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Abstract

In many real-life classification problems, we may not get exact class labels for training
samples. One such example is bandit feedback in multiclass classification. In this setting,
we only get to know whether our predicted label is correct or not. Due to which, we are left
in uncertainty about the actual class label when we predict the wrong class. This paper
proposes exact passive-aggressive online algorithms for multiclass classification under ban-
dit feedback (EPABF). The proposed approach uses an exploration-exploitation strategy
to guess the class label in every trial. To update the weights, we solve a quadratic opti-
mization problem under multiple class separability constraints and find the exact solution.
We do this by finding active constraints using the KKT conditions of the optimization
problem. These constraints form a support set that determines the classes for which the
weight vector needs to be updated. We propose three different variants of the weight
update rule, which vary based on the aggressiveness to correct the mistake. These are
called EPABF, EPABF-I, and EPABF-II. We also provide mistake bounds for the pro-
posed EPABF, EPABF-I, and EPABF-II. Experiments demonstrated that our proposed
algorithms perform better than other bandit feedback-based approaches and comparably
to the full information approaches.

1. Introduction

Online learning of multiclass classifiers is an important and well-studied problem in machine
learning. The goal is to classify examples into a set of classes. Digit recognition (Ma and
Zhang, 2015), text classification (McCallum, 1999), recommendation systems (Li et al.,
2016), optical character recognition (OCR), face recognition, tagging locations in vacation
photos etc. are some of the well known applications of multiclass classifier.

Standard multiclass setting assumes that the exact (true) class labels of the training
examples are given. This is called the full information case. However, in many real-life
problems, getting true labels of the examples is a challenging task. Instead, we may get
partial information about the class label. One such case is where we only know whether
the predicted class label is the same as the true label. This is called bandit feedback setting
(Sham M. Kakade, 2008). For example, when a user types a query in the recommendation
system, she is presented with different links based on the user profile. A click on one of the
link represents positive feedback, and no click corresponds to a negative response. On the
other hand, the algorithm does not know what would have happened when other links been
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(a) (b)

Figure 1: Example illustrating multiclass classification with (a) full information case and
(b) bandit feedback case.

presented. Figure 1 presents the difference between the full information case and bandit
information case using an example.

Consider the learning with bandit feedback as follows. The learner receives an instance
xt at trial t. The learner has to predict its label out of a set of K labels. Based on the
current parameters, it predicts the label ŷt, where ŷt ∈ [K]. Then it receives a partial
feedback I{ŷt 6=yt}. Here yt is the true label of xt. So if the prediction is correct, that is
ŷt = yt, the feedback is 1 and learner exactly knows that the true class is ŷt. On the other
hand, if ŷt 6= yt, the bandit feedback is 0 and the learner gets to know that ŷt is not the true
class. But, the learner still does not know the true class in this case. The performance of the
learner is measured using the cumulative sum of mistakes in T trials, which is

∑T
t=1 I{ŷt 6=yt}.

Since the learning algorithm is unaware of the true label, it makes multiclass classification
in the bandit setting harder than multiclass classification problems with a full information
setting. In Sham M. Kakade (2008), authors extend the multiclass Perceptron (Crammer
and Singer, 2003) to learn classifier using bandit feedback.

Inspired by passive-aggressive updates (Crammer et al., 2006), Zhong and Dauce (2015)
propose bandit passive-aggressive algorithms (BPA) for multiclass classification using bandit
feedbacks. Updates proposed in BPA are much more aggressive compared to Banditron
(Sham M. Kakade, 2008). BPA shows better performance compared to Banditron (Zhong
and Dauce, 2015). BPA finds the updates by solving a quadratic optimization problem in
each trial. However, for multiclass classifier learning, it ignores the structure of multiple
classes and reduces the problem to binary classification.

This paper proposes exact passive-aggressive algorithms under bandit feedback (EPABF)
for online multiclass classification in the bandit setting. Our approach takes care of the is-
sues in the method proposed in Zhong and Dauce (2015) by considering the separability
conditions among different classes. At every trial, KKT optimality conditions are used to
find the active constraints. These active constraints correspond to the support classes whose
parameters will be updated. A similar approach was used for handling full information case
(Matsushima et al., 2010). We observe that the proposed approaches perform better than
the other bandit algorithms. Our key contributions in this paper are as follows.

1. We derive update rules for EPABF, EPABF-I, and EPABF-II under bandit feedback
setting. EPABF algorithms update the parameters at trial t by minimizing convex
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quadratic optimization problems. We find the exact solution to these optimization
problems.

2. We propose a support class set finding algorithms for all the three variants and show
their correctness.

3. We provide mistake bounds for all three variants EPABF, EPABF-I, and EPABF-II.

4. We perform simulations on different datasets and show the proposed algorithms’ ef-
fectiveness compared to other bandit feedback algorithms and full information algo-
rithms.

2. Related Work

Learning Under Full Information Setting

In the full information case, the learner knows the exact labels of all the examples in the
training set. Popular batch learning algorithms for multiclass learning are discussed in
(Crammer and Singer, 2002; Hsu and Lin, 2002; Ou and Murphey, 2007). In the online
setting, we get instances sequentially, so the algorithm has to make predictions even when
learning continuously. When it makes the wrong prediction, then it updates the parameters
of the classifier else; it does not change the parameters. Perceptron is one of the earliest
online algorithms for learning binary classifiers (Rosenblatt, 1960). Extensions of Perceptron
algorithm for multiclass is proposed in Crammer and Singer (2003); Fink et al. (2006).
Cesa-Bianchi et al. (2005) proposed a second-order Perceptron algorithm, which uses a
second-order derivative in updating the parameters. Passive-aggressive learning is another
framework in which the algorithm makes more aggressive updates to achieve the smallest loss
on current misclassified example (Crammer et al., 2006) by solving a constrained quadratic
optimization problem in each trial. However, for multiclass classifier learning, it ignores
the structure of multiple classes and reduces the binary classification problem. Matsushima
et al. (2010) proposed an exact passive-aggressive approach for the multiclass classification
problem, which addresses the above issue. It first determines the set of classes called support
classes when an input is received. Then the weight vectors are updated corresponding to
all the support classes.

Learning Under Bandit Feedback

In many practical situations, the learner does not know the exact class label of the training
examples. Instead, it may just observe some partial feedback. One such feedback is whether
the predicted label is the same as the actual label. This is called bandit feedback. Several
classification algorithms exist that address the bandit feedback setting. Banditron (Sham
M. Kakade, 2008) extends the Perceptron algorithm to deal with the bandit feedback.
Banditron uses an exploitation-exploration scheme proposed in Auer et al. (2003). When
it updates, it replaces the gradient of the loss function with an unbiased estimator. When
the data is linearly separable, the expected number of mistakes made by Banditron is
O(
√
T ) in T rounds. In the general case, the expected number of mistakes of Banditron

is O
(
T 2/3

)
. Another bandit algorithm, named NEWTRON (Elad Hazan, 2011), is based
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on the online Newton method. It uses strongly convex loss objective function (adding
regularization term with the loss function) and Follow-The-Regularized-Leader (FTRL)
strategy to achieve O(log T ) regret bound in the best case and O

(
T 2/3

)
regret bound in

the worst case. Second-order Perceptron is also extended in bandit feedback setting by
Crammer and Gentile (2011). It uses upper-confidence bounds (UCB) (Auer et al., 2002)
based approach to make trade-off between exploration and exploitation and achieves regret

bound of O
(√

T log(T )
)

.

Recently, Beygelzimer et al. (2019) proposed an algorithm based on Kernel Perceptron.
Authors proposed efficient online multiclass linear classification algorithms with bandit
feedback when the data is linearly separable by a γ margin. They showed that their algo-
rithm achieves a near-optimal bound of O(Kγ−1) under strong linear separability condition
(Beygelzimer et al., 2019). Among the second-order algorithms, (Beygelzimer et al., 2017)
proposed a second-order algorithm with Õ( 1η

√
T ) regret for the bandit online multiclass

problem.
Zhong and Dauce (2015) extended the passive-aggressive online multiclass learning ap-

proach proposed in (Crammer et al., 2006) in the bandit feedback setting. They solved a
constraint optimization problem in each trial to update the parameters which inherit similar
issues as in the method proposed in (Crammer et al., 2006) (i.e., they solve a relaxed version
of the quadratic optimization problem). In this paper, we use the ideas presented in Mat-
sushima et al. (2010) to address the issues in BPA (Zhong and Dauce, 2015). We propose
an exact passive-aggressive approach for multiclass classifiers under bandit feedback.

3. Passive-Aggressive Online Learning Under Full Information

The passive-aggressive online learning of multiclass classifier is proposed in Crammer et al.
(2006). The learning is performed in a sequence of trials. At trial t, the learner is presented
an example xt ∈ Rd and is required to predict the label out of a set of K labels. Let [K] =
{1, . . . ,K} denote the set of labels. Let wt

1, . . . ,w
t
K be the parameters of the multiclass

classifier at the beginning of trial t. The label predicted by the algorithm at round t is given
by, ŷt = arg maxj∈[K](w

t
j · xt). Then the algorithm observes the correct label yt. The loss

incurred by the algorithm is as follows.

lthinge = max[0, 1−wt
yt · x

t + max
j 6=yt

wt
j · xt] (1)

where lhinge is hinge loss for multiclass classification and is a convex surrogate of 0-1 loss
Crammer et al. (2006). The passive-aggressive approach (Crammer et al., 2006) proposes
three different ways to update the parameters as follows.

1. PA: In this approach, parameters wt+1
1 , . . . ,wt+1

K are found such that they are closest
to wt

1, . . . ,w
t
K and the loss incurred on xt becomes zero.

wt+1
1 , . . . ,wt+1

K = arg min
w1,...,wK

1

2

K∑
j=1

‖wj −wt
j‖2

s.t. max[0, 1−wyt · xt + max
j 6=yt

wj · xt] = 0
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2. PA-I: PA makes very aggressive updates as it tries to find the parameters which
incur zero loss on xt. To relax that, PA-I allows some error. Thus, PA-I makes a
trade-off between the closeness to wt

1, . . . ,w
t
K and aggressiveness to minimize the loss

on example xt. C is the hyper-parameter which controls the aggressiveness.

wt+1
1 , . . . ,wt+1

K = arg min
w1,...,wK

1

2

K∑
j=1

‖wj −wt
j‖2 + Cξ

s.t. ξ ≥ 0; wyt · xt −max
j 6=yt

wj · xt ≥ 1− ξ

3. PA-II: PA-II also allows some error, but it minimizes the square of the loss in contrast
to PA-I. Thus, it finds new parameters as follows.

wt+1
1 , . . . ,wt+1

K = arg min
w1,...,wK

1

2

K∑
j=1

‖wj −wt
j‖2 + Cξ2

s.t. wyt · xt −max
j 6=yt

wj · xt ≥ 1− ξ

Exact solutions of these three approaches are proposed in Matsushima et al. (2010). The
update equations proposed in Matsushima et al. (2010) are as follows.

wt+1
v = wt

v − τ tv(1− I{v=yt})xt + I{v=yt}
∑
v 6=yt

τ tvx
t v = 1 . . .K

where

τ tv =


1
‖xt‖2

(
ltv − 1

|St|+1

∑
j∈St l

t
j

)
, PA

1
‖xt‖2

(
ltv −max

(∑
j∈St l

t
j

|St| + C‖xt‖2
|St| ,

∑
j∈St l

t
j

|St|+1

))
, PA-I

ltv
‖xt‖2 −

‖xt‖2 1
2C

(|St|+1)‖xt‖2+ |S
t|

2C

∑
j∈St l

t
j , PA-II

In the above, St denotes the support set which contains the indices of active constraints
(Matsushima et al. (2010)). Exact passive-aggressive updates proposed in Matsushima et al.
(2010) are shown to perform better than the updates proposed Crammer et al. (2006).
However, passive-aggressive approach in Matsushima et al. (2010); Crammer et al. (2006) is
developed under the full information case. That is, the algorithm knows the exact label yt

of xt at every trial t. In this paper, we will propose the exact passive-aggressive approach
under bandit feedback.

4. Proposed Approach: Exact Passive Aggressive Learning Under Bandit
Feedback

Here again, learning happens in online fashion. At every trial t, an example xt ∈ Rd is
presented to the algorithm. Let wt

1, . . . ,w
t
K be the parameters of the multiclass classifier

at the beginning of the trial t, where K is the total number of classes. Then the algorithm
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computes the label ŷt = arg maxj∈[K] wt
j .x

t. Before asking for the bandit feedback, we
form a probability distribution over different classes as follows.

P t(r) = (1− γ)I{r=ŷt} +
γ

K

Here γ ∈ (0, 0.5) is exploration parameter and I{r=ŷt} is the Indicator function. We ran-
domly sample a label ỹt from P t(r). We predict the sampled label ỹt. Then, we ask for
the bandit feedback I{ỹt=yt}, which means if ỹt = yt, the feedback is 1, else it is 0. Thus, if
ỹt 6= yt, the algorithm does not know which of the remaining K − 1 labels is the true label.
The objective of the learning algorithm is to minimize the number of prediction mistakes,
i.e.

∑T
t=1 I{ỹt 6=yt}. However, we can’t minimize I{ỹt 6=yt} as it is not continuous. Thus, we

propose a new loss functions as follows.
We know that the lthinge (Eq. (1)) is a convex surrogate of the 0-1 loss. However, one

can easily see that

lthinge = max(0, 1− atwt
ỹt · x

t + max
r 6=yt

wt
r · xt) ≤

K∑
r=1

max(0, 1− atwt
ỹt · x

t + wt
r · xt) =

K∑
r=1

ltr.

Thus,
∑K

r=1 l
t
r also forms a convex surrogate for 0-1 loss.

We use l̃tr = max(0, 1 − atwt
ỹt · x

t + wt
r.x

t) as an estimator for ltr in presence of bandit

feedback, where at = I{ỹt=yt}/P (ỹt). The total loss incurred at time t is given as
∑K

r=1 l̃
t
r.

Note that each of l̃tr is a random variable as it depends on ỹt. We observe the following.

E[l̃tr] = E[max(0, 1− atwt
ỹt · x

t + wt
r · xt)] ≥ max(0,E[1−wt

ỹt · x
tat + wt

r · xt])
≥ max(0, 1−wt

yt · x
t + wt

r · xt) = ltr

E[
∑K

r=1 l̃
t
r] upper bounds

∑
r 6=yt l

t
r. Thus, minimizing

∑K
r=1 l̃

t
r is an appropriate ob-

jective at every trial. We now derive the update equations under exact passive aggres-
sive framework using bandit feedback. As discussed earlier, there are three variants of
the passive-aggressive approach, namely, PA, PA-I, and PA-II. We name them as EPABF
(Exact Passive Aggressive approach under Bandit Feedback), EPABF-I and EPABF-II
respectively.

4.1. EPABF Updates

In EPABF approach, after receiving the bandit feedback I{ỹt=yt}, the new parameters of

the classifier are found as follows. If
∑K

r=1 l̃
t
r = 0, then we do not update the parameters.

On the other hand, if the
∑K

r=1 l̃
t
r > 0, then we find the new parameters by solving the

following optimization problem.

wt+1
1 . . .wt+1

K = arg min
w1,...,wK

1

2

K∑
v=1

‖wv −wt
v‖2 s.t.

K∑
r=1

l̃r = 0

= arg min
w1,...,wK

1

2

K∑
v=1

‖wv −wt
v‖2 s.t. atwỹt · xt −wr · xt ≥ 1, ∀r ∈ [K]

374



Exact Passive-Aggressive Algorithms Using Bandit Feedbacks

This is a quadratic optimization problem with K linear constraints (one constraint corre-
sponding to each class. Let St denotes the support class set which contain indices of active
constraint. Final update equations for EPABF are as follows.

wt+1
r = wt

r − λtrxt + atI{r=ỹt}
∑
i∈St

λtix
t, r = 1 . . .K

where

λtr =


1

‖xt‖2

(
l̃tr +

at l̃
t
ỹt

1 + |St|a2t − at
−

a2t
∑

i∈St l̃
t
i

1 + |St|a2t − at

)
ỹt ∈ St

1

‖xt‖2

(
l̃tr −

a2t
a2t |St|+ 1

∑
i∈St l̃

t
i

)
ỹt /∈ St

(2)

The derivation of the step sizes is given in the supplementary file. Thus, we can deter-
mine the step sizes of λtr and obtain a complete update rule if the support class set St is
known. The overall approach of learning classifier using EPABF is described in Algorithm 1.

Algorithm 1 Exact Passive Aggressive Ap-
proach Under Bandit Feedback (EPABF)

1: Input: γ ∈ (0, 0.5), Training Set Q
2: Initialize: w0

1, . . . ,w
0
K

3: for t = 1, . . . , T do
4: Receive xt ∈ Q
5: Set ŷt = arg maxr∈[K] (wt

r · xt)
6: for r = 1, . . . ,K do
7: Define P t(r) = (1− γ)I{r=ŷt} + γ

K

8: end for
9: Sample ỹt ∼ P t. Receive feedback I{ỹt=yt}.

10: for r = 1, . . . ,K do
11: Compute l̃tr = [1− atwt

ỹt · x
t + wt

r · xt]+
12: end for
13: St=SCA(l̃t1, . . . , l̃

t
K , at)

14: if ỹt ∈ St then
15: for r ∈ St do

16: λtr =
l̃tr
‖xt‖2 +

‖xt‖−2at l̃
t
ỹt

1 + |St|a2t − at
−

‖xt‖−2a2t
∑
i∈St l̃

t
i

1 + |St|a2t − at
17: end for
18: else if ỹt /∈ St then
19: for r ∈ St do

20: λtr =
1

‖xt‖2

(
l̃tr −

a2t
∑
i∈St l̃

t
i

1 + |St|a2t

)
21: end for
22: end if
23: Set λtr = 0, ∀r /∈ St
24: for r = 1 . . .K do
25: wt+1

r = wt
r − λtrxt + atI{r=ỹt}

∑
i∈St λ

t
ix
t

26: end for
27: end for
28: Output: wT+1

1 , . . . ,wT+1
K

Algorithm 2 Support Class Set Finding
Algorithm for EPABF (SCA)

1: Input: l̃t1, . . . , l̃
t
K , at

2: Initialize: St := φ
3: Sort l̃t1 . . . l̃

t
K in descending order. Let

σ(1) . . . σ(K) be the sorted order.
4: for j = 1 . . .K do
5: if ỹt /∈ St then

6: if
a2t

1 + |St|a2t
∑
k∈St l̃

t
σ(k) < l̃tσ(j) then

7: St = St ∪ σ(j)
8: end if
9: else if ỹt ∈ St then

10: if
a2t
∑
k∈St l̃

t
σ(k)

1 + |St|a2t − at
< l̃tσ(j)+

at l̃
t
ỹt

1 + |St|a2t − at
then

11: St = St ∪ σ(j)
12: end if
13: end if
14: end for
15: Output: St
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Determining Support Class Set St The EPABF algorithm assumes requires the sup-
port class set St as an input. Following theorem states the necessary and sufficient condition
for any class belonging to the support class set.

Theorem 1 Assume that at trial t, St 6= φ. Let σ(k) be the k-th class in the sorted order
of l̃t1, . . . , l̃

t
K . The necessary and sufficient condition for σ(k) to be in set St is as follows.

l̃tσ(k) >


a2t
∑k−1

j=1 l̃
t
σ(j)

1 + (k − 1)a2t − at
−

at l̃
t
ỹt

1 + (k − 1)a2t − at
ỹt ∈ St

a2t
∑k−1

j=1 l̃
t
σ(j)

1 + (k − 1)a2t
ỹt /∈ St

The proof of this theorem is given in supplementary file. Theorem 1 allows us to algorith-
mically determine the support classes St. We simply sort classes according to l̃tr values in
descending order, and the top J classes in the sorted list are the support classes (where J is
the largest k that satisfies the Theorem 1 statement). Support class set finding algorithm
(SCA) is described in Algorithm 2.

4.2. EPABF-I Updates

EPABF-I finds new parameters which are closest to the previous parameters and achieve
minimum loss on the current example. This is done by solving the following problem.

wt+1
1 . . .wt+1

K = arg min
w1,...,wK

1

2

K∑
v=1

‖wv −wt
v‖2 + C

K∑
v=1

ξv

s.t. atwỹt · xt −wr · xt ≥ 1− ξr; ξr ≥ 0, r ∈ [K] (3)

Here C > 0 is a parameter to the trade-off between the two parts of the objective function.
The larger the value of C, the focus is more on minimizing the loss. The resulting parameter
update equations are as follows.

wt+1
r = wt

r − λtrxt + atI{r=ỹt}
∑
i∈St

λtix
t, r = 1 . . .K

where

λtr =


min

(
C,

1

‖xt‖2

(
l̃tr +

at l̃
t
ỹt

a2t |St|+ 1− at
−

a2t
∑

v∈St l̃
t
v

a2t |St|+ 1− at

))
ỹt ∈ St

min

(
C,

1

‖xt‖2

(
l̃tr −

a2t
∑

v∈St l̃
t
v

a2t |St|+ 1

))
ỹt /∈ St

A complete derivation of the update equation and λtr is given in the supplementary file.
To determine the support set St, EPABF-I uses a slightly different approach compared to
Algorithm 2. EPABF-I uses an iterative process to find the values of λtr until all the values
converge. Support class algorithm (SCA-I) for EPABF-I is given in Algorithm 3.
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4.3. EPABF-II Updates

EPABF-II algorithm also makes a trade-off between the closeness to the current weight
vector and aggressiveness to minimize the loss on the current instance. But in EPABF-II
we minimize square of the loss while considering the trade-off.

wt+1
1 . . .wt+1

K = arg min
w1...wK

1

2

K∑
v=1

‖wv −wt
v‖2 + C

K∑
v=1

ξ2v

s.t. atwỹt · xt −wr · xt ≥ 1− ξr, r ∈ [K]

Algorithm 3 Support Class Set Finding
Algorithm for EPABF-I (SCA-I)

1: Input: l̃t1, . . . , l̃
t
K , at

2: Initialize: St := φ
3: Sort l̃t1 . . . l̃

t
K in descending order. Let

σ(1) . . . σ(K) be the sorted order.
4: while λt1, . . . , λ

t
K do not converge do

5: for r = 1 . . .K do
6: if ỹt ∈ St then

7: λtσ(r) = min

[
C,

1

‖xt‖2

(
l̃tσ(r) +

at l̃
t
ỹt

a2t |St|+ 1− at
−

a2t
∑
v∈St l̃

t
v

a2t |St|+ 1− at

)]
8: else if ỹt /∈ St then

9: λtσ(r) = min

[
C,

1

‖xt‖2

(
l̃tσ(r) −

a2t
∑
v∈St l̃

t
v

a2t |St|+ 1

)]
10: end if
11: if λtσ(r) > 0 then

12: St = St ∪ σ(r)
13: else
14: St = St − σ(r)
15: λtσ(r) = 0
16: end if
17: end for
18: end while
19: Output: St

Algorithm 4 Support Class Set Finding
Algorithm for EPABF-II (SCA-II)

1: Input: l̃t1, . . . , l̃
t
K , at

2: Initialize: St := φ
3: Sort l̃t1 . . . l̃

t
K in descending order. Let

σ(1) . . . σ(K) be the sorted order.
4: for j = 1 . . .K do
5: if ỹt /∈ St then

6: if
a2t(

a2t |St|+ 1 +
1

2Cxt‖2

) ∑
k∈St l̃

t
σ(k) <

l̃tσ(j) then

7: St = St ∪ σ(j)
8: end if
9: else if ỹt ∈ St then

10: if
a2t
∑
k∈St l̃

t
σ(k) − at l̃

y
ỹt(

a2t |St|+ 1− at +
1

2Cxt‖2

) < l̃tσ(j)

then
11: St = St ∪ σ(j)
12: end if
13: end if
14: end for
15: Output: St

Parameter C > 0 is used to make trade off between the two parts of the objective
function. For larger value of C, more emphasis is given to minimize the square of the loss.
The resulting parameter update equations are as follows.

wt+1
r = wt

r − λtrxt + atI{r=ỹt}
∑
i∈St

λtix
t, r = 1 . . .K
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where

λtr =



1

‖xt‖2
(

1 +
1

2C‖xt‖2

)
l̃tr +

at l̃
t
ỹt − a

2
t

∑
j∈St l̃

t
j

a2t |St|+ 1− at +
1

2C‖xt‖2

 ỹt ∈ St

1

‖xt‖2
(

1 +
1

2C‖xt‖2

)
l̃tr − a2t

∑
j∈St l̃

t
j

a2t |St|+ 1 +
1

2C‖xt‖2

 ỹt /∈ St

The derivations of the step size is given in supplementary file. Using this step size, we
get following method to determine the support class.

Determining Support Class Set St Following theorem states the necessary and suffi-
cient condition for any class belonging to the support class set.

Theorem 2 Assume that at trial t, St 6= φ. Let σ(k) be the k-th class in the sorted order
of l̃t1, . . . , l̃

t
K . The necessary and sufficient condition for σ(k) belongs to St is as follows.

l̃tσ(k) >



a2t
∑k−1

j=1 l̃
t
σ(j) − at l̃

y
ỹt(

a2t (k − 1) + 1− at +
1

2C‖xt‖2

) ỹt ∈ St

a2t(
a2t (k − 1) + 1 +

1

2C‖xt‖2

) ∑k−1
j=1 l̃

t
σ(j) ỹt /∈ St

The proof of this theorem can be found in the supplementary file.

5. Mistake Bound Analysis

Here, we find the mistake bounds for the proposed algorithms EPABF, EPABF-I and
EPABF-II. Note that, E[

∑K
v=1 l̃

t
v] ≥

∑K
v=1 l

t
v and

∑K
v=1 l

t
v ≥ lthinge ≥ lt0−1. Thus,

∑T
t=1

∑K
v=1 E[l̃tv]

upper bounds the number of mis-classifications over a sequence of T examples. Similarly,
E[
∑K

v=1(l̃
t
v)

2] ≥
∑K

v=1(E[l̃tv])
2 ≥

∑K
v=1(l

t
v)

2 ≥ lt0−1. Thus,
∑T

t=1

∑K
v=1 E[(l̃tv)

2] also upper
bounds the number of mis-classifications over a sequence of T examples.

Theorem 3 (Mistake Bound of EPABF) Let x1 . . .xT be the sequence of examples pre-
sented to EPABF. Let u1, . . . ,uK be the parameters of an arbitrary linear classifier. Let
l̃∗tr = [1− atuỹt ·xt +ur ·xt]+, r ∈ [K]. Then, EPABF algorithm satisfies following mistake
bound.

T∑
t=1

E[

K∑
v=1

(l̃tv)
2] ≤

(
R

√√√√α

K∑
v=1

‖uv‖2 + 4α

√√√√ T∑
t=1

E[

K∑
v=1

(l̃∗tv )2]

)2

Where R = maxt∈[T ] ‖xt‖2 and α =

(
K3

γ2
+ 1

)
.
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The proof of the theorem can be found in supplementary file. The regret bound increases
with K (number of classes). In the ideal case (l∗tv = 0,∀v ∈ [K], ∀t ∈ [T ]), the regret

bound reduces to

(
R
√
α
∑K

v=1 ‖uv‖2
)

, which is similar to the regret achieved in the full

information case (Matsushima et al., 2010).

Theorem 4 (Mistake Bound of EPABF-I) Let x1 . . .xT be the sequence of examples
presented to EPABF-I. Let u1, . . . ,uK be the parameters of an arbitrary linear classifier.
Let l̃∗tr = [1 − atuỹt · xt + ur · xt]+, r ∈ [K]. Let K be the total number of classes and
R = maxt∈[T ] ‖xt‖2. Then, EPABF-I achieves the following mistake bound.

1

R2

(
1− γ

K

) T∑
t=1

E

[
K∑
v=1

l̃tv

]
≤

T∑
t=1

E

[
K∑
v=1

l̃∗tv

]
+

1

2

(√√√√ K∑
v=1

‖uv‖2
√
TKR2 +

TK4R2

γ2
+ T

)

The proof of the theorem can be found in supplementary file. The general regret bound is
of order O(

√
T ) which is at par with the majority of the bandit feedback algorithms. The

regret bound increases with increase in number of classes. In the ideal case (l∗tv = 0,∀v ∈

[K], ∀t ∈ [T ]), the bound reduces to
1

2

(√∑K
v=1 ‖uv‖2

√
TKR2 +

TK4R2

γ2
+ T

)
.

Theorem 5 (Mistake Bound of EPABF-II) Let x1 . . .xT be the sequence of examples
presented to EPA. Let u1, . . . ,uK be the parameters of an arbitrary linear classifier. Let
l̃∗tr = [1−atuỹt ·xt+ur ·xt]+, r ∈ [K] and R = maxt∈[T ] ‖xt‖2. Then, EPABF-II algorithm
satisfies following mistake bound.

T∑
t=1

E

[
K∑
v=1

(
l̃tv

)2]
≤M

(
K∑
v=1

‖uv‖2 + 2CR2
T∑
t=1

E

[
K∑
v=1

(
l̃∗tv

)2])

where M =

(
R2 +

1

2C

)2

(
2K +

1

C

)
The proof of the theorem can be found in supplementary file. In the ideal case when

l∗tv = 0,∀v ∈ [K],∀t ∈ [T ], the bound reduces to M
(∑K

v=1 ‖uv‖2
)

.

6. Experiments

In this section, we provide experimental results to show the effectiveness of the proposed
approach on synthetic and UCI datasets (Dua and Graff (2017)).
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Datasets Used We report experimental results on two synthetic datasets and 5 UCI
datasets (Dua and Graff (2017)). Synthetic datasets are generated as follows.

1. SynSep: It is a 10-class, 100-dimensional data set of 1,00,000 examples generated as
follows. We randomly generate vectors from [−1, 1]100. We use u1, . . . ,u10 ∈ R100 as
the discriminant vectors for 10 classes. All the entries of ui are 1 except for indices
i + 10j, j = 0 . . . 9. Entries at indices i + 10j, (j = 0 . . . 9) are -1. Class label for a
given example x is assigned as yx = arg max

i∈{1...10}
(ui.x). This data is linearly separable.

2. SynNonSep: This dataset is constructed in the same way as SynSep except that
we introduce 5% label noise. This makes the data set linearly non-separable.

The UCI datasets (Dua and Graff, 2017) used are Ecoli, Abalone, Satimage, Iris and USPS.
Abalone dataset is not balanced as there is asymmetry in its class distribution, so we divided
the Rings attribute into 4 intervals as 1-7, 8-14, 15-21, 22-29. Thus, we reduce it to 4 class
classification problem.

Benchmark Algorithms: We present experimental comparisons of the proposed algo-
rithms (EPABF, EPABF-I, and EPABF-II) with Banditron (Sham M. Kakade (2008)),
Bandit Passive-Aggressive (BPA) (Zhong and Dauce (2015)). We also compare the pro-
posed approaches with PA, PA-I, and PA-II algorithms (Matsushima et al. (2010)), which
are full information based algorithms. This means PA, PA-I, and PA-II use exact class
labels for training. We do this to see how much performance degradation happens due to
bandit feedback.

Experimental results are shown in Figures 4. For every dataset, we have ran each
algorithm for 100,000 iterations. We have plotted the error curves by averaging the error
rates(ratio of incorrectly classified and number of rounds) over 100 different runs. The
final plots for each dataset have the average instantaneous error rate on the Y-axis and the
number of trials on the X-axis.

(a) (b) (c)

Figure 2: Converged Error Rates versus and γ and C for Iris Dataset. Note that γ and C
are on the log scale.
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Choosing Optimal γ and C for the Proposed Algorithms: EPABF algorithm takes
γ is a user-defined parameter. Similarly, EPABF-I and EPABF-II require γ and C values as
input. To choose the best values of these hyper-parameters, we use the following approach.
We explain it for Iris dataset. Figure 2 shows the trend of converged error rate with gamma
log2(γ) and log2(C) for EPABF algorithms for Iris dataset. We have chosen the best value
of γ and C for which the minimum error rate is achieved. We found the optimal values
of γ and C for all the datasets using the same method. The optimal values of C and γ
for different datasets are shown below in the Tables 1, 2 and 3. The final results shown
are based on taking these optimal hyper-parameters values. We use the same approach for
selecting the hyper-parameters for the benchmark algorithms also.

Table 1: EPABF
Dataset γ

SynSep 0.0001
SynNonSep 0.001
Ecoli 0.04
Abalone 0.008
Satimage 0.065
Iris 0.035
USPS 0.06

Table 2: EPABF-I
Dataset C γ

SynSep 0.1 0.0003
SynNonSep 0.1 0.001
Ecoli 0.01 0.05
Abalone 0.01 0.02
Satimage 0.1 0.06
Iris 0.03 0.025
USPS 0.1 0.1

Table 3: EPABF-II
Dataset C γ

SynSep 0.1 0.0001
SynNonSep 0.1 0.0001
Ecoli 0.01 0.04
Abalone 0.01 0.03
Satimage 0.1 0.06
Iris 0.03 0.04
USPS 0.1 0.1

Comparison of EPABF algorithms with Other Bandit Algorithms: Figure 3
presents comparison results of the proposed EPABF and its variants with other bandit feed-
back based algorithms (i.e., BPA and Banditron). We observe that the proposed EPABF
variants outperform Banditron by a significant margin in terms of converged error rates for
all the datasets. Compared to BPA, the proposed algorithms perform significantly better
except for the Ecoli, USPS, and Iris datasets. For Ecoli, USPS, and Iris datasets, pro-
posed approaches still perform better than BPA though marginally. For Iris and Satimage,
EPABF variants take more time to converge compared to BPA and Banditron but achieve
a lower error rate.

We see that from SynSep to SynNonSep, the performances of BPA and Banditron drop
by huge amount compared to EPABF variants.

Comparison with Full Information Case: Figure 4 presents comparison results of
the proposed algorithms with full information algorithms, namely, PA, PA-I, and PA-II.
For Ecoli and USPS datasets, the proposed EPABF algorithms perform comparably to the
full information counterparts. For Iris, Satimage, and USPS datasets, the full information
algorithms perform better than the proposed approach.

On the other hand, for SynSep, SynNonSep, and Abalone datasets, the proposed bandit
algorithms perform better than the full information based algorithms. A similar kind of
behavior was observed in Zhong and Dauce (2015). This might happen because of the
following reason. In the proposed algorithms, we are using an exploration-exploitation
scheme. Unlike the full information algorithms, we do not always choose the best-predicted
label, which is still selecting the best labels. Thus, over a broad set of examples, the actual
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Figure 3: Performance comparison of EPABF, EPABF-I and EPABF-II with Bechmark
Bandit Algorithms (BPA and Banditron).

labels match the labels predicted by EPABFs. This can lead to better performances of
EPABF algorithms compared to full information based algorithms.

7. Conclusion

This paper proposed three variants of passive-aggressive online algorithms for multiclass
classification using bandit feedback, namely EPABF, EPABF-I, and EPABF-II. We used
exploration-exploitation to guess the best label of an example. To update the parameters,
we solve a constrained optimization problem in each trial. The constraints are used to
capture the separability conditions of the multiclass problem. Finally, we update the pa-
rameter of those classes whose corresponding constraints are active. These classes are called
support classes. We also provided regret bounds for all three variants. We also offered an
experimental comparison of all the algorithms on various datasets. The results showed that
our EPABF algorithms perform better than existing bandit feedback based algorithms and
perform comparably to the full feedback based algorithms on most of the given datasets.
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Figure 4: Performance comparison of EPABF, EPABF-I and EPABF-II with full informa-
tion algorithms (PA, PA-I and PA-II).
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