-2021.github.io/.

https://catalist-2021.github.io/
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Table 1: Statistics of Synthetic Data. µ, σ represent mean, standard deviation.

Language # Images Train Test µ, σ word length # Fonts

English 17.5M 17M 0.5M 5.12, 2.99 >1200
Gujarati 2.5M 2M 0.5M 5.95, 1.85 12
Hindi 2.5M 2M 0.5M 8.73, 3.10 97
Bangla 2.5M 2M 0.5M 8.48, 2.98 68
Tamil 2.5M 2M 0.5M 10.92, 3.75 158
Telugu 5M 5M 0.5M 9.75, 3.43 62
Malayalam 7.5M 7M 0.5M 12.29, 4.98 20

Transfer Learning in Photo-OCR: With the advent of deep learning
in the last decade, transfer learning became an essential part of vision mod-
els for tasks such as detection and segmentation. [17,18]. The CNN layers pre-
trained from the Imagenet classification dataset are conventionally used in such
models for better initialization and performance [19]. The scene-text recogni-
tion works also use the CNN layers from the models pre-trained on Imagenet
dataset [21,11,23]. However, to our best knowledge, there are no significant ef-
forts on transfer learning from one language to another in the field of scene-text
recognition, although transfer learning seems to be naturally suitable for reading
low resource languages. We investigate the possibilities of transfer learning in all
the layers of deep photo-OCR models.

2 Datasets and Motivation

We now discuss the datasets we use and the motivation for our work.
Synthetic Datasets: As shown in Table 1, we generate 2.5M , or more,

word images each in Hindi, Bangla, Tamil, Telugu, and Malayalam1 with the
methodology proposed by Mathew et al. [13]. For each Indian language, we use
2M images for training our models and the remaining set for testing. Sample
images of our synthetic data are shown in Fig. 2. For English, we use the models
pre-trained on the 9M MJSynth and 8M SynthText images [6,3]. We generate
0.5M synthetic images in English with over 1200 fonts for testing. As shown in
Table 1, English has a lower average word length than Indian languages. We
list the Indian languages in the increasing order of language complexity, with
visually similar scripts placed consecutively, in Table 1. Gujarati is chosen as the
entry point from English to Indian languages as it has the lowest word length
among all Indian languages. Subsequently, like English, Gujarati does not have
a top-connector line that connects different characters to form a word in Hindi
and Bangla (refer to Fig. 1 and 2). Also, the number of Unicode fonts available
in Gujarati is fewer than those available in other Indian languages. Next, we

1 For Telugu and Malayalam, our models trained on 2.5M word images achieved results
lower than previous works, so we generate more examples equal to Mathew et al. [13].
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Fig. 2: Clockwise from top-left: synthetic word images in Gujarati, Hindi, Bangla,
Tamil, Telugu, & Malayalam. Notice that a top-connector line connects the char-
acters to form a word in Hindi or Bangla. Some vowels and characters appear
above and below the generic characters in Indian languages, unlike English.

choose Hindi, as Hindi characters are similar to Gujarati characters and the
average word length of Hindi is higher than Gujarati. Bangla has comparable
word length statistics with Hindi and shares the property of the top-connector
line with Hindi. Still, we keep it after Hindi in the list as its characters are
visually dissimilar and more complicated than Gujarati and Hindi. We use less
than 100 for fonts in Hindi, Bangla, and Telugu. We list Tamil after Bangla
because these languages share similar vowels’ appearance (see the glyphs above
general characters in Fig. 2). Tamil and Malayalam have the highest variability
in word length and visual complexity compared to other languages. Please note
that we have over 150 fonts available in Tamil.

Real Datasets: We also perform experiments on the real datasets from IIIT-
ILST, MLT-17, and MLT-19 datasets (refer to Section 1.1 for these datasets).
To enlarge scene-text recognition research in complex and straight forward low-
resource Indian Languages, we release 500 and 2535 annotated word images in
Gujarati and Tamil. We crop the word images from 440 annotated scene images,
which we obtain by capturing and compiling Google images. We illustrate sample
annotated images of different datasets in Fig. 1. Similar to MLT datasets, we
annotate the Gujarati and Tamil datasets using four corner points around each
word (see Tamil image at bottom-right of Fig. 1). IIIT-ILST dataset has two-
point annotations leading to an issue of text from other words in the background
of a cropped word image as shown in the Hindi scene at the top-middle of Fig. 1.

Motivation: As discussed earlier in Section 1.1, most of the scene-text recog-
nition works use the pre-trained Convolutional Neural Networks (CNN) layers
for improving results. We now motivate the need for transfer learning of the
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Fig. 3: Distribution of Char. n-grams (n ∈ [1, 5]) from 2.5M words in English,
Gujarati, Hindi, Bangla, and Tamil (top to bottom): Top-5 (left) and All (right).

complete recognition models discussed in Section 1 and the models we use in
Section 3 among different languages. As discussed in these sections, the Recur-
rent Neural Networks (RNNs) form another integral component of such reading
models. Therefore, we illustrate the distribution of character-level n-grams they
learn in Fig. 32 for the first five languages we discussed in the previous section

2 For plots on the right, we use moving average of 10, 100, 1000, 1000, 1000 for 1-grams,
2-grams, 3-grams, 4-grams, and 5-grams, respectively.
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(we notice that the last two languages also follow the similar trend). On the left,
we show the frequency distribution of top-5 n-grams, (n ∈ [1, 5]). On the right,
we show the frequency distribution of all n-grams with n ∈ [1, 5]. We use 2.5M
words from each language for these plots. We consider both capital and small
letters separately for English, as it is crucial for the text recognition task. De-
spite this, we note that top-5 n-grams are composed of small letters. The Indian
languages, however, do not have small and capital letters like English. However,
the total number of English letters (given that small letters are different from
capitals) is of the same order as Indian languages. The x-values (<= 100) for the
drops in 1-gram plots (blue curves) of Fig. 3 also illustrates this. So it becomes
possible to compare the distributions. Next, we note that most of the top-5 n-
grams comprise vowels for all the languages. Moreover, the overall distributions
are similar for all the languages. Hence, we propose that the RNN layers’ transfer
among the models of different languages is worth an investigation.

It is important to note the differences between the n-grams of English and
Indian languages. Many of the top-5 n-grams in English are the complete word
forms, which is not the case with Indian languages owing to their richness in
inflections (or fusions) [30]. Also, note that the second and the third 1-gram for
Hindi and Bangla in Fig. 3 (left), known as Halanta, is a common feature of top-5
Indic n-grams. The Halanta forms an essential part of joint glyphs or aksharas
(as advocated by Vinitha et al. [30]). In Figs. 1 and 2, the vowels, or portions
of the joint glyphs for word images in Indian languages, often appear above
the top-connector line or below the generic consonants. All this, in addition
to complex glyphs in Indian languages, makes transfer learning from English
to Indian languages ineffective, which is detailed in Section 5. Thus, we also
investigate the transferability of features among the Indic scene-text recognition
models in the subsequent sections.

3 Models

This section explains the two models we use for transfer learning in Indian lan-
guages and a plug-in module we propose for learning the correction mechanism
in the recognition systems.

CRNN Model: The first model we train is Convolutional-Recurrent Neu-
ral Network (CRNN), which is the combination of CNN and RNN as shown
in Fig. 4 (left). The CRNN network architecture consists of three fundamental
components, i) an encoder composed of the standard VGG model [25], ii) a de-
coder consisting of RNN, and iii) a Connectionist Temporal Classification (CTC)
layer to align the decoded sequence with ground truth. The CNN-based encoder
consists of seven layers to extract feature representations from the input image.
The model abandons fully connected layers for compactness and efficiency. It
replaces standard squared pooling with 1× 2 sized rectangular pooling windows
for 3rd and 4th max-pooling layer to yield feature maps with a larger width. A
two-layer Bi-directional Long Short-Term Memory (BiLSTM) model, each with
a hidden size of 256 units, then decodes the features. During the training phase,
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Fig. 4: CRNN Model (left) and STAR-Net with a Correction BiLSTM (right).

the CTC layer provides non-parameterized supervision to align the decoded pre-
dictions with the ground truth. The greedy decoding is used during the testing
stage. We use the PyTorch implementation of the model by Shi et al. [22].

STAR-Net: As shown in Fig. 4 (right), the STAR-Net model consists of
three components, i) a Spatial Transformer to handle image distortions, ii) a
Residue Feature Extractor consisting of a residue CNN and an RNN, and iii) a
CTC layer to align the predicted and ground truth sequences. The transformer
consists of a spatial attention mechanism achieved via a CNN-based localization
network, a sample, and an interpolator. The localizer predicts the parameters
of an affine transformation. The sampler and the nearest-neighbor interpolator
use the transformation to obtain a better version of the input image. The trans-
formed image acts as the input to the Residue Feature Extractor, which includes
the CNN and a single-layer BiLSTM of 256 units. The CNN used here is based
on the inception-resnet architecture, which can extract robust image features
required for the task of scene-text recognition [27]. The CTC layer finally pro-
vides the non-parameterized supervision for text alignment. The overall model
consists of 26 convolutional layers and is end-to-end trainable [11].

Correction BiLSTM: After training the STAR-Net model on a real dataset,
we add a correction BiLSTM layer (of size 1×256), an end-to-end trainable mod-
ule, to the end of the model (see Fig. 4 top-right). We train the complete model
again on the same dataset to implicitly learn the error correction mechanism.
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Table 2: Results of individual CRNN & STAR-Net models on Synthetic Datasets.

Language CRNN-CRR CRNN-WRR STAR-Net-CRR STAR-Net-WRR

English 77.13 38.21 86.04 57.28
Gujarati 94.43 81.85 97.80 91.40
Hindi 89.83 73.15 95.78 83.93
Bangla 91.54 70.76 95.52 82.79
Tamil 82.86 48.19 95.40 79.90
Telugu 87.31 58.01 92.54 71.97
Malayalam 92.12 70.56 95.84 82.10

4 Experiments

The images, resized to 150×18, form the input of STAR-Net. The spatial trans-
former module, as shown in Fig. 4 (right), then outputs the image of size 100×32
. The inputs to the CNN Layers of CRNN and STAR-Net are of the same size,
i.e., 100 × 32, and the output size is 25 × 1 × 256. The STAR-Net localization
network has four plain convolutional layers with 16, 32, 64, and 128 channels.
Each layer has the filter size, stride, and padding size of 3, 1, and 1, followed by
a 2 × 2 max-pooling layer with a stride of 2. Finally, a fully connected layer of
size 256 outputs the parameters which transform the input image. We train all
our models on 2M or more synthetic word images as discussed in Section 2. We
use the batch size of 16 and the ADADELTA optimizer for stochastic gradient
descent (SGD) for all the experiments [35]. The number of epochs varies between
10 to 15 for different experiments. We test our models on 0.5 M synthetic images
for each language. We use the word images from IIIT-ILST, MLT-17, and MLT-
19 datasets for testing on real datasets. We fine-tune the Bangla models on 1200
training images and test them on 673 validation images from the MLT-17 dataset
to fairly compare with Bušta et al. [1]. Similarly, we fine-tune only our best Hindi
model on the MLT-19 dataset and test it on the IIIT-ILST dataset to compare
with OCR-on-the-go (since it is also trained on real data) [20]. To demonstrate
generalizability, we also test our models on 3766 Hindi images and 3691 Bangla
images available from MLT-19 datasets [14]. For Gujarati and Tamil, we use 75%
of word images to fine-tune our models and the remaining 25% for testing.

5 Results

In this section, we discuss the results of our experiments with i) individual models
for each language, ii) the transfer learning from English to two Indian languages,
and iii) the transfer learning from one Indian language to another.

Performance on Synthetic Datasets: It is essential to compare the re-
sults on synthetic datasets of different languages sharing common backgrounds,
as it provides a good intuition about the difficulty in reading different scripts.
In Tables 2 and 3, we present the results of our experiments with synthetic
datasets. As noted in Table 2, the CRNN model achieves the Character Recog-
nition Rates (CRRs) and Word Recognition Rates (WRRs) of i) 77.13% and
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Table 3: Results of Transfer Learning (TL) on Synthetic Datasets. Parenthesis
contain results from Table 2. TL among Indic scripts improves STAR-Net results.

Language CRNN-CRR CRNN-WRR STAR-Net-CRR STAR-Net-WRR

English → Gujarati 92.71 (94.43) 77.06 (81.85) 97.50 (97.80) 90.90 (91.40)
English → Hindi 88.11 (89.83) 70.12 (73.15) 94.50 (95.78) 80.90 (83.93)

Gujarati → Hindi 91.98 (89.83) 73.12 (73.15) 96.12 (95.78) 84.32 (83.93)
Hindi → Bangla 91.13 (91.54) 70.22 (70.76) 95.66 (95.52) 82.81 (82.79)
Bangla → Tamil 81.18 (82.86) 44.74 (48.19) 95.95 (95.40) 81.73 (79.90)
Tamil → Telugu 87.20 (87.31) 56.24 (58.01) 93.25 (92.54) 74.04 (71.97)
Telugu → Malayalam 90.62 (92.12) 65.78 (70.56) 94.67 (95.84) 77.97 (82.10)

38.21% in English and ii) above 82% and 48% on the synthetic dataset of all
the Indian languages (refer to columns 1 and 2 of Table 2). The low accuracy on
the English synthetic test set is due to the presence of more than 1200 different
fonts (refer Section 2). Nevertheless, using a large number of fonts in training
helps in generalizing the model for real settings [6,3]. The STAR-Net achieves
remarkably better performance than CRNN on all the datasets, with the CRRs
and WRRs above 90.48 and 65.02 for Indian languages. The reason for this is
spatial attention mechanism and powerful residual layers, as discussed in Sec-
tion 3. As shown in columns 3 and 5 of Table 2, the WRR of the models trained
in Gujarati, Hindi, and Bangla are higher than the other three Indian languages
despite common backgrounds. The experiments show that the scripts in latter
languages pose a tougher reading challenge than the scripts in former languages.

We present the results of our transfer learning experiments on the synthetic
datasets in Table 3. The best individual model results from Table 2 are included
in parenthesis for comparison. We begin with the English models as the base
because the models have trained on over 1200 fonts and 17M word images as
discussed in Section 2, and are generic. However, in the first two rows of the
table, we note that transferring the layers from the model trained on the English
dataset to Gujarati and Hindi is inefficient in improving the results compared
to the individual models. The possible reason for the inefficiency is that Indic
scripts have many different visual and slightly different n-gram characteristics
from English, as discussed in Section 2. We then note that as we try to apply
transfer learning among Indian languages with CRNN (rows 3-7, columns 1-2 in
Table 3), only some combinations work well. However, with STAR-Net (rows 3-7,
columns 3-4 in Table 3), transfer learning helps improve results on the synthetic
dataset from a simple language to a complex language3. For Malayalam, we
observe that the individual STAR-Net model is better than the one transferred
from Telugu, perhaps due to high average word length (refer Section 2).

3 We also discovered experiments on transfer learning from a tricky language to a
simple one to be effective but slightly lesser than the reported results.
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Table 4: Results on Real Datasets. FT indicates Fine-Tuned.

Language Dataset # Images Model CRR WRR

CRNN 84.93 64.80
Gujarati ours 125 STAR-Net 85.63 64.00

STAR-Net Eng→Guj 78.48 60.18
STAR-Net Hin→Guj 88.47 69.60

Mathew et al. [13] 75.60 42.90
CRNN 78.84 46.56

STAR-Net 78.72 46.60
Hindi IIIT-ILST 1150 STAR-Net Eng→Hin 77.43 44.81

STAR-Net Guj→Hin 79.12 47.79
OCR-on-the-go [20] - 51.09

STAR-Net Guj→Hin FT4 83.64 56.77

CRNN 86.56 64.97
Hindi MLT-19 3766 STAR-Net 86.53 65.79

STAR-Net Guj→Hin 89.42 72.96

Bušta et al. [2] 68.60 34.20
Bangla MLT-17 673 CRNN 71.16 52.74

STAR-Net 71.56 55.48
STAR-Net Hin→Ban 72.16 57.01

W/t Correction BiLSTM 83.30 58.07

CRNN 81.93 74.26
Bangla MLT-19 3691 STAR-Net 82.80 77.48

STAR-Net Hin→Ban 82.91 78.02

CRNN 90.17 70.44
Tamil ours 634 STAR-Net 89.69 71.54

STAR-Net Ban→Tam 89.97 72.95

Mathew et al. [13] 86.20 57.20
Telugu IIIT-ILST 1211 CRNN 81.91 58.13

STAR-Net 82.21 59.12
STAR-Net Tam→Tel 82.39 62.13

Mathew et al. [13] 92.80 73.40
Malayalam IIIT-ILST 807 CRNN 84.12 70.36

STAR-Net 91.50 72.73
STAR-Net Tel→Mal 92.70 75.21

Performance on Real Datasets: Table 4 depicts the performance of our
models on the real datasets. At first, we observe that for each Indian language,
the overall performance of the individual STAR-Net model is better than the
individual CRNN model (except for Gujarati and Hindi, where the results are
very close). Based on this and similar observations in the previous section, we
present the results of transfer learning experiments on real datasets only with
the STAR-Net model5. Next, similar to the previous section, we observe that the

4 Fine-tuned on MLT-19 dataset as discussed earlier. We fine-tune all the layers.
5 We also tried transfer learning with CRNN; STAR-Net was more effective.
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Fig. 5: CNN Layers visualization in the Top: CRNN models trained on Hindi,
English→Hindi, and Gujarati→Hindi; and Bottom: STAR-Net models trained
on Gujarati, English→Gujarati, and Hindi→Gujarati. Red boxes indicate the
regions where the features for the model transferred from English are activated
(as white), whereas the features from the other two models are not.

transfer learning from English to Gujarati and Hindi IIIT-ILST datasets (rows 3
and 8 in Table 4) is not as effective as individual models in these Indian languages
(rows 2 and 7 in Table 4). Finally, we observe that the performance improves
with the transfer learning from a simple language to a complex language, except
for Hindi→Gujarati, for which Hindi is the only most straightforward choice.
We achieve performance better than the previous works, i.e., Bušta et al. [1],
Mathew et al. [13], and OCR-on-the-go [20]. Overall, we observe the increase in
WRRs by 6%, 5%, 2% and 23% on IIIT-ILST Hindi, Telugu, and Malayalam,
and MLT-17 Bangla datasets compared to the previous works. On the MLT-19
Hindi and Bangla datasets, we achieve gains of 8% and 4% in WRR over the
baseline individual CRNN models. On the datasets we release for Gujarati and
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Tamil, we improve the baselines by 5% and 3% increase in WRRs. We present the
qualitative results of our baseline CRNN models as well as best transfer learning
models in Fig. 1. The green and red colors represent the correct predictions and
errors, respectively. “ ” represents the missing character. As can be seen, most
of the mistakes are single-character errors.

Since we observe the highest gain of 23% in WRR (and 4% in CRR) for the
MLT-17 Bangla dataset (Table 4), we further try to improve these results. We
plug in in the correction BiLSTM (refer Section 3) to the best model (row 18
of Table 4). The results are shown in row 19 of Table 4. As shown, the correc-
tion BiLSTM improves the CRR further by a notable margin of 11% since the
BiLSTM works on character level. We also observe the 1% WRR gain, thereby
achieving the overall 24% WRR gain (and 15% CRR gain) over Bušta et al. [1].

Features Visualization: In Fig. 5 for the CRNN model (top three triplets),
we visualize the learned CNN layers of the individual Hindi model, the “English
→Hindi” model, and the “Gujarati→Hindi” model. The red boxes are the re-
gions where the first four CNN layers of the model transferred from English to
Hindi are different from the other two models. The feature visualization again
strengthens our claim that transfer from the English reading model to any In-
dian language dataset is inefficient. We notice a similar trend for the Gujarati
STAR-Net models, though the initial CNN layers look very similar to word im-
ages (bottom three triplets in Fig. 5). The similarity also demonstrates the better
learnability of STAR-Net compared to CRNN, as observed in previous sections.

6 Conclusion

We generated 2.5M or more synthetic images in six different Indian languages
with varying complexities to investigate the language transfers for two scene-
text recognition models. The underlying view is that the transfer of image fea-
tures is standard in deep models, and the transfer of language text features is a
plausible and natural choice for the reading models. However, we observe that
transferring the generic English photo-OCR models (trained on over 1200 fonts)
to Indian languages is inefficient. Our models transferred from one Indian lan-
guage to another perform better than the previous works or the new baselines
we created for individual languages. We, therefore, set the new benchmarks for
scene-text recognition in low-resource Indian languages. The proposed Correc-
tion BiLSTM, when plugged into the STAR-Net model and trained end-to-end,
further improves the results.
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