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Learning-Based Model for Central Blood Pressure Estimation using
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Abstract— Pre-detection of hypertension mostly considers
the measurement of Brachial Artery Blood Pressure (BABP).
Although being a standard vital, it is still considered a poor
alternative for Central Blood Pressure (CBP). However, CBP
is measured invasively during the process of cardiac catheter-
ization (Cath). Though cuff-less techniques to estimate BABP
are widely employed, CBP estimation has not been explored
yet. Moreover, to best of our knowledge intermittent CBP
estimation has not been proposed earlier. Therefore, we present
a cuff-less and beat-by-beat CBP estimation technique using
linear regression analysis on features extracted from continuous
Electrocardiogram (ECG) and Photoplethysmograph (PPG)
signals. Unlike for BABP estimation, 30 supplementary features
to conventional pulse transit time such as ST-interval, P-
systolic peak interval, etc., were extracted to enhance CBP
accuracy. This extraction was done using Haar wavelet along
with modulus maxima. Feature selection has been done using
the wrapper technique and reduced using principal component
analysis. Segregation of each beat was achieved with the help
of constraints developed based on iteration and backtracing.
This model estimates Systolic CBP with a validation error
of 0.109 ± 2.37 mmHg and Diastolic CBP with an error of
0.031±2.102 mmHg for 33 Cath lab patients.

I. INTRODUCTION

According to the World Health Organization (WHO) fact
sheets, an estimated 1.13 billion people worldwide, that is
two-third of the world population have hypertension [1].
Prior diagnosis and treatment of hypertension can be done if
Blood Pressure (BP) is monitored continuously. Therefore,
Brachial Artery Blood Pressure (BABP) has been considered
as a standard vital for monitoring. However, in the blood cir-
culatory system, blood is supplied to crucial organs through
major arteries that are more exposed to aorta rather than the
brachial artery. Since it is one of the second level branches to
the aorta, BABP acts as a poor surrogate for blood pressure
estimation. As a result, Central Blood Pressure (CBP), i.e.
the force with which blood is pumped out of the heart, has to
be monitored ideally [2], [3]. CBP is usually 10 - 50 mmHg
lower than BABP due to the amplification of pressure wave
as shown in Figure 1. The pressure wave is the sum of the
incident wave and reflected wave as it travels down from
highly elastic arteries to stiffer ones. The incident wave is
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generated by the left ventricle, whereas reflected wave is due
to impedance mismatch at multiple peripheral sites such as
bifurcations and small muscular arteries and arterioles.

Fig. 1. Pressure waveform along arterial tree [3].

Conventionally, CBP is measured using the invasive in-
sertion of a catheter through radial or femoral artery during
the process of cardiac catheterizing [4]. As the procedure
deals with invasion into the artery, it involves high sanitation
requirements and excellent performing skills. Currently, this
procedure has been used as a gold standard for continuous
CBP monitoring. However, as expected it’s usage is limited
to ICUs and operation theatres.

Lately, few oscillometric CBP monitoring techniques have
been proposed [5]–[7]. However, due to non-invasive ref-
erence from tonometry based Sphygmocor, these methods
suffer limitations. Moreover, the cuff based BP meters cause
pain, discomfort and tissue damage limiting the frequency
of measurements. Hence, it is evident that a cuff-less BP
estimation technique is required for continuous CBP moni-
toring.

Literature suggests that cuff-less methods for estimation of
BP have been extensively used for the brachial artery [8]–
[15]. For this BABP estimation, Pulse Transit Time (PTT)
calculated from Electrocardiogram (ECG) and Photoplethys-
mograph (PPG) signals have been used. However, to the best
of our knowledge, the cuff-less estimation technique has not
been proposed for CBP.

In this paper, we propose a non-invasive, cuff-less and
beat-by-beat CBP estimation technique, which is calibrated
against the gold standard invasive BP data of 33 patients
obtained from Cath Lab. Section II discuss the process of
data collection, feature extraction, and regression analysis.
Results obtained thereafter are discussed in section III and



the paper is concluded in section IV.

II. METHOD

A. Collection of Clinical Data

The study was conducted on 33 Cath lab patients in Care
Hospital, Hyderabad, admitted for various cardiac proce-
dures. The study is approved by the ethics committee of
Care Hospital. Patients scheduled for the procedure were
approached and informed consent was obtained from them.
The patient data for 19/14 male to female ratio and aged
60±10 years has been collected.

B. Study Protocol

This study involves the measurement of cuff based BABP
before and after the catheterizing procedure, collection of
ECG & PPG data and recording CBP during the Cath
procedure. Cuff based BABP was recorded using Omron
HEM-7130 BP Monitor. It is to observe the variation of
BABP from CBP. CBP was recorded manually from the
monitor present in the console room adjacent to the lab as
shown in Fig. 2. Simultaneous digital ECG and PPG data
were collected using the Vios Medical System (VMS). VMS
is a Food and Drug Administration (FDA) [16] approved
physiological signal monitoring device.

Fig. 2. CBP monitor at Cath lab.

C. Feature Extraction

VMS provides ECG data with a sampling rate of 200 sam-
ples/sec and PPG data at 75 samples/sec. To extract features
such as PTT, we require simultaneous and equally sampled
data. Therefore, data sets are interpolated to obtain the data
rate of 1200 samples/sec. For training and validation, two
data sets of around 1.5 minutes each are considered. Using
the timestamps present within the data, the synchronicity
is maintained between the training data and the reference
CBP. 1.5 minutes of data is considered to obtain features
averaged over the time duration of of the presence of catheter
within the Aorta, to perform statistical analysis. Further,
Wavelet Transformation (WT) is performed on the signals
to get rid of the noise and also to extract information from
various frequency components of the signals. WT provides
both frequency and time domain information, hence it is
appropriate for the process of feature extraction [9]. Haar
wavelet has been used due to less complexity and its ability
to detect sudden changes. An algorithm has been developed
using Matlab as discussed in Fig. 3.

ECG and PPG data input

Interpolation

3rd level and 5th level Wavelet Transformation of ECG
data

Detection of R peak from cD_l3

Detection of Q peak and S peak based on R peak from
cA_l3

Detection of P peak and T peak from cD_l5

3rd level and 5th level Wavelet Transformation of PPG
data

Detection of Diastolic peak and pulse end from cD_l3

Detection of Systolic peak and Dichrotic notch  from
cD_l5 and cA_l5

Feature Vector generation

Regression model for estimation

Fig. 3. Algorithm for feature extraction from ECG and PPG signal data.

ECG signal signifies the electrical activity of the heart
and it consists of P, Q, R, S and T waves. R peak is
the highest peak in the ECG pulse and the QRS complex
has a higher frequency in comparison to P and T waves.
Hence, Q, R and S peaks are detected from third level
detail coefficients i.e. cD 3 and P and T peaks are detected
using fifth level detail and approximate coefficients i.e. cD l5
and cA l5 respectively as shown in Fig.4. The first R peak
is detected by identifying the highest peak between the
maximum and minimum values of cD l3. Further, Q and
S peaks are detected by performing maximum modulus
analysis (MMA) about R peak. Hence, detection of Q peak
and S peak relies on the precise detection of R peak. P peak
is detected as the highest point in cA l5 between maximum
and minimum points in cD l5 of the wave segment before Q
peak. Similarly, T peak is detected from the wave segment
beyond S peak.

PPG signal signifies the change in volume during blood
flow using optics. It consists of systolic peak (SP), diastolic
peak (DP), dicrotic notch (DN) and end of pulse (EB). DP
and EB are obtained using cD l3, whereas SP and DN are
obtained by taking derivative and threshold comparison along
with cA l5. The detected points in PPG pulse are shown in
Fig.4. DP is detected using a similar procedure as R peak.
Further EB is detected after DP using cD l3 and DN and
SP is detected using cA l5 and cD l5 by observing zero
crossings in the part of the wave segment before DP.

The above methodology is followed for wave-point de-
tection in the physiological signal segment for each beat.
Further, the challenge is to identify that signal segment such
that all the wave-points in the segment are in order. To
circumvent this, the first segment size is calculated as the



number of samples between two consecutive R peaks and
DP’s for ECG and PPG respectively. Afterwards, constraints
have been developed while considering the basic behavior of
each signal. Each beat is identified as a segment satisfying
the constraints by the process of iteration and back-tracing.
The constraints for the ECG signal are as follows:

• R peak should be detected.
• Difference between R peak and the center of the seg-

ment must be less than 10% of the segment size.
• Within the segment, the number of modulus maxima

points (MMT) before and following the R peak should
be greater than 2.

The presence of these MMT points ensures the presence
of P and T waves within the segment. Further, to validate
the presence of the above-mentioned PPG wave points, the
segment should fulfill the following conditions.

• DP should be detected.
• Difference between DP and the center of the segment

must be less than 10% of the segment size.
• Number of modulus maxima points (MMT) before and

following DP should be greater than 3 and 2 respec-
tively.

The presence of SP and previous beat’s EB is ensured with
the presence of 3 MMT points before DP. The presence of
current EB is ensured by 2 MMT points following the DP.
Hence, the presence of the entire beat within the segment is
assured. If the above conditions are not satisfied, the segment
is iterated by 10 samples.

Using these aforementioned wave points, the feature vector
containing 30 features supplementary to PTT is generated
for each patient.Some of these features have been shown in
Fig.4. DP is back-traced to the most previous R peak to
assure that features are calculated only among simultaneous
ECG and PPG beats. The feature vector includes features
calculated from ECG signal, from PPG signal and both ECG
and PPG signal. These features are extracted beat-by-beat. To
get rid of artifacts and incorrect detection, mean and standard
deviation (SD) is calculated the values lying out of [mean -
SD, mean + SD], are discarded.
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Fig. 4. Feature extraction from simultaneous ECG and PPG signal.

D. Estimation using Regression Analysis

The feature vector obtained is high dimensional in com-
parison to the number of data sets. Also, it is observed
experimentally that models with reduced features also per-
form almost equally well. Partial Least Square Regression
(PLSR) technique has been used for training. PLSR is
the combination of Principle Component Analysis (PCA)
and Multi-linear regression. This technique is best known
for training models with lower training data. Here, PCA
calculates co-variance and reduces the feature dimension. As
a resultant, 25 features each are selected for the estimation
of SBP and DBP.

These features are used to perform a regression analysis to
train the estimation model. The model has been trained using
a Matlab regression learner and 5 cross-validations has been
enabled to avoid over-fitting. The comparison between the
performance of various regression models has been discussed
in Table I. Linear Regression models have been chosen due
to higher R2 values and acceptable errors.

TABLE I
COMPARISON BETWEEN THE PERFORMANCE OF VARIOUS REGRESSION

MODELS

Regression Model RMSE
(mmHg)

R2 MAE
(mmHg)

Linear Regression 0.26 0.6 0.2
SBP Squared Exponential 0.17 0.24 0.13

Exponential 0.16 0.28 0.13
Linear Regression 0.65 0.44 0.4

DBP Squared Exponential 0.18 0.02 0.14
Exponential 0.18 0.13 0.13

III. RESULTS

The models for systolic and diastolic CBP were trained
using the data of 33 patients. Due to the lesser amount of
data, cross-validation has been enabled, but for validation,
different data sets were required. To circumvent this need,
ECG and PPG signal data for each patient were divided.
One part of each patient was used for training, and others
were used for testing. The results for testing have been
demonstrated with the help of the Bland-Altman plot as
shown in Fig. 5. The error obtained during the estimation of
systolic CBP is 0.109±2.37 mmHg whereas it 0.031±2.102
mmHg for diastolic CBP estimation. Mean Absolute error is
1.6 mmHg and 1.41 mmHg for systolic and diastolic CBP
estimation respectively. The performance of the models can
be observed through the dispersion plot in Fig. 6. It can be
inferred that outliers or maximum error are obtained for SBP
and DBP exceeding 150 mmHg and 85 mmHg respectively.

IV. CONCLUSION

The study involved data collection from 33 patients who
were scheduled for cardiac procedures involving catheter-
ization. Simultaneous ECG and PPG data were collected
and the feature vector was generated by using Haar wavelet
and MMA. The linear regression model was trained for
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Fig. 5. The Bland-Altman plot for (a) Systolic and (b) Diastolic CBP
estimation
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Fig. 6. Dispersion plot for (a) Systolic and (b) Diastolic CBP estimation
where line and dots represent the ideal and actual behavior of estimation

both systolic and diastolic CBP. As per the results obtained
from the above study, it is concluded that the approach
of estimating CBP using features extracted from ECG and
PPG signals is a reliable one. The errors obtained are
0.109±2.37 mmHg and 0.031±2.102 mmHg for SBP and
DBP respectively. The results can be further improved by
training the model with more data. Also, if the data was
present for the SBP and DBP exceeding 150 mmHg and
85 mmHg respectively, the sensitivity and robustness of the
model can be further increased. Hence, this approach can be
used for continuous CBP estimation and can act as a better
alternative in comparison to BABP.
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