
Reactive Navigation under Non-Parametric Uncertainty
through Hilbert Space Embedding of Probabilistic Velocity

Obstacles

by

SriSai Naga Jyotish Poonganam, Bharath Gopalakrishnan, Sai Bhargav Kumar A V S, Arun Kumar
Singh, Madhava Krishna, Dinesh Manocha

Report No: IIIT/TR/2020/-1

Centre for Robotics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
February 2020

2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

ar
X

iv
:2

00
1.

09
00

7v
1

 [
ee

ss
.S

Y
]

 2
1

Ja
n

20
20

1

Reactive Navigation under Non-Parametric
Uncertainty through Hilbert Space Embedding of

Probabilistic Velocity Obstacles
P. S. Naga Jyotish*1, Bharath Gopalakrishnan*1, A. V. S. Sai Bhargav Kumar1, Arun Kumar Singh2,

K. Madhava Krishna1 and Dinesh Manocha3.

Abstract—The probabilistic velocity obstacle (PVO) extends the
concept of velocity obstacle (VO) to work in uncertain dynamic
environments. In this paper, we show how a robust model predic-
tive control (MPC) with PVO constraints under non-parametric
uncertainty can be made computationally tractable. At the core
of our formulation is a novel yet simple interpretation of our
robust MPC as a problem of matching the distribution of PVO
with a certain desired distribution. To this end, we propose two
methods. Our first baseline method is based on approximating the
distribution of PVO with a Gaussian Mixture Model (GMM) and
subsequently performing distribution matching using Kullback
Leibler (KL) divergence metric. Our second formulation is
based on the possibility of representing arbitrary distributions
as functions in Reproducing Kernel Hilbert Space (RKHS). We
use this foundation to interpret our robust MPC as a problem of
minimizing the distance between the desired distribution and the
distribution of the PVO in the RKHS. Both the RKHS and GMM
based formulation can work with any uncertainty distribution
and thus allowing us to relax the prevalent Gaussian assumption
in the existing works. We validate our formulation by taking an
example of 2D navigation of quadrotors with a realistic noise
model for perception and ego-motion uncertainty. In particular,
we present a systematic comparison between the GMM and
the RKHS approach and show that while both approaches can
produce safe trajectories, the former is highly conservative and
leads to poor tracking and control costs. Furthermore, RKHS
based approach gives better computational times that are up to
one order of magnitude lesser than the computation time of the
GMM based approach.

I. INTRODUCTION

REACTIVE navigation in real-world environments re-
quires robots to consider perception and ego-motion

uncertainty explicitly while computing control inputs to en-
sure robust collision avoidance. Incorporating only the mean
information of the uncertainty often turns to be inadequate. In
contrast, bounding volume approaches like [1], [2] are simple
and induce robustness but tend to be overly conservative
[3]. Under uncertainty, we would typically like to compute
low cost control inputs (based on some metric) and at the
same time, ensure some upper bound on the risk of collision.
In this paper, we formulate these requirements in a robust
Model Predictive Control (MPC) framework, wherein the
robustness stems from the constraints imposed by Probabilistic
Velocity Obstacle (PVO) [4]. Essentially, PVOs are chance

1 are with RRC, IIIT Hyderabad, India mkrishna@iiit.ac.in,
srisai.poonganam@research.iiit.ac.in,
bharathg91@gmail.com, bhargavvk18@gmail.com

2 is with University of Tartu, Estonia aks1812@gmail.com
3 is with University of Maryland dm@cs.umd.edu
*Equal contribution from first two authors.
This research in part was supported by the IT Academy of Estonia grant

(SLTTI19605T) to Arun Kumar Singh

constraints defined over the deterministic VO [5]. Thus, a
robust MPC formulation is, in fact, an instance of chance-
constrained optimization (CCO). Recently CCO has been used
as a general template for developing numerous navigation
algorithms for a wide class of robots, ranging from aerial
vehicles [6] to autonomous cars [7]. Although CCO provides a
rigorous template for decision making under uncertainty, they
are, in general, computationally intractable. In fact, under non-
Gaussian or non-parametric uncertainty, it is difficult to even
compute an analytical expression for the chance constraints
(such as PVO in our case).
A. Contributions and Overview of the Proposed Approach

Our primary motivation in this paper is to reformulate CCO
as a more tractable problem without making any assumption
on the parametric form of the underlying uncertainty and/or
resorting to any linearization of the constraints. To this end,
we show that our robust MPC or CCO, in general, can
be interpreted as a problem of distribution matching 1. To
be precise, we construct a certain desired distribution and
ensure that the distribution of the PVO matches the desired
distribution by choosing low-cost control inputs. We present
two methods to accomplish this. Our first baseline method
builds upon existing works like [8], [9], and is based on
approximating the desired distribution and PVO as a GMM
and subsequently sampling control inputs to minimize the KL
divergence between the two. Although this approach produces
trajectories with a high probability of collision avoidance, it
is computationally expensive and leads to conservative results
with high tracking error and control costs.

Our second method is inspired by the result that local simi-
larity of two given distributions can be bounded through their
higher order moments [10]. To accomplish moment matching
in a tractable manner, we embed our desired distribution and
PVO in Reproducing Kernel Hilbert Space (RKHS)[11], [12]
wherein evaluating the similarity of higher-order moments of
two given distribution can be performed through Kernel trick.
The RKHS based approach provides following advantages

• It takes the form of a standard non-linear regression prob-
lem that can be solved easily through any gradient-based
optimizer. Using the kernel trick, the evaluation of the
cost or gradients reduces to simple matrix multiplication
that can be accelerated using GPUs for large matrix sizes.

• The RKHS based approach provides an additional tuning
parameter for trading off cost and robustness. The param-

1Although conceptually simple, to the best of our knowledge, there are no
other works based on this interpretation.

2

eter has a clear physical interpretation and thus easier to
choose.

• The RKHS based approach leads to substantially lower
tracking cost and control cost than GMM, which in turn
translates to lower time of traversal to the goal. The
former also requires up to 8 times less computation time
since it by-passes the need for performing expensive
GMM fits.

II. PROBLEM FORMULATION

Our Approach assumes a robot operating in 2D space,
although extending the method to 3D is straightforward. Some
of the essential symbols and notations are summarized in Table
I. We also define some notations in the first place of their use.
We use regular faced lower case letters to represent scalars,
while boldface variants would represent vectors. Upper faced
letters represent the matrices.

A. Ego-motion uncertainty

We model the state ξt = (xt, ẋt, yt, ẏt) at any time t as
a random variable with an unknown probability distribution.
The state evolves according to the following stochastic linear
motion model:

ξt = Aξt−1 + B(ut−1 + δt−1), (1)

where, δt−1 is a random variable with unknown probability
distribution that acts as a perturbation to the control input
ut−1. We assume that we do not have access to the probability
distribution of δt−1 but we have a black-box process model
which can generate different instances of δt−1. Now, given
n samples of ξt at t = 0, we can adopt a particle filter
like approach and motion model (1) to propagate uncertainty
over time. Note that since we don’t know the probability
distribution of ξt and δt, a Kalman Filter like approach is
untenable even for a linear system like (1).

B. Perception uncertainty

We assume that we have access to a predicted trajectory
for each dynamic obstacle in the environment. Consequently,
at any time instant t, we have access to the state of the
jth obstacle o

jξt = (ojxt,
o
j ẋt,

o
jyt,

o
j ẏt). We model perception

uncertainty by treating o
jξt as random variables with unknown

probability distributions. As with ego-motion uncertainty, we
assume that we can have access to n samples of o

jξt. For
example, this can come from a separate particle filter which
tracks obstacle state over time and is initialized with n samples
of ojξt at t = 0.

C. Velocity Obstacle (VO)

If both the robot and the obstacles are modeled as circular
disks, VO is defined by the following set of equations:

f jt (.) ≤ 0 :
(rTj vj)2

‖vj‖2
− ‖rj‖2 + (ojR+R)2 ≤ 0., ∀j, (2)

rj =
[
xt − o

jxt
yt − o

jyt

]
, vi =

[
ẋt − o

j ẋt
ẏt − o

j ẏt

]
,

where, R, ojR are the radii of the circular disks representing

TABLE I
IMPORTANT SYMBOLS

ξt−1

Robot state at time t− 1

o
jξt jth Obstacle state at time t
δt−1 Control perturbation at time t− 1
wt−1 (ξt−1, δt−1)
ut−1 Control input at time t− 1

fj
t (.) VO constraint under deterministic conditions
P

f
j
t
(ut−1) Distribution of fj

t (.) under uncertainty

η Chance constraint probability
Pdes

f
j
t

Desired distribution

k(., .) Kernel function
µP

f
j
t

RKHS embedding of P
f
j
t

µ
Pdes

f
j
t

RKHS embedding of the distribution Pdes

f
j
t

the shapes of the robot and obstacle respectively.

D. Probabilistic Velocity Obstacle (PVO)

If the state of the robot evolves according to (1), then, given
the current robot state ξt−1, the predicted next instant obstacle
state ojξt, and the perturbation δt−1, VO (2) can be represented
as an explicit function of the control input.

f jt (.) = h1(wt−1,
o
jξt)(u

x
t−1)

2 + h2(wt−1,
o
jξt)u

x
t−1u

y
t−1

+h3(wt−1,
o
jξt)(u

y
t−1)

2 + h4(wt−1,
o
jξt)u

x
t−1

+h5(wt−1,
o
jξt)u

y
t−1 + h6(wt−1,

o
jξt), (3)

where2, wt−1 = (ξt−1, δt−t), u
x
t−1, u

y
t−1 are the components

of ut−1. The functions hi(.) and f jt (.) depend on random
variables wt−1,

o
jξt and, consequently, are random variables

with some unknown probability distributions themselves. To
model collision-free velocities under uncertainty, we need to
formulate a probabilistic variant of VO. As mentioned earlier,
PVOs are essentially chance constraints defined over VO, and
thus we have PV O : P (f jt (.) ≤ 0) ≥ η where P (.) represents
probability. Essentially, PVO ensures that the VO constraints
are satisfied with some lower bound probability, η. Note that
our definition of PVO stems from [4] but is written in a slightly
different form to highlight it as a chance constraint explicitly.
For future use, we use the notation Pfj

t
(ut−1) to denote the

distribution of f jt (.), parameterized in terms of control input
ut−1 for given random variables wt−1,

o
jξt.

E. Robust MPC

We formulate the problem of reactive navigation in terms
of the following robust MPC.

argmin
ut−1

J(ut−1) = ‖ξt − ξdt ‖
2
2 + ‖ut−1‖22 (4a)

P (f jt (wt−1,
o
jξt, ut−1) ≤ 0) ≥ η (4b)

ut−1 ∈ C (4c)
where ξt represents the mean of ξt and is used to keep the
cost function deterministic3. The first term in the cost function
makes the mean state track some desired state ξdt , which in

2The concatenation of ξt−1 and δt−1 to obtain wt−1 is motivated by how
ego-motion uncertainty is evolved using a particle filter like approach. At time
t− 1, we independently sample n samples of ξt−1 and δt−1 to compute n
samples of ξt

3A more rigorous approach would be to define the cost function using
the expectation operator. However, the formulation based on the mean state
is simpler and acts as a lower bound for the cost based on the expectation
operator. [13]

3

Fig. 1. Intuitive understanding of robust MPC. The shape of the distribution
of fjt (.) can be manipulated by the control inputs ut−1. An appropriate shape
is one where most of the mass lies to the left of fjt (.) = 0 (left figure)

turn could be defined based on some desired trajectory for
the robot. The second term penalizes the usage of control
input with a high magnitude. The inequality (4b) ensures the
probabilistic safety through the formulation of PVO. C in (4c)
models the feasible set of the control commands based on
velocity and acceleration bounds and is assumed to be convex.

Optimizations of the form (4a)-(4c) are known as chance-
constrained optimizations (CCO). Its computational complex-
ity stems from the presence of the chance constraints (4b).
As shown in (3), f jt (.) are highly non-linear functions of
both control inputs ut−1 and the random variables wt−1,

o
jξt.

In such a case, it is difficult to even compute an analytical
expression for P (f jt (.) ≤ 0). In the next section, we present
our main theoretical results, which allow reformulating (4a)-
(4c) into a tractable, non-linear optimization problem while
retaining low sample complexity.

III. MAIN RESULTS

A. Intuitive interpretation of robust MPC

At an intuitive level, optimization (4a)-(4c) can be interpreted
as a problem of ensuring that Pfj

t
(ut−1) has such a shape

that a specific portion of its mass lies to the left of f jt (.) = 0
(refer to Fig. 1). The chance constraint probability η has a
direct correlation with the amount of mass lying to the left of
f jt (.) = 0. A larger mass amounts to a higher η. Given random
variables wt−1,

o
jξt, the distribution Pfj

t
(ut−1) is parametrized

by ut−1 and therefore can be used to manipulate the shape
of Pfj

t
(ut−1). However, each choice of ut−1 incurs a cost

J(ut−1) in terms of deviation from the desired trajectory and
magnitude of the control inputs.

B. Desired Distribution

Our goal is to ensure that Pfj
t
(ut−1) achieves an appropriate

shape. To this end, our desired distribution acts as a benchmark
for Pfj

t
(ut−1); in other words, a distribution that it should

resemble as closely as possible for an appropriately chosen
ut−1. We formalize the notion of desired distribution with the
help of the following definitions:

Definition 1. The nominal control input unomt−1 refers to any solution
of the optimization (4a)-(4c) associated with a cost J(unomt−1) in the
vicinity of that obtained in the deterministic setting.

Definition 2. Let w̃t−1, õjξt be random variables that represent the
same entity as wt−1 and o

jξt but belonging to a different distributions
P deswt−1

, P deso
jξt−1

, respectively. Further, when w̃t−1 ∼ P deswt−1
, õjξt,∼

P deso
jξt

, then f jt (w̃t−1, õjξt, ut−1) ∼ P des
f
j
t

. In such a case, P des
f
j
t

is
called the desired distribution if the following holds for some given
nominal solution unomt−1 .

P (f jt (w̃t−1, õjξt, u
nom
t−1) ≤ 0) ≈ 1.0, w̃t−1 ∼ P deswt−1

, õjξt,∼ P
des
o
jξt

(5)

Essentially, equation (5) implies that if the uncertainty
belongs to the distribution, P deswt−1

, P deso
jξt−1

, then the shape
and consequently, the entire mass of the distribution of
f jt (w̃t−1, õjξt,ut−1) can be manipulated to lie almost com-
pletely to the left of f jt (.) = 0 by choosing ut−1 = unomt−1 .
This setting represents an ideal case because we have con-
structed uncertainties so appropriately that we can manipulate
the distribution of the chance constraints while incurring a
nominal cost. Moving forward, we assume that we have access
to the samples w̃t−1, õjξt from the distribution P deswt−1

, P deso
jξt−1

respectively and using it we can construct a desired distribution
P des
fj
t

. We lay out the exact process of achieving this in
Appendix.

C. Reformulating (4a)-(4c)

From Def.2 it can be deduced that as we make the distribution
of chance constraints (PVO) Pfj

t
(ut−1) more and more similar

to P des
fj
t

, we ensure that more and more mass of Pfj
t
(ut−1)

gets shifted to the left of f jt (.) = 0. As a result, we satisfy
the chance constraints (4b) with higher η. Building on these
insights, we present the following reformulation of (4a)-(4c).

argmin J(ut−1) + ρLdist(Pfjt (ut−1), P
des

f
j
t

) (6a)

ut−1 ∈ C, (6b)

where, Ldist is a cost which measures some notion of similar-
ity between the Pfj

t
(ut−1) and P des

fj
t

. It should be noted that
the chance constraint probability η is not explicitly present in
the above optimization. Rather, it is accommodated implicitly
through the residual of Ldist. Lower the residual, higher the
η. The residual in turn can be controlled through the weight
ρ.

We solve (6a)-(6b) through a control sampling approach. We
discretize the feasible set C and evaluate the J(ut−1)+ρLdist
for each control sample from the feasible set. Subsequently,
we choose the control input which results in minimum value
of the cost (6a). The primary complexity of our control
sampling approach depends on the form of Ldist or more pre-
cisely on the computational ease with which we can evaluate
Ldist(Pfj

t
(ut−1), P

des
fj
t

) for a given ut−1. In the next couple of
sections, we present two choices for it based on KL divergence
and RKHS embedding.

D. GMM-KL Divergence (GMM-KLD) Based Approach

KL divergence is extensively used to measure how a given
probability distribution is different from another. In other
words, KL divergence is a valid choice for Ldist. The primary
challenge in using KL divergence as a choice for Ldist is
that we do not have access to the the probability densities
associated with Pfj

t
(ut−1) and P des

fj
t

. To address this problem,

we approximate Pfj
t

and P des
fj
t

at any time t using GMMs. It
should be noted that Pfj

t
(ut−1) is parametrized in terms of

control and changes for every ut−1 ∈ C.

4

At a given time step, t, we first obtain samples from the
desired distribution P des

fj
t

and subsequently fit a GMM over
it. Then, for a given sampled control, we generate different
samples of f jt (wit−1,

o
jξ
j
t ,ut−1) using the (i, j) sample from

wt−1 and o
jξt. We then fit GMM over it which now acts as an

approximation of Pfj
t
(ut−1) for the given sampled control.

Using the GMM fit for P des
fj
t

and Pfj
t
(ut−1) we can then

compute the KL divergence. This process is repeated for
all the sampled control input and the one which minimizes
Ldist + J(ut−1) is chosen as the solution of (6a)-(6b).

E. RKHS based Approach

1) Formulating Ldist in terms of Moment Matching : One
of the vital building blocks of our approach based on RKHS
embedding is the following theorem from [10].

Theorem 1. ‖P
f
j
t
(ut−1)− P des

f
j
t
‖ ≤ B(d), B(d)→ 0, d→∞

where, d refers to the order up to which the moments of
Pfj

t
(ut−1) and P des

fj
t

are similar. The above theorem sug-
gests that the difference between two distributions can be
bounded by a non-negative function B(d), which decreases
with increasing order of moment d. The authors in [10] also
show that this bound is particularly tight near the tail end
of the distribution. Theorem 1 provides a way of ensuring
local similarity between two distributions through moment
matching. In other words, moment matching is a valid choice
for Ldist
Remark 1. For our purpose local similarity is sufficient since
as we make the tail of P des

fj
t

and Pfj
t
(ut−1) similar by matching

higher order moments, we ensure that more and more of the
mass of Pfj

t
(ut−1) also gets shifted to the left of f jt (.) = 0.

This in turn leads to the satisfaction of chance constraints (4b)
with a higher η.

Remark 2. The moment order d can directly control the
extent of local similarity and consequently acts as a surrogate
for η. Higher d leads to higher η (see Fig 4(a), 5(a)).
Furthermore, d only takes non-negative integer values. On the
other hand, tuning GMM based solution is difficult as it relies
on manipulating ρ in (6a) to prioritize minimizing MMD over
primary cost J(u). However, unlike d, the parameter ρ does
not have a statistical interpretation and thus it is difficult to
ascertain whether a numerical change in ρ will lead to any
change in η at all.

2) Moment Matching through RKHS Embedding: To the
best of our knowledge, there is no mapping that directly
quantifies the similarity between the first d moments of two
given distributions. However, a workaround can be devised
based on the concept of embedding distributions in Repro-
ducing Kernel Hilbert Space (RKHS) and Maximum Mean
Discrepancy (MMD) distance. The key ideas here are based
on the results from [11], [12].

Let µP
f
j
t

, µPdes

f
j
t

represent the RKHS embedding of Pfj
t

,

P des
fj
t

given by the following equations:

µP
f
j
t

(ut−1) =

p=n∑
p=1

q=n∑
q=1

αpβqk(f
j
t (w

p
t−1,

o
jξ
q
t , ut−1), .) (7)

µPdes

f
j
t

=

p=nr∑
p=1

q=no∑
q=1

λpϕqk(f
j
t (w̃

p
t−1,

õ
jξ
q

t
, unomt−1), .), (8)

where, k(., .) : <n × <N → < is a positive definite function
called the kernel. To exploit Theorem 2, we use the polynomial
kernel of order d defined in (9) defined for some arbitrary
vectors x1, x2.

k(x1, x2) = (1 + xT1 x2)
d. (9)

Note that the d in (9) is same as that used in Theorem 1. The
constants αp, βq, λp, ϕq play a vital role in the RKHS em-
bedding, and we discuss them towards the end of this section.
Now, consider the following theorem based on [12], ([14], pp-
15) assuming that the RKHS embedding is constructed through
polynomial kernel of order d.

Theorem 2. If

MMD︷ ︸︸ ︷
‖µP

f
j
t

(ut−1)− µPdes

f
j
t

‖ → 0, then moments of P
f
j
t

and P des
f
j
t

up to order d become similar.

That is, decreasing the residual of MMD distance becomes a
way of matching the first d moments of the distribution Pfj

t

and P des
fj
t

. Theorem 2 allows us to make the following choice
Ldist = ‖µP

f
j
t

(ut−1)− µPdes

f
j
t

‖. (10)

The MMD (10) can be expanded in the following manner

‖µP
f
j
t

(ut−1)− µPdes

f
j
t

‖2 = 〈µP
f
j
t

(ut−1), µP
f
j
t

(ut−1)〉

−2〈µP
f
j
t

(ut−1), µPdes

f
j
t

〉+ 〈µPdes

f
j
t

, µPdes

f
j
t

〉 (11)

For a given ut−1, each of the terms in (11) is an inner
product of two functions that are linear combinations of kernel
functions and thus can be easily simplified using the so-called
”kernel trick”. These inner products give rise to large matrices,
and hence easily parallelized using GPU.

F. Reduced Set Methods

Let ŵ1
t−1, ŵ

2
t−1 . . . ŵ

N
t−1 and ô

jξ
1

t
, ôjξ

2

t
. . . ôjξ

N

t
represent N

i.i.d samples of wt−1, o
jξt respectively. Further, let

w1
t−1,w2

t−1 . . .wnt−1 and o
jξ

1

t
, ojξ

2

t
. . . ojξ

n

t
represent a subset

(reduced set) of the i.i.d samples. It is implied that n << N .
Now, intuitively, a reduced set method would re-weight the
importance of each sample from the reduced set such that
it would retain as much information as possible from the
original i.i.d samples. The weights αp associated with wt−1

are computed through the following optimization and are then
used to compute the RKHS embedding in (7). The same
process can also be used to compute βq, λp, ϕq .

αp = argmin
αp

‖ 1
N

i=N∑
i=1

k(ŵit−1, .)−
p=n∑
p=1

αpk(wpt−1, .)‖2,
∑

αp = 1

(12)
G. Performance Guarantees

Both our GMM-KLD and RKHS based approaches work
with only sample-level information without assuming any
parametric form for the underlying distribution. Thus, the
performance guarantees on collision avoidance depend on the
following aspects. First, on how well are we modeling the
distribution of our collision avoidance function (PVO) for a
finite sample size. Second, on whether our modeling improves

5

as the sample size increase: a property popularly known
as consistency in estimation. Finally, on whether we can
tune our model to produce diverse trajectories with different
probability of avoidance. Remark 2 already addresses the third
question. Moreover, the first two questions about GMM fit
of distributions have already been established in the existing
literature [15], [16]. Thus, in this subsection, we focus on the
first two questions regarding our RKHS based approach.
To show the consistency of (7), we compute a ground truth
embedding in the following manner:

µf (wt−1, ojξt, ut−1) = (1/l2)

l∑
i=1

l∑
j=1

k(f(wt−1
i, ojξt

j , ut−1), .),

(13)
where, µf (wt−1, ojξt,ut−1) is similar to µP

f
j
t

(ut−1) except
that the former is computed over a larger sample size l. That
is, l >> n. We can analyze the consistency by constructing
the following error function from [11],[12] for a fixed value
of ut−1.

L = ‖µf (wt−1,
o
jξt, ut−1)− µf (wt−1, ojξt, ut−1)‖22, (14)

and analyzing its behavior for increasing value of n. The
results are summarized in Fig.2. As shown, for moment order
d = 1, 2, 3 in the polynomial kernel function, we get very low
error for a sample size as low as 40.

10 20 30 40 50 60 70
Samples

0

0.2

0.4

0.6

E
rr

or
 (

L)

Convergence plot of P
f
j

t

(ut-1)

d = 3
d = 2
d = 1

Fig. 2. We illustrate the convergence of (14) with increasing sample size n and
hence show that µP

f
j
t

(ut−1) is a consistent estimator. We evaluated equation

(14) for a polynomial kernel, with different orders of moment d = 1, 2, 3.

IV. SIMULATION AND VALIDATION

Additional results, realtime experiments and detailed deriva-
tion of the kernel matrices along with the implementation
details are provided in the supplimentary material4.

We used our RKHS based algorithm to simulate the nav-
igation of quadrotor in the X-Y plane amongst dynamic
obstacles. We approximate the motion model as a double
integrator system, wherein we subject the acceleration control
inputs to random perturbations. To showcase the potential of
our algorithm, we used non-Gaussian error distributions for
the positions, velocities, and accelerations of the robot and
obstacle as applicable. Fig. 3 illustrates the error distributions
used. 50 samples of wt−1 and o

jξt were used to evaluate both
RKHS and GMM based approach. We also used a set of 50
control samples to search for an optimal solution of (6a)-(6b).

1) Evaluation of the RKHS based Approach for one ob-
stacle benchmark: The solution process and results are sum-
marized in the results shown in the Fig. 4. As described
previously, the solution process starts with the construction
of the desired distribution P des

fj
t

. Subsequently, we ensure that

4robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance

the distribution of Pfj
t
(ut−1) is similar to P des

fj
t

(atleast near
the tail end) by choosing an appropriate ut−1 and degree of
the polynomial kernel d. This is highlighted in Fig. 4(c), which
plots the distribution of Pfj

t
(ut−1)

5 for different degrees, d, of
the polynomial kernel. It is clearly shown that as d increases,
the distributions P des

fj
t

and Pfj
t
(ut−1) become more alike (at

least near the tail end). In this figure P des
fj
t

is highlighted in
a grey shade, while the PDF of Pfj

t
(ut−1) for d = 1, 2, 3 are

outlined in blue, orange and green respectively. The increase in
the similarity between these two distributions can be directly
correlated with the actual collision avoidance shown in Fig.
4(a). An increased value of d results in lesser overlap between
the samples of the robot and obstacle, thus resulting in higher
value of η. Fig. 4(b) shows that the control cost (‖ut−1‖22)
and tracking error (‖ξt − ξdt ‖22) increases at higher values of
d, thus making maneuvers more conservative. The top row of
figure 4(a), shows progressively conservative avoidance with
increase in d, while the bottom row shows that the progress to
the goal is slowed with increase in d, due to such conservative
maneuvers. The maneuver for d = 3, resembles closely the
maneuver due to GMM-KLD.

2) Evaluation of the GMM-KL Divergence Approach: For
the same one obstacle benchmark, we evaluate the GMM-KL
Divergence approach according to section III-D. In short, we
select the control, ut−1, that minimizes the cost function given
in (4a) by choosing Ldist as KL divergence. The results are
shown in Fig. 4(c). It is evident that Pfj

t
(ut−1) matches the

shape of P des
fj
t

, thus satisfying one of the basic objectives of
minimizing a KL Divergence scheme. However, as mentioned
in Remark 2, it is difficult to tune the GMM-KLD approach
to produce diverse trajectories. For this specific result, we
obtained a solution for which η ≈ 0.99. Thus, the trajectories
have a high safety factor but at the same time have higher
tracking error and control cost.

A. Two obstacle benchmark

Here we extend the proposed schemes to a two obstacle
benchmark, where similar trends as obtained in section IV-1
are observed. Fig. 5(a) shows that an increased value of d
results in higher value of η but at the same time leads to
higher tracking errors (‖ξt − ξdt ‖22 and control costs ‖ut−1‖22
(refer Fig. 5(b)).

B. Comparative results based on Computational Time

The table II shows the computation time for RKHS and
GMM-KLD based approaches on an Intel i7,4770 laptop. The
GMM-KLD approach takes a computational time of 1.24s,
while the RKHS based approach takes 0.17s to achieve a sim-
ilar η. The reduced computation time of the later stems primar-
ily from two reasons. (i) Unlike GMM-KLD approach, RKHS
based approach avoids the need to first fit a parametric form
to the distribution of PVO and the desired distribution and
then compute collision avoidance control. (ii) Furthermore,
we exploit the kernel trick to reduce the MMD computation
in it to just matrix multiplication, which can be efficiently
parallelized on GPUs (NVIDIA GTX 1050 in our case). Fig.

5Kernel density estimators are used to plot the distributions.

https://robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance/

6

−1 0 1 2
Position [m]

0.0

0.5

1.0

1.5
De

ns
ity

 V
al

ue

Error distribution: (x, y) robot
x
y

−0.50 −0.25 0.00 0.25 0.50
Velocity [ms]

0

1

2

3

4

5

De
ns

ity
 V

al
ue

Error distribution: (̇x, ̇y) robot
̇x
̇y

−0.5 0.0 0.5
Acceleration [m2

s]

0

1

2

3

De
ns

ity
 V

al
ue

Error distribution: (̈x, ̈y) robot
̈x
̈y

−4 −2 0 2 4
Position [m]

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 V

al
ue

Error distribution: (x, y) obstacle
x
y

−0.2 0.0 0.2
Velocity [ms]

0

2

4

6

8

10

De
ns

ity
 V

al
ue

Error distribution: (̇x, ̇y) obstacle
̇x
̇y

Fig. 3. Figures show the error distributions for position, velocity, acceleration of the robot and position, velocity of the obstacle.

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=1

Robot

Obstacle

η∼ 0.72

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=2

Robot

Obstacle

η∼ 0.87

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=3

Robot

Obstacle

η∼ 0.91

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

GMM-KLD

Robot

Obstacle

η∼ 0.99

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=1, after 3.5s
Robot

Obstacle

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=2, after 3.5s

Robot

Obstacle

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

RKHS-MMD d=3, after 3.5s

Robot

Obstacle

0 5
X [m]

−8

−6

−4

−2

0

2

4

Y
[m

]

GMM-KLD, after 3.5s

Robot
Obstacle

(a) Figures show snapshots of collision avoidance maneuvers obtained with RKHS (first three columns) and GMM-KLD (last column) based approaches.
The top row shows that the overlap between robot and obstacle uncertainty reduces as d increases resulting in collision avoidance with higher η. For
d = 3, the maneuver obtained with RKHS is similar to that obtained with GMM-KLD approach. The bottom row shows that the progress in the trajectory
towards the goal is slower as d increases. For example, after 3.5s, for d = 1, the robot has already reached the goal. In contrast, for d = 3, it has just
maneuvered the obstacle. A very similar slow progress to the goal is visible in GMM maneuver.

MMD d=1 MMD d=2 MMD d=3 KLD Linearized
24

26

28

30

32

34

L2
 n

or
m

 o
f c

on
tro

ls:
 ‖u

t−
1‖

2 2

η∼ 0.72

η∼ 0.87

η∼ 0.91

η∼ 0.99 η∼ 0.85

L2 norm of controls: ‖ut− 1‖2
2

MMD d=1 MMD d=2 MMD d=3 KLD Linearized
17

18

19

20

21

22

23

24

25

Ti
m

e
[s

]

η∼ 0.72
η∼ 0.87

η∼ 0.91

η∼ 0.99 η∼ 0.85

Time taken to reach goal

MMD d=1 MMD d=2 MMD d=3 KLD Linearized
540

560

580

600

620

640

Cu
m

ul
at

iv
e

tra
ck

in
g

co
st

: ‖
ξ t

−
ξd t

‖2 2

η∼ 0.72

η∼ 0.87
η∼ 0.91

η∼ 0.99
η∼ 0.85

Cumulative tracking cost: ‖ξt − ξdt ‖2
2

(b) Lower L2 norm signifies less jerky motion of the robot. The cumulative velocity
tracking cost quantifies how deviant the velocity of the robot was from the desired
velocity (the desired velocity is the velocity towards the goal). The tracking cost can
also be related to the time taken to reach the goal.

−100 −80 −60 −40 −20 0 20 40
f jt

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity
 v

al
ue

s

Distribution of Pf jt(ut− 1)
MMD d=1
MMD d=2
MMD d=3
KLD
Desired

(c) Distribution of velocity obstacle P
f
j
t
(ut−1) obtained after

solving the RKHS based approach for different values of d.
The distribution obtained with GMM-KLD based approach is
also shown.

Fig. 4. Simulation results for one robot and one obstacle scenario.

5(c) shows the difference in computation time between the
two approaches increases with the number of obstacles. The
time to compute maneuvers grows faster for the GMM-KLD
approach with an increase in the number of obstacles, so much
so for four obstacles, the GMM approach is 2.5s slower than
the RKHS approach. Whereas for one obstacle scenario GMM
is 1s slower.

C. Experimental Results

We implemented the RKHS framework on a Bebop drone
equipped with a monocular camera. A person walking with an
April tag marker in front of him constitutes the moving object.
We compute the distance, velocity, and bearing to the marker

using the April Tag library. We obtain the state and velocity
of the drone from the onboard odometry. The state, velocity,
control, and perception/measurement noise distributions were
computed through a non-parametric Pearson fit over experi-
mental data obtained over multiple runs.

We performed 15 experimental runs to evaluate the RKHS
method, which successfully avoided the obstacle on 75% of
the 15 runs. Whereas naive deterministic maneuvers avoided
the moving target, only 40% of the 15 runs. Fig. 6 shows the
snapshots of the experimental runs.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we formulated a robust MPC/CCO as a prob-

lem of distribution matching. We illustrated two approaches

7

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0
Y

[m
]

RKHS-MMD d=1

η∼ 0.72

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

RKHS-MMD d=1, after 5.0s

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

RKHS-MMD d=2

η∼ 0.80

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0
Y

[m
]

RKHS-MMD d=2, after 5.0s

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

RKHS-MMD d=3

η∼ 0.94

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

RKHS-MMD d=3, after 6.0s

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

GMM-KLD

η∼ 0.98

−5 0 5
X [m]

−5.0

−2.5

0.0

2.5

5.0

Y
[m

]

GMM-KLD, after 6.0s

(a) The first three columns represent the different paths taken by the robot upon using an RKHS based approach with increasing values of d. The last
column represents the path obtained with GMM-KLD based approach.

MMD d=1 MMD d=2 MMD d=3 KLD
30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

L2
 n

or
m

 o
f c

on
tro

ls:
 ‖u

t−
1‖

2 2

η∼ 0.72
η∼ 0.8

η∼ 0.94

η∼ 0.98

L2 norm of controls: ‖ut− 1‖2
2

MMD d=1 MMD d=2 MMD d=3 KLD

13

14

15

16

17

18

19

20

21

Ti
m

e
[s

]

η∼ 0.72
η∼ 0.8

η∼ 0.94 η∼ 0.98

Time taken to reach goal

MMD d=1 MMD d=2 MMD d=3 KLD

720

740

760

780

800

820

840

860

Cu
m

ul
at

iv
e

tra
ck

in
g

co
st

: ‖
ξ t

−
ξd t

‖2 2

η∼ 0.72 η∼ 0.8

η∼ 0.94
η∼ 0.98

Cumulative tracking cost: ‖ξt − ξdt ‖2
2

(b) Comparison of L2 norm of controls, desired velocity tracking cost and time taken to reach
goal for the one robot-two obstacle benchmark.

1 2 3 4
No. of obstacles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[s

]

Time complexity of RKHS-MMD vs GMM-KLD
MMD d=1
MMD d=2
MMD d=3
KLD

(c) Time complexity comparison for RKHS-MMD and
GMM-KL Divergence based approaches for different
number of obstacles.

Fig. 5. Simulation results for one robot and two obstacles scenario.

Fig. 6. Snapshots of the real-time collision avoidance maneuver. The snapshots show the instances of the robot sample from a non-parametric Pearson fit
over experimental data. The same applies to the obstacle (human moving). Throughout the experiment, an approximate confidence (η) of 0.75 is maintained.

TABLE II
TIME COMPLEXITY FOR SINGLE OBSTACLE

RKHS-Approach GMM-KLD

d Time Time for
GMM

Time for
KLD

Total
Time

1 0.17s
0.59s 0.644s 1.24s2 0.17s

3 0.17s

that give tractable solutions to optimization problem with
complex chance constraints like PVO under non-parametric
uncertainty. We first proposed a baseline method that approx-
imates the distribution of the chance constraints with a GMM
model and then proceed to perform distribution matching using
KL divergence. Our second method is built on the possi-
bility of embedding distributions in the Reproducing Kernel
Hilbert Space (RKHS). We evaluated both the GMM-KLD
and the RKHS based approaches for quality of maneuvers

and computational time. The RKHS based approach results in
lower tracking errors and control costs than the GMM-KLD
based approach. Another distinct advantage of the former is
the massive reduction in computational time as compared to
the latter. To the best of the author’s knowledge, this is a first
such work that brings the benefits of RKHS embedding to
the domain of robust MPC/CCO. This has enormous potential
benefits for computationally efficient motion planning and
control under uncertainty.

Our algorithm can be further enhanced along the following
lines. First, the cost function of robust MPC/CCO is assumed
to be deterministic, i.e., they do not contain state and motion
uncertainty. A straightforward way of rectifying this would be
to formulate stochastic cost as constraints using some slack
variables. We are also looking at more complex applications
like multi-agent navigation, reinforcement learning.

8

Limitations: Our formulations can fail due to two reasons.
First, there can be a failure in the construction of the desired
distribution if no feasible solution exists for the optimization
problem proposed in (16a)-(16c). Second, if the control sam-
pling is not dense enough, and we miss some out on some
feasible control inputs. We can handle the latter by increasing
the resolution of the discretization of control inputs, although
this would lead to an increase in computation time.
Extensions to multi-agent scenario: Our formulation can be
easily extended to multiple decision-making agents. Essen-
tially, instead of building our chance-constrained optimization
and its reformulations over the VO constraint (2), we would
construct its distributed multi-agent variant called reciprocal
velocity obstacle [17]. The construction of the desired distri-
bution would change accordingly. The remaining steps of our
GMM or RKHS based formulation remain the same.

APPENDIX

CONSTRUCTING THE DESIRED DISTRIBUTION

We now describe how distributions P deswt−1
, P deso

jξt
and P des

fj
t

can be computed. While exact computations may be in-
tractable, we provide a simple way of constructing an approxi-
mate estimate of these distributions. The basic procedure is as
follows. Given n samples of wt−1,

o
jξt we construct two sets

Cw̃t−1
, Cõ

jξt

containing nr samples of wt−1 and no samples of
o
jξt respectively. For clarity of exposition, we choose w̃pt−1,
õ
jξ
q

t
to respectively identify pth, qth samples from set Cw̃t−1

,
Cõ

jξt

. Now, assume that the following holds.

f jt (w̃
p
t−1,

õ
jξ
q

t
, unomt−1) ≤ 0,∀w̃pt−1 ∈ Cw̃t−1

, õjξ
q

t
∈ Cõ

jξt

(15)

By comparing (5) and (15) it can be inferred that the
sets Cw̃t−1

, Cõ
jξt

are in fact sample approximations of the

distributions P deswt−1
and P deso

jξt−1
respectively. Furthermore, a set

Cfj
t

containing nr ∗no samples of f jt (w̃
p
t−1,

õ
jξ
q

t
,unomt−1) can be

taken as the sample approximation of the desired distribution
P des
fj
t

.
One major issue is which nr samples of wt−1 and no

samples of o
jξt should be chosen to construct sets Cw̃t−1

,
Cõ

jξt

. In particular, we need to ensure that the chosen samples
indeed satisfy the assumption (15). To this end, we follow the
following process. We arbitrarily choose nr samples of wt−1

and no samples of ojξt and correspondingly obtain a suitable
unomt−1 as a solution to the following optimization problem.

unomt−1 = argmin J(ut−1) (16a)

f jt (w̃
p
t−1,

õ
jξ
q

t
, unomt−1) ≤ 0, ∀p = 1, 2..nr, q = 1, 2..no (16b)

ut−1 ∈ C (16c)

Note that satisfaction of (16b) ensures that the assumption
(15) holds. Few points are worth noting about the above opti-
mization. First, it is a deterministic problem whose complexity
primarily depends on the algebraic nature of f jt (.). Second,
the desired distribution can always be constructed if we have
access to sets Cw̃t−1

, Cõ
jξt

. The construction of these two sets
is guaranteed as long as we can obtain a feasible solution
to (16a)-(16c). Although it is difficult to provide solution
guarantees, in our simulations and experimental runs, we have

observed that the solution could always be obtained if there
existed a collision avoiding control considering only the mean
of the uncertainty. Finally, (16a)-(16c) is precisely the so-
called scenario approximation for the robust MPC (4a)-(4c).
Conventionally, scenario approximation is solved with a large
nr, no (typically 102 each) in order to obtain a solution that
satisfy chance constraints (4b) with a high η (≈ 0.90). In
contrast, we use (16a)-(16c) to estimate the desired distribution
and thus for our purpose, a small sample size in the range of
nr = no ≈ 20 proves to be sufficient in practice.

9

Supplementary Material

The supplementary material has detailed discussions on
• Derivations for expressing MMD (11) in terms of kernel matrices
• Guarantees on safety
• Computational aspects of the proposed approach
• Additional comparisons with state of the art methods
The videos for all the simulations and the real time runs can be found at

https://robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance/

DERIVATIONS: EXPRESSING MMD (11) IN TERMS OF KERNEL MATRICES

Prerequisites

RKHS: RKHS is a Hilbert space with a positive definite function k(·) : Rn×RN → R called the Kernel. Let, x denote an
observation in physical space (say Euclidean). It is possible to embed this observation in the RKHS by defining the following
kernel based function whose first argument is always fixed at x.

φ(x) = k(x, ·) (17)

An attractive feature of RKHS is that it is endowed with an inner product, which in turn, can be used to model the distance
between two functions in RKHS. Furthermore, the distance can be formulated in terms of the kernel function in the following
manner.

〈φ(xi), φ(xj)〉 = k(xi, xj) (18)

The equation (18) is called the ”kernel trick” and its strength lies in the fact that the inner product can be computed by only
pointwise evaluation of the kernel function.

Distribution Embedding of PVO: Let w1
t−1,w2

t−1, . . . ,wnt−1 be samples drawn from a distribution corresponding to the
uncertainty of the robot’s state and control. Similarly, let ojξ

1
t ,
o
jξ

2
t , . . . ,

o
jξ
n
t be samples drawn from the distribution corresponding

to the uncertainty in the state of the obstacle. It is important to note here that the parametric forms of these distributions need
not be known. Both these distributions (of the robot and the obstacle) can be represented in the RKHS through a function
called the kernel mean, which is described as

µ[wt−1] =

n∑
p=1

αpk(wpt−1, ·) (19a)

µ[ojξt] =

n∑
q=1

βqk(
o
jξ
q
t , ·) (19b)

where αp is the weight associated with wpt−1 and βq is the weight associated with o
jξ
q
t . For example, if the samples are

i.i.d, then αp = 1
n∀p.

Following [refer], equation (19a) can be used to embed functions of random variables like f jt (wt−1,
o
jξt,ut−1) shown in

equation (20), where f jt is the VO constraint and wt−1,
o
jξt are random variables with definitions taken from table I.

µ
f
j
t
(ut−1) =

n∑
p=1

n∑
q=1

αpβqk(f
j
t (w

p
t−1,

o
jξ
q
t , ut−1), ·) (20)

Similarly, we can write the same for the samples for the desired distribution,
nr∑
p=1

no∑
q=1

λpψqk(f
j
t (w̃pt−1, õjξ

q
t , u

nom
t−1), ·) (21)

where αp, βq, λp and ψq are the constants obtained from a reduced method that is explained in the section III-F.

https://robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance/

10

An important point to notice from above is that for given samples wt−1,
o
jξt the kernel mean is dependent on variable ut−1.

The rest of the material focuses on the detailed derivation of the Ldist used in our cost function to solve our robust MPC
problem.

The proposed method has its foundations built by first posing the robust MPC as a moment matching problem (Theorem 1)
and then describes a solution that is a workaround based on the concept of embedding distributions in RKHS and Maximum
Mean Discrepancy (MMD). Further insights on how MMD can act as a surrogate to the moment matching problem are described
in Theorem 2 of the paper. Theorem 2 suggests that if two distributions Pfj

t
and P des

fj
t

, have their distributions embedded in
RKHS for a polynomial kernel up to order d, then decreasing the MMD distance becomes a way to match the first d moments
of these distributions.

Using these insights, an optimization problem given by (4a), (6a)-(6b) is proposed.

argmin ρ1Ldist + ρ2J(ut−1) (22a)

Ldist = ‖µP
f
j
t

(ut−1)− µPdes

f
j
t

‖2 (22b)

J(ut−1) = ‖ξt − ξdt ‖
2
2 + ‖ut−1‖22 (22c)

ut−1 ∈ C (22d)

where,

‖µP
f
j
t

(ut−1)− µPdes

f
j
t

‖2 = 〈µP
f
j
t

(ut−1), µP
f
j
t

(ut−1)〉 − 2〈µP
f
j
t

(ut−1), µPdes

f
j
t

〉+ 〈µPdes

f
j
t

, µPdes

f
j
t

〉

= 〈
n∑
p=1

n∑
q=1

αpβqk(f
j
t (w

p
t−1,

o
jξ
q
t , ut−1), ·),

n∑
p=1

n∑
q=1

αpβqk(f
j
t (w

p
t−1,

o
jξ
q
t , ut−1), ·)〉

− 2〈
n∑
p=1

n∑
q=1

αpβqk(f
j
t (w

p
t−1,

o
jξ
q
t , ut−1), ·),

nr∑
p=1

no∑
q=1

λpψqk(f
j
t (w̃pt−1, õjξ

q
t , u

nom
t−1), ·)〉

+ 〈
nr∑
p=1

no∑
q=1

λpψqk(f
j
t (w̃pt−1, õjξ

q
t , u

nom
t−1), ·),

nr∑
p=1

no∑
q=1

λpψqk(f
j
t (w̃pt−1, õjξ

q
t , u

nom
t−1), ·)〉

(23)

Using kernel trick, the expression in (23) can be reduced to

‖µP
f
j
t

(ut−1)− µPdes

f
j
t

‖2 = CαβK
f
j
t f

j
t

CTαβ − 2CαβK
f
j
t f̃

j
t

CTλψ + CλψK
f̃
j
t f̃

j
t

CTλψ (24)

where,

Cαβ =
[
α1β1 α2β2 · · · αnβn

]
1×n2

Cλψ =
[
λ1ψ1 λ2ψ2 · · · λnψn

]
1×nrno

K
f
j
t f

j
t
=

K11

f
j
t f

j
t

K12

f
j
t f

j
t
· · · K1n

f
j
t f

j
t

K21

f
j
t f

j
t

K22

f
j
t f

j
t
· · · K2n

f
j
t f

j
t

...
...

. . .
...

Kn1

f
j
t f

j
t

Kn2

f
j
t f

j
t
· · · Knn

f
j
t f

j
t

Kab

f
j
t f

j
t
=

k(f
j
t (w

a
t−1,

o
jξ

1
t , ut−1), f

j
t (w

b
t−1,

o
jξ

1
t , ut−1)) · · · k(f jt (w

a
t−1,

o
jξ

1
t , ut−1), f

j
t (w

b
t−1,

o
jξ
n
t , ut−1))

...
. . .

...
k(f jt (w

a
t−1,

o
jξ
n
t , ut−1), f

j
t (w

b
t−1,

o
jξ

1
t , ut−1)) · · · k(f jt (w

a
t−1,

o
jξ
n
t , ut−1), f

j
t (w

b
t−1,

o
jξ
n
t , ut−1))

n×n

K
f
j
t f̃

j
t

=

K11

f
j
t f̃

j
t

K12

f
j
t f̃

j
t

· · · K1nr

f
j
t f̃

j
t

K21

f
j
t f̃

j
t

K22

f
j
t f̃

j
t

· · · K2nr

f
j
t f̃

j
t

...
...

. . .
...

Kn1

f
j
t f̃

j
t

Kn2

f
j
t f̃

j
t

· · · Knnr

f
j
t f̃

j
t

Kab

f
j
t f̃

j
t

=

k(f jt (w

a
t−1,

o
jξ

1
t , ut−1), f

j
t (w̃bt−1, õjξ

1
t , u

nom
t−1)) · · · k(f jt (w

a
t−1,

o
jξ

1
t , ut−1), f

j
t (w̃bt−1, õjξ

no
t , unomt−1))

...
. . .

...
k(f jt (w

a
t−1,

o
jξ
n
t , ut−1), f

j
t (w̃bt−1, õjξ

1
t , u

nom
t−1)) · · · k(f jt (w

a
t−1,

o
jξ
n
t , ut−1), f

j
t (w̃bt−1, õjξ

no
t , unomt−1))

n×no

(25)

11

GUARANTEES ON SAFETY

Both our GMM-KLD and RKHS based approach works with only sample level information without assuming any parametric
form for the underlying distribution. Thus, the performance guarantees on safety depends on the following aspects. First, on
how well are we modeling the distribution of our collision avoidance function (PVO) for a given finite sample size. Second,
does our modeling improve as the samples increase: a property popularly known as consistency in estimation. Third, can
we tune our model to produce diverse trajectories with varied probability of avoidance in line with the original robust MPC
formulation. The discussion regarding the consistency, has been addressed in section III-G. The third question has already
been addressed in Remark 2 and additional results validating this are provided in the following subsections. Moreover, first
two questions about GMM-KLD based approaches have already been established in the existing literature [15],[16].

Trajectory Tuning
As mentioned in Remark 2 and also validated in the results Section IV, the polynomial kernel order d can be used to produce

trajectories with different probability of collision avoidance η. Herein, we presents some additional results to back our claims.
Fig.7 summarizes these results. As d increases, the robot seeks to maintain higher clearance from the obstacles.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Effect of d on the trajectory of the robot. η increases with increase in d. In figures (a),(d) and (g) (at t = 4s), for a similar configuration, with
increasing d, the number of samples of robot and obstacle that overlap decreases, thereby resulting in higher η values. Similar trend is observed in b, e and
h (at t = 10s). The different trajectories resulted due to different d values are shown in figures (c),(f) and (i) (at t = 14s).

Analysis of real runs
The RKHS framework was implemented on a Bebop drone equipped with a monocular camera. A person walking with an

April tag marker in front of him constitute the moving object. Distance and bearing to the marker is computed using the April

12

Tag library from which the velocity information is obtained. The state and velocity of the drone is obtained from the on board
odometry (estimated using an onboard IMU). The state, velocity, control and perception/measurement noise distributions were
computed through a non-parametric Pearson fit over experimental data obtained over multiple runs. A number of experimental
runs, totally 15, were performed to evaluate the RKHS method. This is shown in the Fig. 8. We show that increasing the power
of the polynomial kernel, d, decreases the overlap of the samples of the robot and the obstacle leading to more conservative
maneuvers.

(a) (b) (c) (d)

Fig. 8. The ghost figures of the person represent various samples of the moving person being considered while avoiding. Similarly, the ghost figures of the
drone is indicative of the various samples of the drone being considered while performing the maneuver. In (b) and (d) the drone starts avoiding the person.
The deviation while executing the avoidance maneuver is higher in case of d = 3. Further analysis is presented in the Figs. 9 and 10.

The figures 9 and 10 further analyze the results of the real run. The robot samples are represented using translucent blue
circles while the obstacle samples are represented using translucent yellow circles. The means of the robot and the obstacle
are represented using opaque blue and yellow circles, respectively.

(a) (b)

(c) (d)

Fig. 9. Trajectory plots resulting from real time collision avoidance shown in Fig. 8 (a)-(b) show the trajectories obtained for d = 1. (c)-(d) show trajectories
obtained with d = 3. As can be seen, higher d reduces the overlap between robot and obstacle uncertainty leading to higher probability of collision avoidance.

13

(a) (b)

Fig. 10. Effect of d on the distribution matching for the real runs shown in the Fig. 8. Figure (a) illustrates the behaviour of P
f
j
t

when the proposed algorithm
is evaluated for d = 1 while (b) shows the results for d = 3. It can be observed that the controls computed for d = 1 results in a notable amount of area of
P
f
j
t

on the right side indicating the presence of collision (can be verified in Fig 9(b)) where as choosing d = 3 results in almost negligible amount of area
on the right side, leading to almost no colliding samples (can be verified in Fig 9(d))

COMPUTATIONAL ASPECTS

• The proposed RKHS based approach avoids the need to first fit a parametric form to the distribution of PVO and the
desired distribution and then compute collision avoidance control. For example, in the paper (Section III-D and section
IV), we highlighted this aspect by fitting the popular Gaussian Mixture Model to both these distributions. Our RKHS
based approach directly performs distribution level reasoning from the given samples.

• Furthermore, we exploit the kernel trick to reduce the MMD computation to just matrix multiplication which can be
efficiently parallelized on GPUs (Section IV-B). The details of such implementations are given in the supplementary
material [robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance/#implementation].

COMPARISONS WITH THE EXISTING METHODS IN THE LITERATURE

Linearized constraints with Gaussian approximation of uncertainty

For this comparison, we first fit a Gaussian to the error distribution (shown in Fig. 11) and consequently, approximate
wt−1,

o
jξt as Gaussian random variables. We subsequently compute an affine approximation of f jt (.) which we denote as f̂ jt (.)

by linearizing with respect to wt−1 and o
jξt. Note that the linearization is with respect to random variables and not ut−1. f̂ jt (.)

is still non-linear in ut−1. But nevertheless, Pf̂j
t
(ut−1) takes a Gaussian form [18]. We can now easily adopt sampling based

procedure to obtain the control ut−1 such that P (f̂ jt (.) ≤ 0) ≥ η is satisfied, where η is the probability of collision avoidance.
Fig. 12 summarizes the results. Fig.12(a) shows a robot in imminent collision with a dynamic obstacle. The true distribution
Pfj

t
(ut−1) and the Gaussian approximation Pf̂j

t
(ut−1) for the computed control input is shown in Fig.12(b). As shown, the

Gaussian approximation lies completely to the left of f jt = 0, line indicating collision avoidance with a very high probability
for the computed control input. However, in reality true distribution has a significant mass to the right of f jt = 0 indicating a
risk of collision. Thus, this experiment clearly shows that the Gaussian approximation results in a collision avoidance
algorithm that is not robust.. Fig. 13 summarizes the collision avoidance results obtained with our RKHS based approach.
As clearly shown, we can compute a control input which brings the true distribution Pfj

t
(ut−1) to the left of f jt = 0.

Comparison with Gaussian approximation + exact surrogate based approach

In this approach, we first fit a Gaussian to the error distribution (shown in the Fig. 11) and consequently, approximate
wt−1,

o
jξt as Gaussian random variables. Subsequently, we replace the chance constraints with the following surrogate used in

works like [19], [20], [21].

E[f jt (.)] + ε

√
V ar[f jt (.)] ≤ 0, η ≥ ε2

1 + ε2
, (26)

where, E[f jt (.)], V ar[f
j
t (.)] respectively represent the expectation and variance of f jt (.) taken with respect to random variables

wt−1,
o
jξt. It can be shown that the satisfaction of (26) ensures the satisfaction of chance constraints with confidence η ≥ ε2

1+ε2 .

https://robotics.iiit.ac.in/uploads/Main/Publications/rkhs-collision-avoidance/#implementation

14

−1 0 1 2
Position [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

De
ns

ity
 V

al
ue

Error distribution: x robot
x
x Gaussian Approx

−2 −1 0 1 2
Position [m]

0.0

0.2

0.4

0.6

0.8

De
ns

ity
 V

al
ue

Error distribution: y robot

y
y Gaussian Approx

−0.50 −0.25 0.00 0.25
Velocity [ms]

0

1

2

3

4

5

De
ns

ity
 V

al
ue

Error distribution: ̇x robot
̇x
̇x Gaussian Approx

−0.50 −0.25 0.00 0.25 0.50
Velocity [ms]

0

1

2

3

4

De
ns

ity
 V

al
ue

Error distribution: ̇y robot

̇y
̇y Gaussian Approx

−0.5 0.0 0.5
Acceleration [m2

s]

0

1

2

3

De
ns

ity
 V

al
ue

Error distribution: ̈x robot
̈x
̈x Gaussian Approx

−0.5 0.0 0.5
Acceleration [m2

s]

0

1

2

3

De
ns

ity
 V

al
ue

Error distribution: ̈y robot
̈y
̈y Gaussian Approx

−4 −2 0 2 4
Position [m]

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 V

al
ue

Error distribution: x obstacle
x
x Gaussian Approx

−4 −2 0 2 4
Position [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity
 V

al
ue

Error distribution: y obstacle
y
y Gaussian Approx

−0.2 0.0 0.2
Velocity [ms]

0

2

4

6

8

10

De
ns

ity
 V

al
ue

Error distribution: ̇x obstacle
̇x
̇x Gaussian Approx

−0.2 0.0 0.2
Velocity [ms]

0

2

4

6

8

10

De
ns

ity
 V

al
ue

Error distribution: ̇y obstacle
̇y
̇y Gaussian Approx

Fig. 11. This figure shows the Gaussian approximations of the non parametric error distributions for position, velocity, acceleration of the robot and position,
velocity of the obstacle that are shown in Fig. 3. The Gaussian approximations of the non parametric distribution are shown as dotted curves.

(a) (b)

Fig. 12. We show the results for linearization+Gaussian approximation approach for the one obstacle benchmark in Fig. 4. The figure on the left shows
the distribution plot for P

f̂
j
t
(ut−1) while the figure on the right shows the robot (blue), obstacle (yellow), sensing range (gray). At t = 8.5s, a considerable

portion of the true distribution of P
f
j
t

is on the right of zero (which means high probability of collision) while the Gaussian approximation P
f̂
j
t

is completely
on the left side of the zero line. This implies that P

f̂
j
t

is a misrepresentation of P
f
j
t

. The same can be inferred from the figure where the robot seems to be
on a collision course with the obstacle. A comparison with our RKHS based approach can be found in the figure 13.

Note that for Gaussian uncertainty, E[f jt (.)], V ar[f
j
t (.)] have a closed form expression. We henceforth call this approach

EV-Gauss.
An example simulation is presented in the Fig. 14 where a robot tries to avoid three dynamic obstacles. Two different

instances of this simulation were performed, that corresponded to robot requiring to avoid the obstacles with atleast η = 0.60
and η = 0.80. Fig. 15, perform the validation by showing the plot of actual η over time obtained through Monte-Carlo
sampling. As can be seen, at low η, both EV-Gauss and our RKHS based algorithm result in similar η profile. However,
at high η(Fig.15(b)), EV-Gauss performs unreliably and does not maintain the required η for the entire trajectory run. This
can be attributed to the Gaussian approximation of the uncertainty used by EV-Gauss. Figure 16 presents the comparison of
average optimal cost obtained with EV-Gauss and our RKHS based approach over 10 simulation instances with varied number
of obstacles. Note that, the optimal cost is a combination of norm of the tracking error and magnitude of the control inputs
used. To put it quantitatively, EV-Gauss resulted in 27% larger cost than our RKHS approach η = 0.60. This number jumps
to 34% and 40% at η = 0.70 and η = 0.80 respectively. Furthermore, for the three obstacle scenario at η = 0.80, we were
unable to consistently obtain feasible solutions with EV-Gauss.

15

(a) (b)

Fig. 13. The figure on the left shows the distribution plots for P
f
j
t

while the figure on the right shows the robot (blue), obstacle (yellow), sensing range
(gray). Unlike the case of the linearized constraints, the robot starts avoiding the obstacle in the RKHS based approach.

Fig. 14. Trajectory comparison obtained with our proposed RKHS based approach and EV Gauss. The solid lines represent trajectories for η = 0.60 and the
dotted lines correspond to η = 0.80. As shown, EV-Gauss approach leads to higher deviation from the desired trajectory. It can be further correlated with
the results presented in Fig.16

REFERENCES

[1] D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot collision avoidance with localization uncertainty,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, 2012,
pp. 147–154.

[2] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
696–706, 2011.

[3] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and D. Manocha, “Prvo: Probabilistic reciprocal velocity obstacle for multi robot navigation
under uncertainty,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017, pp. 1089–1096.

[4] B. Kluge and E. Prassler, “Recursive agent modeling with probabilistic velocity obstacles for mobile robot navigation among humans,” in Autonomous
Navigation in Dynamic Environments. Springer, 2007, pp. 121–134.

[5] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The International Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, 1998.

[6] M. Kothari and I. Postlethwaite, “A probabilistically robust path planning algorithm for uavs using rapidly-exploring random trees,” Journal of Intelligent
& Robotic Systems, vol. 71, no. 2, pp. 231–253, 2013.

[7] D. Lenz, T. Kessler, and A. Knoll, “Stochastic model predictive controller with chance constraints for comfortable and safe driving behavior of autonomous
vehicles.” in Intelligent Vehicles Symposium, 2015, pp. 292–297.

[8] J. S. Park and D. Manocha, “Efficient probabilistic collision detection for non-gaussian noise distributions,” arXiv preprint arXiv:1902.10252, 2019.
[9] A. Dhawale, X. Yang, and N. Michael, “Reactive collision avoidance using real-time local gaussian mixture model maps,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3545–3550.
[10] B. G. Lindsay and P. Basak, “Moments determine the tail of a distribution (but not much else),” The American Statistician, vol. 54, no. 4, pp. 248–251,

2000.
[11] B. Schölkopf, K. Muandet, K. Fukumizu, S. Harmeling, and J. Peters, “Computing functions of random variables via reproducing kernel hilbert space

representations,” Statistics and Computing, vol. 25, no. 4, pp. 755–766, 2015.

16

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

η Desired
η>0.6

RKHS(d=1)

EV−GAUSS(ε=1)

(a)

0 5 10 15 20 25 30 35 40

time

0.6

0.7

0.8

0.9

1

RKHS (d=3)

EV-Gauss, =1.5

Desired

>0.8

(b)

Fig. 15. Confidence plots for EV Gauss based approach. At high η (Fig (b)) the EV Gauss method fails to maintain the minimum confidence required, while
RKHS based method performs more reliably.

(a) (b) (c)

Fig. 16. Average cost obtained with our RKHS based algorithm and EV-Gauss. At η = 0.80, EV-Gauss often resulted in infeasible solutions; The last figure
(from the left) highlights this fact.

[12] A. Scibior, C.-J. Simon-Gabriel, I. O. Tolstikhin, and B. Schölkopf, “Consistent kernel mean estimation for functions of random variables,” in Advances
in Neural Information Processing Systems, 2016, pp. 1732–1740.

[13] S. Boyd, “Stochastic programming,” Lecture Notes, Stanford University, 2008.
[14] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. Lanckriet, “Hilbert space embeddings and metrics on probability measures,”

Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1517–1561, 2010.
[15] M. Hardt and E. Price, “Tight bounds for learning a mixture of two gaussians,” in Proceedings of the Forty-seventh Annual ACM Symposium on Theory

of Computing, ser. STOC ’15. New York, NY, USA: ACM, 2015, pp. 753–760. [Online]. Available: http://doi.acm.org/10.1145/2746539.2746579
[16] R. Zhao, Y. Li, and Y. Sun, “Statistical Convergence of the EM Algorithm on Gaussian Mixture Models,” arXiv e-prints, p. arXiv:1810.04090, Oct 2018.
[17] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” 05 2008, pp. 1928–1935.
[18] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in dynamic environments,” IEEE Robotics and Automation Letters, vol. 4,

no. 2, pp. 776–783, April 2019.
[19] A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Stochastic nonlinear model predictive control with probabilistic constraints,” in American Control

Conference (ACC), 2014. IEEE, 2014, pp. 2413–2419.
[20] B. Gopalakrishnan, A. K. Singh, and K. M. Krishna, “Closed form characterization of collision free velocities and confidence bounds for non-holonomic

robots in uncertain dynamic environments,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp.
4961–4968.

[21] D. Lyons, J.-P. Calliess, and U. D. Hanebeck, “Chance-constrained model predictive control for multi-agent systems,” arXiv preprint arXiv:1104.5384,
2011.

http://doi.acm.org/10.1145/2746539.2746579

