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Abstract—Stackelberg games have found a role in a number of
applications including modeling market competition, identifying
traffic equilibrium, developing practical security applications and
many others. While a number of solution approaches have been
developed for these games in a variety of contexts that use
mathematical optimization, analytical analysis or heuristic based
solutions, literature has been quite sparse on the usage of Genetic
Algorithm (GA) based techniques. In this paper, we develop a GA
based solution to compute high quality mixed strategy solution
for the leader to commit to in a General Stackelberg Game (GSG)
using a normal form game formulation. The leader faces multiple
types of followers with discrete utility functions where the mixed
strategy of the leader (but not the actual action taken in the
round) is known to the follower. Our experiments showcase that
the GA developed here performs well in terms of scalability and
provides reasonably good solution quality in terms of the average
reward obtained. Given that finding the optimal mixed strategy
solution for GSGs is NP-hard (and the optimal solution for leader
lies in the mixed strategy space), we believe that the solution
approach presented here can support further development of
practical applications using GSGs.

Index Terms—Genetic Algorithms,
Games, mixed strategy

General Stackelberg

I. INTRODUCTION

Stackelberg games have found a role in a number of appli-
cations including modeling market competition [1[], identifying
traffic equilibrium [2]], practical security applications [3[|—[6]]
and many others. General Stackelberg Games (GSGs) [7]-
[9], assume a player referred to as the leader, who can
commit to a strategy to optimize its utility function while
other players referred to as followers respond to the leader’s
decision to optimize their own utility functions. GSG’s can be
expressed as bilevel optimization problems, where the top level
represents the leader’s decision problem while the followers’
responses are included as the optimal solution to the second
level problem [10], [11].

When the leader in a GSG faces a single follower, the
problem can be solved in polynomial time [12f. [[12] also
shows that if there are multiple followers, the problem is
NP-hard. Hence, there is a need to develop algorithms that
can scale better. Although a Genetic Algorithm (GA) based
solution may not guarantee optimal solution, with good design
it is possible to generate high quality solutions. To showcase
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the advantage of being a leader in GSG, we borrow the
following example from [13]. Consider a Stackelberg game
with the payoff table expressed as a normal form game [12],
as shown in Table I} The leader is the row player, follower is
the column player and both the players move simultaneously
(or do not observe the other player’s move before making their
own).

c d
a | 2,1 4,0
b 1,0 | 3,2

TABLE I: Payoff table for an example GSG

A pure-strategy Nash equilibrium [7]] for the game in Table
[l is when the leader plays a and the follower plays ¢ which
gives the leader a payoff of 2. There can be multiple such
pure Nash equilibrium strategies in general, but there is only
one such for this game. However, in the Stackelberg version
of the game, if the leader can commit to playing b, the leader
will obtain a payoff of 3, since the follower would play d to
ensure a higher payoff for itself. Let’s assume that the leader
commits to a uniform mixed strategy of playing a and b with
equal (0.5) probability, then the follower will play d, leading
to a payoff of 3.5 for leader. The optimal mixed (Stackelberg)
strategy for this game, would result in a leader strategy [a,b]
= [2/3, 1/3] and follower action b, leading to a payoff of 3.67
for the leader. As shown in literature, the optimal strategy
for the leader in a Stackelberg game would in general be a
mixed strategy [12], hence most works in this space focus on
identifying high quality or optimal mixed strategy solutions in
an efficient manner.

A. General Stackelberg Games (GSGs)

A GSG contains N agents, and each agent m must be
one of a given set of types #,. The GSG we consider has
two agents namely a leader and a follower. 6; is the set of
possible types for the leader and 6 is the set of possible
types for the follower. We consider similar scenario as used in
[13], where a leader (security agent of one type) would face
multiple follower types (i.e., robber). During the game, the
robber knows its type but the security agent does not know
the robber’s type. For each agent (security agent or robber) n,
there is a set of strategies o, and a utility function u,, : 6,
X92><0'1><0'2—>§R.



B. Genetic Algorithm (GA)

As introduced in [14], a Genetic algorithm (GA) is a meta-
heuristic commonly used to generate solutions for optimization
and search problems by relying on bio-inspired operators such
as selection, crossover and mutation. Prior work that focuses
on developing GA based solution(s) for Stackelberg game is
quite sparse. [[15]—[17] aim to develop solutions using GA for a
two player Stackelberg game where the utility function of each
player is modeled using a continuous mathematical function
(and also differentiable in [15]). In contrast, we develop a
GA solution to search for high quality mixed strategy for the
leader to use in a two player GSG (uses the notion of types
for each player) modeled as a normal form game with discrete
utilities. We experimentally show that our solution is scalable
to solve much bigger games. While games with continuous
utility functions are studied in game theoretic literature, a large
part of the literature uses the normal form or extensive form
game representation where the utility of each player for each
possible outcome of the game is typically specified as a real
number. Hence the work presented in this paper captures a
wide variety of settings and would be of general interest.

II. GENETIC ALGORITHM APPROACH

We now provide specifics of the GA approach we develop
for our purposes. We build our fitness function upon the idea
presented in [15]], which describes computation of Stackel-
berg solutions using GA in which utilities for the players
are modeled as continuous and differentiable mathematical
functions. We therefore need to make suitable modifications
to account for the discrete utility function we model here. [|15]]
assumes real valued domain as input and output for the leader
and the follower, while for our problem we consider integer
valued domain as input and output for the follower, and real
valued domain for the leader. The selection operation for our
purposes is adapted from [18] and crossover from [19]. We
develop a custom mutation operation, which is a combination
of exhaustive search along with a relaxed version of the same.
Custom mutation operations have been used in literature in
different contexts e.g., [20]] solves a scheduling problem using
customized crossover and mutation operations.

A. Population

The initial population for GA plays a key role in achieving
optimal solution as it represents the search space for the GA.
Hence, we need to provide a suitable initial population to
achieve high quality solutions. We use the following seeding
technique for our purposes: The initial population is comprised
of randomly generated mixed strategies and is seeded with the
best deterministic strategy. To compute the best deterministic
strategy of the leader, we first compute the reward the leader
can obtain for each of its actions. This computation needs
the leader to identify the (best) response the follower would
choose for that particular action of the leader. We then choose
the action which provides highest reward for the leader as
the best deterministic strategy. When there are multiple fol-
lower types, each follower type would pick a different best

response and the follower best response would be a weighted
combination of all these best responses (where weight is the
type probability). Algorithm [2| summarizes the set of steps
involved. Each mixed strategy is generated as follows: We
randomly pick the actions (repetition not allowed) and assign a
random probability e.g., p; between 0 to 1 for the initial action
picked. For the next action picked, the range of choosing the
probability ps is updated i.e., between 0 to (1 — p;) and this
process continues. Each time a probability p; is assigned to
an action, the 1 — sum(p;) is updated until it becomes zero.
Pseudo code presented in Algorithm [I] shows the generation
of a chromosome in the population. This generation procedure
satisfies the following constraints: (a) Probability assigned to
each action must be between 0 and 1. (b) Sum of probabilities
across all the actions must sum to 1.

Algorithm 1 Population initialisation

r=1
ind is the chromosome of length equal to no.of actions of
leader
all values in chromosome are zero initially
for i= 0 to Number of actions of the leader do
n = pick random action
if ind[n] == 0 then
> checking the index of chromosome ensuring same
index/action not picked again
ind[n] = random(0,r)
probability between O to r
end if
r = l-sum(ind) > sum(ind) sum of probabilities in ind
if sum(ind)==1 or r==0 then
break
end if
end for
return ind

> assigning random

> created chromosome included in population

Algorithm 2 Deterministic strategy in multi-follower scenario

Consider the leader has n actions
let there be m follower types
let w be the vector that contains m weights
for i= 0 to n actions of the leader do

Compute the total reward for the i’th action of the leader
based on (weighted combination of) best response given by
each follower type (where weight for each follower is its
type probability)
end for
Choose the leader action which gives the best reward as the
best deterministic strategy

The length of each parent or chromosome is equal to the
number of actions i.e., number of pure strategies of the leader
in GSG. Consider the sample normal form game defined in
The leader in this game has two actions, hence each
parent is of length two. A sample initial population of five
parents for this game is shown in



i1 0.5 0.5
i2 | 0.65 | 0.35
i3 | 0.15 | 0.85
14 0.9 0.1
15 0.7 0.3

TABLE II: Sample population

Note that i1, 79, i3, 74, i5 in the table denote the chromo-
somes where i; = [0.5, 0.5], i5 = [0.65, 0.35] and so on.

B. Fitness function

The fitness function needs to define how fit or good a candi-
date solution (parent) is for the problem under consideration.
The objective of our problem is to identify the best possible
mixed strategy for the leader. As stated earlier, the algorithm in
[15] aims to compute Stackelberg equilibria where the payoff
functions are continuous and differentiable. We make suitable
modifications to their fitness function to adapt for discrete
actions and payoff as presented below. In particular, we model
a maximization function for the follower, given an arbitrary
mixed strategy of the leader. We then use this ’functor’ inside
the objective function of the leader. This is also inline with
idea behind game theoretic solution approaches for GSGs e.g.,
DOBSS algorithm [[13]], although there is no notion of a fitness
function.

The fitness function for our purposes is computed as fol-
lows: For a given chromosome (i.e., mixed strategy of the
leader) picked from the population, the fitness function starts
by computing the reaction of the follower to the chromosome
(i.e., the leader’s strategy). It then evaluates the leader’s
strategy, taking into the account the follower’s reaction to
this strategy of the leader. An inner optimization problem
(corresponding to the follower) is solved each time the GA
evaluates the leader’s strategy. Hence, we model the fitness
evaluation as a bilevel optimization problem [10], [[11]. Using
the following notation, the fitness function can be mathemati-
cally represented as follows: Let the leader be row player and
follower be column player. We denote X as index set of pure
strategies for the leader, L denotes the set of follower types and
Q" denotes the index set of pure strategies for follower of type
I. Rl; and C}; are the rewards of the leader and the follower
of type [ respectively. p' denotes the a priori probability that a
follower of type [ will appear and Z; denotes the probability
(i.e., value between O to 1) of using pure strategy ¢, from the
index set X of the leader.

A N
i€X leL jeqQ!
S.t.
JjE argmax{z ijZi} (1)
JeQl  jex
>z
ieX
Z; € [0, 1]

The argmax function computes the best response j of
follower, for a given mixed strategy of the leader (as encoded

in a chromosome of the population). The computed response
7 is then used in the objective function, to compute the
maximum expected reward for the leader (i.e., fitness value).
Table 1l showcases fitness values for the population defined
in(Table II| along with the Best Response (BR) of the follower
for each instance. For example, row 1 of corresponds
to the fitness of chromosome 4; and is computed as follows:
For the game with X = [a,b], L = [1] (only 1-follower type),
Q' = [c,d] and payoffs for leader and follower as defined in
for a given mixed strategy (i; with probabilities [0.5,
0.5] here), the fitness function computes the follower’s reaction
and then evaluates the reward (i.e., fitness value), that can be
obtained for the leader using that strategy. The follower’s best
reaction (i.e., Best Response) for ¢; is d, since it ensures a
higher reward of 1.0 for itself compared to a reward of 0.5
when it chooses c. Hence, the max reward (i.e., fitness value)
for the leader would be 3.5 for 7.

parent | fitness | BR
i1 3.5 d
12 3.65 d
i3 3.15 d
14 2 c
i5 1.7 c

TABLE III: Example for fitness

C. Selection

The selection operation involves selection of parents for
the next generation. We use the Tournament selection [|18]]
method for our purposes, which is widely used due to a
number of properties including its efficiency, low susceptibility
to takeover by dominant parents, and simple implementation.
In tournament selection, n parents (i.e., mixed strategies for
leader) are selected randomly from the larger population,
and the selected parents compete against each other. The
parent with the highest fitness (i.e., mixed strategy that gives
highest leader reward) wins and will be included in the next
generation population. The number of parents competing in
each tournament is referred to as tournament size. Tournament
selection provides a chance for all parents to be selected and
thus it preserves diversity, although keeping diversity may
degrade the convergence speed.

@ Random Best
OO @ m
> @

Fig. 1: Selection strategy with tournament mechanism

Selected
individual

Figure [I] adapted from [I8], shows an example for the
tournament selection procedure. The figure showcases a pop-
ulation of size 8 with each parent assigned a fitness score



(f). The tournament size (7) in the figure is 3. Hence, three
chromosomes are selected randomly from the population of
size 8 in an iterative fashion where the chromosome with
best fitness is selected in each iteration e.g., chromosome
with fitness score of 9 is selected in the first iteration. The
chromosome selected at each iteration will be included in
the parent set and the process is repeated for n iterations,
to identify n parents for the crossover and the mutation
operations.

D. Crossover

Crossover operation is also called recombination and is used
to combine the genetic information of two parents to generate
new offspring(s).The crossover operator we use in this paper is
a standard one called Simulated Binary Crossover(SBX) [[19].
In particular, we use a bounded variant of it as presented in
[19] with a lower bound of 0 and upper bound of 1. Reader
can refer to DEAP Framework [21]] and the appendix of [22],
for implementation details of this procedure.

E. Mutation

As stated earlier in Introduction, we use a custom mutation
operator which is a combination of an exhaustive search and
its relaxed version. Although it is comprised of two search
methods, only one of them is used based on a random number
(between 0 and 1). The pseudo code for the mutation operator
is shown in Algorithm [3]

Algorithm 3 Mutation
if random(0,1) < 0.3 then

mutation1() > exhaustive search
else

mutation2() > relaxed variant of exhaustive search
end if

The reason for this approach is as follows: we observed
via our experiments that the exhaustive mutation operator
(mutationl) takes a long computation time. The relaxed variant
on the other hand (mutation2), can result in a lower fitness.
We therefore use a combination of these two variants, with the
intent to obtain high enough fitness values while being reason-
able in terms of computation time. We present descriptions of
these operators below.

Algorithm [ showcases the exhaustive search used in the
mutation process (mutationl) to find a better individual. We
first define a set of §’s, which are the possible values by which
we vary the probability of an action. For a given vector/mixed
strategy, we iteratively go over each action and § and we add o
to the action’s probability. All possible combinations of actions
and 0’s are tested to find the best possible vector. Whenever
a better vector is found, we store the new vector as potential
best and continue testing with other action-6 combinations, till
all the combinations are tested. Please note that whenever a
0 value is added, the sum of probabilities of actions of the
new vector would not add up to 1. We therefore normalize
the new vector at every combination and compare it with the

Algorithm 4 mutation 1
0 = [61,02,03. . . ,0n]

benefit = 1
while benefit > 0 do
benefit = 0

for i =0 to Number of actions of leader do
for k =0 to Number of deltas do
create new normalised vector (i-e..,mixed strat-
egy/chromosome) by adding §;, to i*" action

local_benefit= value(new_vec)-value(old_vec)
> difference in fitness/reward between new
created vector and old one

if local_benefit > benefit then
benefit = local_benefit
old_vec = new_vec > chromosome is
updated
else
vector remains unchanged
end if
end for
end for
end while

best vector found till that stage. The set of values for delta,
we used for our experimentation are [0.05,0.1,0.25,0.5]. We
have experimented with different values of §’s to arrive at the
values assigned.

In the relaxed version of mutationl() i.e., mutation2() (as
referenced in algorithm3), we do the following instead of
testing every possible combination of ¢’s and actions: We
first pick an action randomly. We then pick a § randomly
and check if the new vector formed by adding the § to that
action probability, increases the fitness of the vector. If the new
vector is better we terminate the mutation, else we randomly
pick another value for ¢ (repetition not allowed) and continue
testing. If we do not find a better vector after testing with all
¢’s for that action, we terminate the mutation. As shown in
algorithm 3] mutation2() gets picked most times unless random
number generated is less than 0.3 (with an aim to keep the
computation overheads low).

FE. Normalization

We define population as a set of chromosomes. Each chro-
mosome represents a mixed strategy, i.e., probability distribu-
tion over the set of actions/pure strategies of the leader. The
crossover and mutation operations can result in probability
values that may not sum to 1 for a chromosome. Hence,
chromosomes are normalized during crossover and mutation
whenever needed, to satisfy the following constraints [23]]: (a)
Probability assigned to each action must be between [0, 1] (b)
Sum of the probabilities across all actions must sum to 1.

G. Replacement policy

At the end of each generation, if the new generation of off-
springs are less fit than each of their respective parents, they



TABLE IV: GA Parameter details

Parameter Value
Population size 50
Crossover rate 0.9
Mutation rate 0.1
Selection Tournament Selection with selection size=3
Crossover mode Simulated Binary Bounded Crossover
Lower bound z(%) 0
Upper bound z(U) 1
Distribution index n 0.1
Mutation mode custom mutation
Generations 100

are not allowed in the next generation. From perspective of
crossover, if ¢l and c2 are the off-springs/children generated
when crossover is performed with pl and p2 as parents, cl
is considered as child of pl and ¢2 is considered as child of
p2. No such notation is needed for mutation since a parent
generates only one child. We borrow this replacement policy
from [24]], to improve the speed of convergence.

H. Termination Conditions

The GA terminates if any of the following conditions are
met:

1) GA reaches 100 generations.

2) The time limit is crossed (which we used as 1 hour (3600
seconds) in our experiments)

3) The standard deviation (of fitness) of the population [25]]
is less than 1 x 104

4) The difference between the fitness value of the best chro-
mosome in the current generation and the best fitness
value from previous generation is less than 1 x 10~
for 10 consecutive generations.

[0.65,0.35]
£=3.65

l Tournament

population

[0.9,0.1]
f=2

selection Ts =2

JCrossover and normalization

[0.495,0.504]

lMutation and normalization

[0.512,0.485]

to the population after replacement

J Adding back the evaluated individuals
policy.

[0.512,0.485] [0.65,0.35]
Population for =3.77 f=3.65
next generation
[0.9,0.1]
f=3.65

Fig. 2: Sample GA process for one generation

III. EXAMPLE WORKING OF GA FOR ONE ITERATION

Figure 2| showcases one iteration of how our GA operates.
Initially, we have a population of size 5 (i.e., five mixed strate-
gies), each having a fitness value (f) shown in the figure. Two
chromosomes are selected using tournament selection with
tournament size T equal to 2. The two selected chromosomes
are sent to crossover and then to mutation operations. Their
fitness is computed and will replace the old chromosomes, if
their fitness values are better than fitness of the old chromo-
somes using the process described in (e.g., if
chromosomes pl and p2 generate cl and c2 via crossover, cl
is compared to pl and c2 to p2 post performing mutation on
cl and c2 respectively). Note that at each generation we save
the top 10% of chromosomes for next generation while the
rest of them will undergo tournament selection (i.e., elitism
strategy). The selected pool of chromosomes are then sent for
crossover and mutation. For explanation purposes, if there are
50 chromosomes in initial population, we preserve the top 5
chromosomes (10%) while rest of them undergo tournament
selection. The selected chromosomes along with the preserved
10%, are then sent to crossover and mutation operators.

IV. EXPERIMENTAL DOMAIN

We use the domain presented in [@] as our domain, which
is motivated by a patrolling and security application [27],
modeled as a game. As described in detail in [26], the game
consists of two players namely security agent (leader) and
robber (who is a follower) in a world consisting of m houses
1...m. The security agent’s set of pure strategies consists of
possible routes of d houses to patrol (in some order). The
security agent can choose a mixed strategy so that the robber
will be unsure of exactly where the security agent may patrol,
but the robber will know the mixed strategy the security agent
has chosen e.g., the robber can observe over time how often
the security agent patrols each house and choose a single house
to rob. If the house chosen by the robber is not on the security
agent’s route, the robber successfully robs it. If not, since the
robber takes time to rob a house, the earlier the house is on
the agent’s route, the easier it is (or higher the chance) for
the security agent to catch the robber before the robbery is
done. As presented in [26]], the payoffs are modeled using the
following variables:

e Uy z:value of the goods in house ¥ to the security agent.

e Uy 4:value of the goods in house y to the robber.

e c,:reward obtained by the security agent for catching the
robber.

e cq:cost to the robber for getting caught.

 py:probability that the security agent can catch the robber
at the yth house in the patrol (p, < p, <= y/ < Y)

The security agent’s set of possible pure strategies (patrol
routes) is denoted by X and includes d-tuples ¢ = < wy, wa,
., wqg > . Each of w; ... wy may take values 1 through
m (different houses), however, no two elements of the d-tuple
are allowed to be equal (the agent is not allowed to return to
the same house). The robber’s set of possible pure strategies



(i.e., house to rob) is denoted by () and each pure strategy
denotes one of integers j = 1 . .. m. The payoffs for (security
agent, robber) for pure strategies ¢, j are:

o Uy g, Uygq for j =1 ¢ i

o DyCy + (1 - py)('vy,w)’ -PyCq + 1 - py) (Uy,q)? for j

=y €.

The above structure enables to model different types of
robbers who have differing motivations e.g., one robber may
have a lower cost of getting caught or may value the goods in
the various houses differently. We use a probability distribution
with varying probabilities for the different types of robbers. All
the games are normalized so that the minimum and maximum
payoffs are 0 and 1 both for the security agent and the different
robber types.

V. EXPERIMENTAL RESULTS

We created games with 10 and 20 houses with games
involving 1 to 14 follower types for 10-houses and 1 to 8
follower types for 20-houses. Each game models a patrol route
consisting of two houses and five instances of each game
setting were generated for averaging purposes. A route with
patrol size of two houses translates to 90 actions for the leader
in a game with 10 houses i.e., 10 P 2 (10 Permute 2) since
order of houses patrolled matters. Each follower type in this
case has 10 actions since the follower robs any one house. In
a similar manner, the leader has 380 actions when the number
of houses is 20 and each follower type has 20 actions. The
payoff tables were generated using the method described in
section For a game with 20 houses and 8 follower types,
we generate 8 payoff matrices each of size 380 * 20.

DOBSS is a popular algorithm for benchmarking purposes
[6], 18], [[13]] and is used in this work to compute the optimal
GSG solution. We used GUROBI 9.0 optimizer to implement
the DOBSS algorithm and used DEAP 1.3 to implement our
GA. Both the algorithms have been implemented with Python
interface on a machine with i5 processor and 16 GB RAM.
The cutoff time used for experiments is 1 hour (3600 seconds).
In the case of DOBSS, the best deterministic strategy of the
leader is used (computed using Algorithm [2), if the optimal
mixed strategy could not be computed within the cutoff
time. We refer to this version of DOBSS as DOBSS+DET.
Our proposed GA is an anytime algorithm as we are using
normalization (subsection to keep the chromosomes with
the constraints. So, the best solution found by the time of
cutoff is used. Regular termination conditions (apart from
cutoff time), were described earlier in

A. Runtime Results

[Figure 3|shows the averaged runtime results for DOBSS and
GA over five instances for each of the two settings involving
10 and 20 houses. Please note that DOBSS and DOBSS+DET
have similar runtime, since computing the optimal determin-
istic strategy using Algorithm [2] needs less than a second.
Hence, DOBSS+DET is not represented in the figure. The z-
axis of each plot in the figure shows the number of follower
types ranging from 1 to 14 for 10 houses and 1 to 8 for 20
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Fig. 3: Runtime plot for DOBSS and GA

houses. The y-axis for the plots shows the runtime measured
in seconds. DOBSS has an exponential increase in runtime
as the number of follower types increase whereas GA has a
slowly increasing runtime with some uneveness. In both the
settings, GA starts off needing more runtime initially with
DOBSS crossing GA at some point. For example, in the plot
for 10-houses with 14 follower types, DOBSS reached the
limit of 1 hour (3600 seconds) and was not able to provide
solution while the average runtime for GA with 14 follower
types is 368.30 seconds. In the setting with 20-houses (a much
bigger problem) both DOBSS and GA reach the cutoff limits
at 6 and 7 follower types respectively. Given that our proposed
GA is an anytime algorithm due to the usage of normalisation
(so chromosomes fulfill constraints), it performs well in terms
of scalability since it will have a solution identified at any
point of time while DOBSS cannot provide a solution till it
converges.

B. Solution Quality Results

We now present the solution quality results for DOBSS,
DOBSS+DET, GA and DET (best deterministic strategy) for



the settings with 10 and 20 houses. As the proposed GA is
an anytime algorithm, the best solution found by the time of
cutoff is used. DOBSS being a mixed integer program, either
identifies or does not identify a solution within the cutoff time
in which case a value of zero is assigned for DOBSS and the
reward obtained by the best deterministic strategy (DET) is
used for DOBSS+DET.

showcases the average reward obtained using the
different algorithms for the two settings involving 10 and 20
houses. Please note that the plots in the figure do not capture
the number of follower types since the results are computed
as follows: We first compute the average reward obtained by
the leader over five instances for each setting of follower types
i.e., from 1 to 14 follower types for 10-houses (corresponding
to 14 leader rewards) and from 1 to 8 for 20-houses. We then
compute the (overall) average reward for the leader as the
average of rewards obtained across all the follower types i.e.,
if [1 is the leader reward for the setting with 1 follower type
with 10 houses, [2 for the setting with 2 follower types and
so on till In for n follower types, the averaged reward for the
setting with 10 houses is obtained as an average over [1, [2
till In. Similar computation if performed for the setting with
20 houses.

The first plot of (plot (a)), shows the average
reward obtained for the settings with 10 and 20 houses. For the
setting with 10 houses, the average reward obtained by DOBSS
is 0.411, DOBSS+DET is 0.514, 0.487 for GA while the
average reward is 0.472 for DET. Similarly, for the setting with
20 houses the average reward for DOBSS is 0.375, 0.536 for
DOBSS+DET, 0.498 for GA while the value is 0.482 for DET.
The second plot of the figure, shows the percentage difference
of DOBSS+DET and GA w.r.t. DET and is computed as
follows:

Algo — DET .
DET

The second plot (i.e., plot (b)), shows that the average
reward obtained by DOBSS+DET is 8.8% and 11.20% higher
than DET for 10 and 20 houses respectively. Similar results
for GA stand respectively at 3.2% and 3.3% higher than DET.
This shows that our genetic algorithm provides reasonable
improvements over DET which captures the best deterministic
strategy for a GSG. In addition, as shown in plot (a), GA
performs significantly better than DOBSS since DOBSS was
unable to compute a solution within the cutoff time in a
number of cases. We therefore use a combination model
DOBSS+DET and results for this model show that the GA
solution we provide here (possibly) has scope for further
improvement. Please note that a number of parameter designs
have been tried as part of this work to develop a high quality
GA solution and the best design identified has been presented
here.

% Diff = 100 2

VI. CONCLUSIONS

In this paper, we present a Genetic Algorithm (GA) to
compute high quality mixed strategy solution for the leader
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Fig. 4: Solution quality plot for DOBSS and GA

to commit to in a General Stackelberg Game (GSG), when it
faces multiple types of followers with discrete payoff func-
tions. This is different from prior work in GA literature that
focus on developing GAs for a Stackelberg game with utilities
defined using continuous mathematical functions. DOBSS is a
popular game theoretic algorithm for benchmarking purposes
and is used to compute the optimal GSG solution in this paper.
Our experiments showcase that the GA algorithm developed
here performs well in terms of scalability and provides rea-
sonably good solution quality in terms of the average reward
obtained. Our future work will explore ways to improve further
the solution quality obtained using GA. We also plan to
explore possibilities to tailor the GA to capture better the
domain characteristics/constraints of specific applications that
Stackelberg games have been applied for.
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