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Abstract— Coding theoretic techniques have been proposed
for synchronous Gradient Descent (GD) on multiple servers to
mitigate stragglers. These techniques provide the flexibility that
the job is complete when any k out of n servers finish their
assigned tasks. The task size on each server is found based on
the values of k and n. However, it is assumed that all the n jobs
are started when the job is requested. In contrast, we assume
a tiered system, where we start with n1 ≥ k tasks, and on
completion of c tasks, we start n2 − n1 more tasks. The aim
is that as long as k servers can execute their tasks, the job gets
completed. This paper exploits the flexibility that not all servers
are started at the request time to obtain the achievable task sizes
on each server. The task sizes are in general lower than starting
all n2 tasks at the request times thus helping achieve lower task
sizes which helps to reduce both the job completion time and the
total server utilization.

Index Terms— Tiered gradient codes, distributed computing,
gradient descent, stragglers, server utilization, completion time.

I. INTRODUCTION

MANY distributed machine learning applications require
multiple servers to perform distributed computation of

gradient descent. Distributed gradient descent involves division
of gradient descent tasks across multiple servers, and the job is
finished when all the tasks are completed. The slowest tasks
that determine the job execution time are called stragglers.
Coding theoretic techniques have been proposed to achieve
high-quality algorithmic results in the face of uncertainty,
including mitigation of stragglers. [1]–[7]. These approaches
have been shown to be essential to manage stragglers in dis-
tributed computation of gradient descent [1], [2], [8]. However,
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Fig. 1. Gradient coding: Each server transmits a scalar and master calculates
the sum from the result of any two servers, with the total number of servers
being four.

these approaches assume that all the distributed tasks are
started at the same time, which can be shown to have a large
server utilization cost. To alleviate that, this paper aims to
provide a tiered framework for efficient gradient code designs
that allow for starting certain tasks at the completion of some
tasks with an aim to have an efficient tradeoff between the
completion time of the job and the server utilization cost to
complete the tasks.

In this paper, we propose a coding-theoretic approach for
gradient coding, called Tiered Gradient Coding. Initially at
the service request time, tasks are launched on n1 servers.
On the completion of tasks from c of the servers, tasks are
launched on n2 − n1 > 0 more servers, where n2 is the
total number of servers. We note that the earlier studied
gradient codes [1], [2], [8] do not have two tiers and the
tasks for n2 servers are decided at the same time. By having
the flexibility of obtaining the results from c servers leads
to reduction of per-server workload as compared to deciding
tasks for n2 servers at the same time. Consider as an example
of gradient coding scheme in Fig. 1, where the data is split
into 4 partitions D1, D2, D3 and D4. Server W1 computes
the gradients g1, g2 and g3 of the partitions D1, D2 and
D3 respectively. Similarly, server W2 computes the gradients
g2, g3 and g4, server W3 computes the gradients g3, g4 and
g1 and server W4 computes the gradients g4, g1 and g2. Each
server sends a linear combination of the gradients they have
computed. It is enough to get the results from any two servers
to calculate the overall sum of gradients. The techniques to
calculate the linear combination are provided in [1]. The
computation cost per server is proportional to 3

4 . In Fig. 2,
we describe the proposed tiered gradient coding framework,
where the data is split into 3 partitions D�

1, D
�
2 and D�

3.
Initially, only three servers (W1, W2 and W3) are launched.
Server W1 computes the gradients g�1 and g�2 of the partitions
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Fig. 2. Tiered gradient coding: Initially 3 servers, i.e. W1, W2 and W3,
are launched. Without loss of generality, assume W1 completes the task first.
Then the fourth server W4 is launched. Master waits for one more server to
finish the task to calculate the sum.

D�
1 and D�

2 respectively. Similarly, server W2 computes the
gradients g�2 and g�3 and server W3 computes the gradients g�3
and g�1. Without loss of generality, assume that the server W1

finishes its task first, i.e., W1 sends a linear combination of
the gradients g�1 and g�2. Then, server W4 is launched, which
computes the gradients g�3 and g�1 of the partitions D�

3 and D�
1

respectively. The partitions assigned to W4 depends on the
server which had completed the task initially. Master waits
for one of the servers - W2, W3 and W4 to complete the task.
Master can calculate the sum from the result from W1 and
any one of the servers - W2, W3 or W4. For example, if W4

completes the task first, g�1 + g�2 + g�3 = (g�
1
2 + g�2)+ (g�

1
2 + g�3).

Thus, we see that the task per server reduces from 3
4 to

2
3 for the same number of four servers, and both schemes
guarantee that any two servers completion can provide the
required computation result.

We note that waiting to launch tasks n2 − n1 servers can
affect the job completion time negatively, while the decreased
task size per server affects the job completion time positively,
thus making it apriori unclear whether the completion time
increases or decreases. Similarly, server utilization cost (total
time any server is being used for computation) may also
increase if the completion time is increased, and decrease since
n2 − n1 servers are not used till c complete the computation.
A tradeoff between the two metrics of completion time and
server utilization cost have been considered for coded tasks
[9], while we show that efficient coding can also decrease
the task size when such multi-forking capability (starting n2

after c have finished) can lead to decreased task size further
reducing both the metrics. As an example, we consider n2 =
15, c = 1, and k = 5, where k is the number of servers
that must complete execution for the job to be completed. For
three models of the time taken for each server to complete
the task (with the models described in Section VI), Fig. 3
shows for different values of n1, the tradeoff (between service
completion time and server utilization cost) points that can be
achieved with tiered-gradient codes as compared to gradient
coding where all n2 tasks must be decided apriori. Since the
gradient codes are independent of n1, they are only a point,
while we achieve different tradeoff points for different n1.
We see that the proposed codes perform significantly better

in both the completion time and server utilization costs and
efficient parameters can be decided based on the application
requirements.

The key contribution of the paper is a new framework for
tiered gradient codes which allows for a delayed start of the
tasks at the servers. A novel code construction is provided that
exploits this flexibility, and reduces the amount of computation
that each server has to perform.

Notation: Throughout this paper, we let d denote the
number of samples, n2 denote the total number of servers,
Q denote the number of data partitions, and s denote the
number of stragglers/failures. Let k denote the minimum
number of servers required to finish their task such that the
overall gradient can be computed. Let n1 < n2 denote the
number of servers launched in the first phase. We wait for
c < k servers to finish their job first when n1 servers are
launched. In the second phase the rest of n2 − n1 servers are
launched. The n2 servers are denoted as {W1, W2, . . . , Wn2}.
The partial gradients over Q data partitions are denoted as
{g1, g2, . . . , gQ}. All matrices under consideration are over
real numbers. Let [z] denote the set {1, 2, . . . , z} and [z1, z2]
denote the set {z1, z1 + 1, . . . , z2}. The support of a vector
f = [f1 f2 f3 . . . fm], supp(f), gives a set of all positions of
f which are non zeros, i.e., supp(f) = {i : fi �= 0}. Given a
set S, ‘c subset’ of S is defined as a subset of S which is of
length c.

II. RELATED WORK

Coding theoretic techniques have been proposed to achieve
efficient algorithmic results in the face of uncertainty, includ-
ing mitigation of stragglers. The different distributed com-
puting applications include coded matrix multiplication [10],
[11], MapReduce models [10], [12], [13], and computation of
gradients [14]–[18].

In this paper, we focus on gradient computation, which
was introduced in [1]. In [2], coding techniques to reduce the
running time of distributed learning tasks have been provided.
A stochastic block code and an efficient decoding method for
approximate gradient recovery are provided in [19]. A distrib-
uted computing scheme called Batched Coupon’s Collector
to mitigate the effect of stragglers in gradient methods is
proposed in [20]. In [21], a straggler mitigation scheme that
facilitates the implementation of distributed gradient descent
in a computing cluster is presented. They also proposed a
theoretical delay model which allows to minimize the expected
running time. In [22], an approximate variant of the gradient
coding problem is introduced, in which approximate gradient
computation is done instead of the exact computation.

A cost vs. latency analysis of using simple replication
or erasure coding for straggler mitigation in executing jobs
with many tasks is studied in [9], [23], [24]. In these works,
the authors have shown that the delayed relaunch of stragglers
yields significant reduction in cost and latency. The authors of
[9], [24] considered that the computation could be complete
from the result of any k out of n servers, and evaluated the
notions of service completion time and server utilization cost
with delayed relaunch. The work in [9], [24] does not propose
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Fig. 3. Server utilization cost as a function of service completion time when we vary n1 ∈ [k,n2] for n2 = 15, c = 1 and k = 5.

new coding mechanisms and MDS codes cannot be directly
applied for gradient coding. We show that having a delayed
relaunch based on when c servers finish execution rather than
a constant time as in [9], significant computation time is saved
on each server. Delayed relaunch based on c servers finishing
execution has been considered in [24], and such stochastic
analysis can complement the study to come up with the metrics
of service completion time and server utilization cost, while is
not the focus of this work. The focus of our work is efficient
code designs for distributed gradient computation that exploits
the flexibility of delayed relaunch of servers. In this paper,
we show that efficient coding further allows reduction of task
size per server with a delayed execution of tasks, a flexibility
which had not been studied earlier. Thus, our coding-theoretic
techniques can further help reduce the job completion time by
exploiting a better choice of the parameters since starting more
servers need larger task size at each server in general. Thus,
this paper aims at finding efficient code constructions that
minimizes per-server task sizes with the flexibility of tiered
launching of tasks.

III. REVIEW OF GRADIENT CODES

A. Distributed Gradient Descent Computation

Given a dataset D with d examples, D = {(Xi, Yi)}d
i=1,

where Xi ∈ R
p and Yi ∈ R, we want to learn parameters

β ∈ R
p by minimizing a generic loss function L(D; β) =�d

i=1 L(Xi, Yi; β). We update the parameter β according to
the following rule: β(t+1) = h(β(t); g(t)), where g(t) =
∇L(D; β(t)) =

�d
i=1 ∇L(Xi, Yi; β(t)) is the gradient of

the loss at the current estimate of the parameters and h
is a gradient-based optimizer. We consider the problem of
distributed synchronized gradient descent where the d data
samples are divided into Q partitions, D1, D2, . . . , DQ. The
partial gradient computed on the jth partition is given by g

(t)
j =�

(X,Y )∈Dj
∇L(X, Y ; β(t)). The overall gradient required to

compute the update on β(t) is given by g(t) =
�Q

j=1 g
(t)
j .

We will omit the superscript t in this paper to simplify
the notation. Next, we provide a review of two classes of
conventional gradient codes known as fractional repetition
gradient codes and cyclic repetition gradient codes [1].

B. Gradient Coding Framework

For n2 workers and Q data partitions, we have a set of
linear equations: AF = 1f×Q, where f denotes the number

of combinations of surviving servers/non-stragglers, 1f×Q is
the all 1 matrix of dimension f × Q and we have matrices
A ∈ R

f×n2 , F ∈ R
n2×Q. The ith row of F, fi, is associated

with the ith server Wi. The support of fi, supp(fi), represents
the data partitions corresponding to the server Wi and the
entries of fi encode a linear combination over their gradients
that server Wi transmits. Let g ∈ R

Q×p be a matrix with
each row being the partial gradient of a data partition i.e.
g = [g1, g2, . . . , gQ]T . Then, server Wi transmits fig. Each
row of A, denoted by ai, is associated with a specific straggler
scenario, to which tolerance is desired. In particular, any
row ai, with support supp(ai), corresponds to the scenario
where the server indices in supp(ai) are non-stragglers. The
entries of ai encode a linear combination which, when taken
over the transmitted gradients of the non-straggler servers,
{fug}u∈supp(ai), would yield the full gradient. We refer to
this system as (n2, k) gradient code where k is the number of
non stragglers.

C. Fractional Repetition Gradient Codes [1]

Consider the case when n2 − k + 1 divides n2.
Let Q = n2. Consider the following matrix Fj =
1(n2−k+1)×(n2−k+1), 1 ≤ j ≤ n2

n2−k+1 . The matrix F of the
fractional repetition gradient code is constructed as follows:

F =

⎡
⎢⎢⎢⎣
F1 0 . . . 0
0 F2 . . . 0
...

...
...

...
0 0 . . . F n2

n2−k+1

⎤
⎥⎥⎥⎦ .

D. Cyclic Repetition Gradient Codes [1]

This class of gradient codes exist for all values of k and n2.
Let Q = n2 and let the columns of F be indexed by [0, n2−1].
The support structure of the matrix F is as follows:

supp(fi) = [i − 1, i + (n2 − k − 1)] mod n2. (1)

Now, we will present a randomized construction of the matrix
F . Consider a matrix H of size (n2 − k) × n2 whose first
(n2 − 1) columns are picked at random i.i.d. from a Gaussian
distribution N (0, 1). The last column of H is obtained as
follows: H(:, n2 − 1) = −

�n2−2
i=0 H(:, i). Each vector fi is

calculated by solving the following equation fi|LiH(:, Li)T =
0, where Li is the support of fi as given by Equation (1).
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IV. TIERED GRADIENT CODE FRAMEWORK

In this section, we give the framework of tiered gradient
coding and present a span condition which is necessary for
a code to be tiered gradient code. Based on this framework,
the various parameters achieved by tiered gradient codes are
provided in Section V.

A. Tiered Gradient Codes

In the conventional gradient code framework, we assume
that there are n2 servers which start computing the partial
gradients assigned to them. We want to be able to compute
the overall gradient whenever k < n2 servers finish. Each
server sends a linear combination of the partial gradients which
it has computed and sends it back to the master node. The
master node aggregates all the linear combinations of the
partial gradients and performs a linear combination in turn
to obtain the overall gradient

�Q
j=1 gi.

In the tiered gradient code framework, we consider two
phases. Initially, before the first phase where the first n1

servers start computing the partial gradients from the data
partitions assigned to them, the master node transfers the
assigned data partitions to the first n1 servers. For the rest
of the n2 − n1 servers, the master node transfers all the
data partitions. Hence, the first n1 servers store only the data
partitions assigned to them while all other servers store all the
data partitions.

In the first phase, n1 servers start computing the partial
gradients from the data partitions assigned to them and c out
of the n1 servers complete their gradient computation by the
end of the first phase. In the second phase, n1 − c servers
continue their tasks which were started in the first phase and
n2 −n1 servers start computing the partial gradients assigned
to them in the second phase depending upon which servers
have completed their tasks in the first phase.

The assignment of the data partitions to n2−n1 servers for
computation in the second phase is decided based on which
c servers out of the n1 servers have finished. The number
of data partitions assigned to a server launched in the first
phase to do computation is the same as that assigned to a
server launched in the second phase. Hence, even though the
entire data is available with the later initialized nodes, we do
not take that into account in this paper. We wish to reduce
the computation load. The assignment of data partitions for
computation is the same in both the phases. We want to be able
to compute the overall gradient whenever k servers out of the
n2 servers finish. This condition is equivalent to saying that we
would need the results from any k−c out of the n2−c servers
to complete in the second phase, so that we can compute the
overall gradient. We call this set up as (n1, n2, k, c) tiered
gradient coding.

B. Span Condition of Tiered Gradient Codes

Consider the Q partial gradients arranged in a column vector
as g = [g1, g2, . . . , gQ]T . Let F denote a matrix of size n1×Q
over R. The ith row of the F matrix is denoted by fi, 1 ≤
i ≤ n1. The support of fi indicate the partial gradients which

are computed on the ith server. The quantity fig is the linear
combination sent by the ith server to the master node.

Let M ⊂ [n1] denote the set of c servers which have finished
their tasks at the end of the first phase and M denote the set of
all possible c subsets of [n1]. Let {BM , M ∈ M} denote a set
of matrices, each of size (n2−n1)×Q. The ith row of BM is
denoted by bi, 1 ≤ i ≤ n2−n1. The support of bi indicate the
partial gradients which are computed on the ith server among
the n2 − n1 servers started in the second phase. The quantity
big is the linear combination sent by the ith server to the
master node. We also assume that for all the

	
n1
c



possibilities

of c servers completing the tasks from a total of n1 servers (set
of all possible M ), the BM matrices are stored by the master
node initially. After the first phase, the master node knows
the set M . Hence the corresponding BM matrix is taken and
the master node assigns the data partitions to the rest of the
servers from the respective rows of the BM matrix.

Let {AM , M ∈ M} denote a set of matrices, each of size
N ×n2, where N represents the number of possible straggler
configurations which can be tolerated by a tiered gradient
code. Columns of the AM matrix are indexed by the servers.
The rows of the AM matrix are denoted by ai. Each ai has
non-zeros in the c positions corresponding to the subset M .
The rows of the AM matrix are such that each row will have
non-zeros in a distinct subset of k−c out of the n2−c positions.
Hence, the number of possible straggler configurations which
can be tolerated by a tiered gradient code described above, for
a given set of c servers, is N =

	
n2−c
k−c



.

Definition 1: Consider a set of matrices
(F, {(AM , BM ), M ∈ M}), where F is a n1 × Q matrix,
AM is a N × n2 matrix and BM is a (n2 − n1) × Q matrix,
for all M ∈ M. If this set of matrices obeys Equation (2),
then we say that this set of matrices generates a (n1, n2, k, c)
tiered gradient code, where 1N×Q denotes a matrix with all
its entries being 1.

AM

�
F

BM

�
= 1N×Q, ∀M ∈ M. (2)

Lemma 1 provides the necessary condition for a code to be
a tiered gradient code.

Claim 1: The partial gradients which are computed on the
first n1 servers have to constitute a (n1, k) gradient code.

Proof: We need to be able to compute the overall gradient
whenever k servers finish. This includes the c servers which
have computed the gradient in the first phase. Now, since n1 ≥
k, all the k servers can be potentially from the first n1 servers
and since the property has to held for all possibilities of c
servers, the claim follows.

Lemma 1 (Span Condition): Consider a tiered gradient
code generated by the set of matrices (F, {(AM , BM ), M ∈
M}). For each M ∈ M, I1 ⊆ [n1] \ M and I2 ⊆ [n2 − n1],
such that |I1∪I2| = k−c, it holds that 11×Q ∈ span{fi,bj |i ∈
M ∪ I1, j ∈ I2}.

Proof: We consider one row of Equation (2) for a fixed
M and is given by

ai

�
F

BM

�
= 11×Q. (3)
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Let Li = supp(ai) = M ∪ I1 ∪ {I2}. The above equation

can be rewritten as ai|Li

�
F |M∪I1

BM |I2

�
= 11×Q, where ai|Li

represents the vector of length |Li| obtained by taking the
non zero elements in the vector ai. The matrix F |M∪I1 is
obtained from F by taking only the rows in F corresponding
to the indices in M ∪ I1 and BM |I2 is obtained by taking
the rows in the BM matrix corresponding to the indices in I2.
From Equation (3), it is clear that there exists a non-zero vector
ai|Li such that the above equation is true. Hence, we can solve
for ai|Li and hence ai can be solved using the above equation.

The span condition for the conventional gradient code
framework in [1] follows from Lemma 1 by considering
n2 = n1 and AM = A.

In order to show that the span condition in Lemma 1 is
satisfied by the tiered gradient codes with probability 1, it is
enough to show that the following support condition holds
for the code under consideration and rest of the arguments
follow exactly as in the proof of Lemma 1 in [1] (and hence
omitted). We will now present the support condition for tiered
gradient codes which is a sufficient condition to show that the
randomized construction of the F and BM matrices satisfy
the span condition in Lemma 1.

Condition 1: Consider a set of matrices
(F, {(AM , BM ), M ∈ M}). For every M ∈ M,
I1 ⊆ [n1] \M , I2 ⊆ [n2 −n1], such that |I1 ∪ I2| = k− c and
for every T1 ⊂ M ∪ I1 and T2 ⊂ I2 of size |T1| + |T2| = �
(1 ≤ � ≤ k), it needs to satisfy the following inequality for
the above set of matrices to represent a tiered gradient code:
| ∪i∈T1 Li ∪j∈T2 Zj | ≥ (n1 − k) + �.

V. MAIN RESULTS

In this section, we provide our results for (n1, n2, k, c)
tiered gradient codes for the entire range of n1 and n2.
We define the amount of computation per server as the fraction
of data that is used by a server to perform computation. More
the data, more is the computation time.

Theorem 1: The amount of computation per server of
(n1, n2, k, c = 1) tiered gradient code is as follows

1) For n1 = k, n2 − n1 = 1 and even k, the amount of
computation per server is 2(k−1)

k2 .
2) For k ≤ n1 ≤ 2(k − 1) and n2 > 2(k − 1), the amount

of computation per server is 1
2 .

3) For n1, n2 ≥ 3(k − 1), the amount of com-
putation per server is n2−k+1−G1

n2−G1
, where G1 =

max{min{n2 − (n1 + p∗), �n1+p∗−k+1
k−1 �}, min{n2 −

n+, C∗
n+}, n2 − nmin}, p∗ = n2 − n1 − n2−k+1

k �,
n+ = min {n� ∈ [max {n1, n2 − 6}, n2 − 1]} such that

C∗
n+ = maxn�∈[max {n1,n2−6},n2−1] C

∗
n� , nmin =

min {n�� ∈ [max {n1, n2 − 6}, n2 − 1]} such that n2 ≤
n�� + C∗

n�� . The values of C∗
n ∀n ∈ [n2] are provided

in Table II.
4) For 2(k − 1) < n1 < 3(k − 1) and n2 ≥ 3(k − 1), the

amount of computation per server is n2−k+1−G2
n2−G2

, where

G2 = max{min {n2 − (n1 + p∗), �n1+p∗−k+1
k−1 �},

Fig. 4. The amount of computation per server required as a function of n1

when we vary n1 ∈ [k,n2] for n2 = 19, c = 1 and k = 5.

min {n2 − n+, C∗
n+}, n2 − nmin}, p∗ =

max {3(k − 1) − n1, n2 − n1 − n2−k+1
k �}, n+ =

min {n� ∈ [max {3(k − 1), n2 − 6}, n2 − 1]} such
that C∗

n+ = maxn�∈[max {n1,n2−6},n2−1] C
∗
n� ,

nmin = min {n�� ∈ [max {3(k − 1), n2 − 6}, n2 − 1]}
such that n2 ≤ n�� + C∗

n�� . The values of C∗
n ∀n ∈ [n2]

are provided in Table II.
Theorem 2: The amount of computation per server of

(n1, n2, k, c > 1) tiered gradient code is as follows
1) For n1 ≤ 2(k − 1) and n2 > 2(k − 1), the amount of

computation per server is 1
2 .

2) For n1 ≥ 2(k − 1) + (k − c), the amount of
computation per server is n2−k+1−G3

n2−G3
, where G3 =

min {n2 − n1, �n1+p∗−k+c
k−1 �}, p∗ = n2 − n1 −

n2−k+c
k �.

3) For 2(k − 1) < n1 < 2(k − 1) + (k − c) and n2 ≥
2(k−1)+(k−c), the amount of computation per server
is n2−k+1−G4

n2−G4
, where

G4 = min{n2 − (2(k − 1) + (k − c)),

�n1 + p∗ − k + c

k − 1
�},

p∗ = max{(2(k − 1) + (k − c)) − n1,

n2 − n1 −
n2 − k + c

k
�}.

We note that the amount of computation per server is
n2−k+1

n2
for the (n2, k) gradient code, and the proposed tiered

gradient codes reduce this amount to that in the statement of
Theorem 1 due to the flexibility of delayed start of n2 − n1

servers when c have finished computation. Fig. 4 illustrates
the savings in the amount of computation per server for tiered
gradient codes as compared to the gradient codes for c = 1.
We note that as the value of n1 increase, the amount of
computation per server is non-decreasing. This is because for
smaller n1, one possibility is to use the code construction
of larger n1 and only start the required number of servers
initially and rest can be started when c servers complete. Thus,
a code for larger n1 can be used for smaller n1 providing more
savings as n1 decreases.

For all the cases discussed, the tiered gradient coding
performs better than the gradient coding in terms of the amount
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Fig. 5. Server utilization cost as a function of service completion time when we vary n1 ∈ [k,n2] for n2 = 12, c = 1, and k = 3.

of computations per server required. We provide the code con-
structions for Theorem 1 in Section VII. Further, Section VIII
provides the code construction for c > 1 (Theorem 2).

VI. NUMERICAL EVALUATIONS

In this section, we compare two metrics for the proposed
tiered gradient codes to that for the gradient codes in [1].
The first metric is the service completion time, defined as the
time taken for the k tasks to complete. The second metric
is the server utilization cost, which is the sum over all n2

servers, the time during which each of the server is used till
the job completes. Since both the metrics are random variables,
dependent on the execution times of the tasks, we average the
metrics over 104 random trials to get mean results.

Two distribution models are typically used to model the
task execution times at the servers, both these distributions
model the effect of stragglers in the job computation. The
first is the shifted exponential distribution. For a shifted
exponential distribution with probability distribution given by
Pr(T > x) = e−μ(x−d)+ for all x > 0, the shift parameter d,
the mean is given by d + 1

μ . The distribution is motivated by
Tahoe experiments [25], Ceph Experiments [26], and Amazon
S3 experiments [27]. The shift is in part due to the read/write
times and the minimum transfer time, and the randomness is
due to the background processes. In our simulation, we have
taken the total number of data points as D = 10, 000. The
shift parameter happens from a combination of disk I/O and
computation, and thus we consider two models for this. The
first, called SE1, is where d = 0.5 times the computation
per server required as in Theorem 1 whereas 1

μ is taken
as 2 times the the computation per server required. The
second, called SE2, is where d = 100 and is independent
of the computation per server required, modeling more of the
disk I/O rather than computation. For gradient coding case
considered in the second model, 1

μ is taken as 2 times the the
computation per server required which is around 8, 000 (for
n2 = 12, c = 1 and k = 3).

The second distribution model that is considered is the
Pareto distribution, which has probability distribution of task
execution at each server as Pr(T > x) = (min(x, xm)/x)α

for all x, where xm is the scale parameter and α is the shape
parameter. For our evaluations, we let α = 1.5, and have

Fig. 6. Server utilization cost and service completion time as a function of
c for n2 = 15, n1 = 8, and k = 5. Task completion time is assumed to be
distributed as SE2.

xm = 1 times the computation per server requires as given
in Theorem 1. This distribution is label Pa.

We first consider n2 = 15, c = 1, and k = 5, and vary
n1 from 5 to 15. The tradeoff between the server utilization
cost and service completion time for both the proposed codes
and the codes in [1] are depicted in Fig. 3a, 3b, and 3c for
SE1, SE2, and Pa, respectively. In all three cases, the point
with lowest service completion time and server utilization cost
corresponds to n1 = 2(k − 1). Thus, the decrease in task size
more than compensates the increase in expected completion
time due to the delayed launching of n2 − n1 tasks. The use
of efficient tiered gradient codes decrease both the metrics
significantly for n1 = 2(k − 1) as compared to the gradient
codes which corresponds to n1 = n2. We also consider a
different case - n2 = 12, c = 1, and k = 3 and plot the trade
off between the server utilization cost and service completion
time in Fig. 5a, 5b, and 5c for SE1, SE2, and Pa, respectively,
and achieve the same conclusions. We note that there is no
monotonically relation with the parameters n1 for the two
metrics which are in part due to the code constructions having
discrete changes. The proposed codes help choose parameters
that can help system designer trade off the two metrics more
efficiently. In Fig. 3a, we see more than 25% decrease in the
both the metrics for tiered gradient codes at n1 = 2(k − 1)
as compared to the gradient codes thus showing that delayed
relaunching is helpful and the code construction reduces the
amount of computation efficiently.

So far, we assumed c = 1. We next consider the impact
of general c. We let n2 = 15, n1 = 8, k = 5 in Fig. 6.
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TABLE I

TABLE THAT COMPARES GRADIENT CODING AND TIERED GRADIENT CODING

We note that the server utilization cost decreases with c since
n2 − n1 servers are not started at t = 0, and wait till
completion of c servers. However, the service completion time
increases with c since the delayed starting of tasks lead to a
delay in waiting for k tasks to finish. However, for c = 1
and c = 2, both the metrics are significantly lower in the
proposed approach as compared to the gradient codes. For
c = 3, the server utilization cost for the proposed codes
is significantly lower for the proposed codes at an expense
of the service completion time. Thus, both the metrics may
need to be taken into account together for deciding the code
parameters for the tiered gradient codes. The proposed codes
give additional degrees of flexibility in the design that can lead
to significantly improved performance in the different metrics
of the use of distributed servers, including the task per server,
server utilization cost, and service completion time.

A. Real Data Implementation

Intel DevCloud is a cloud computing service made available
by Intel [28] for several profiles of researchers, students and
professional engineers. Intel DevCloud is a compute cluster,
consisting of multiple servers called compute nodes, storage
servers, and the login node. Each node has Intel Xeon proces-
sor of the Skylake architecture (Intel Xeon Scalable Processors
family), an Intel Xeon Gold 6128 CPU, on-platform memory
of 192 GB and a Gigabit Ethernet interconnect. In order to
do evaluations of gradient descent, we launched the tasks of
training ResNet on CIFAR10 dataset.1 The training samples
were augmented to allow for large batch sizes. As a proxy to
the amount of computation per node, batch-size was varied in
proportion. We evaluated the proposed codes for k = 3, n1 =
2(k−1), and n2 = 12, where the batch size of 80,000 was used
for gradient codes and 48,000 for tiered gradient codes. Run-
ning the codes on n2 different nodes, we calculated the training
time per epoch for each of the batch-sizes. These run-times
were then post-processed to compute the metrics for service
completion time and server utilization cost. Further, the results
were computed for 1000 epochs thus giving 1000 data points
for computing the average of the two metrics. The two metrics
for the gradient codes and the tiered gradient codes can be seen
in Table I, which demonstrates that the proposed framework
reduces the service completion time by 43% and the server
utilization cost by 64% as compared to gradient codes in the
considered scenario on realistic evaluation on Intel DevCloud.

VII. TIERED GRADIENT CODES FOR c = 1
In this section, we provide the code constructions for Theo-

rem 1. Precisely, the achievability part for line 1 in Theorem 1

1The used source-code can be seen at https://github.rcac.purdue.edu/Clan-
labs/TieredGradient/

is discussed in Section VII-A, line 2 in in Section VII-B, line 3
in Sections VII-C and VII-D, and line 4 in Section VII-E.

A. Tiered Gradient Codes for n1 = k, n2 − n1 = 1 (Even k)

In this section, we provide tiered gradient codes for n1 =
k, n2 − n1 = 1, where k is even. The computation per server
required is 2(k−1)

k2 . Let t = k − 1. We split the data into k2

2
partitions. Each user is assigned t partitions of data. The code
construction is as follows.

Construction 1: (n1 = k, n2 − n1 = 1, k even). The
support structure of the matrix F is as follows: supp(fi) =
[(i − 1)


t
2

�
, (i − 1)


t
2

�
+ (t − 1)] mod n1. If server m ∈

[1, n1] finishes the task first in the first phase, the support
of the BM matrix, which is a row vector is as follows:
Z1 =

�
j∈[0,k−1]\(m−1)(j − 1)


t
2

�
+ t mod n1,

Proof: We split data into k2

2 parts, namely
{x0, x1, . . . , xk2

2 −1
}. The support of the first row of

the F matrix is [0, t − 1]. Each row of the F matrix is
obtained by shifting the previous row by


t
2

�
towards

right. Any two consecutive servers have exactly
�

t
2

�
partitions of data in common. Server i and i + 1 have
{x(i) t

2�, x(i) t
2�+1, . . . , x(i+1) t

2�−1} in common. Initially
the first n1 servers are launched. Let us assume that server m
finishes the task first. Then one more server is launched. The
content of this server includes the partitions of data which
are unique to each of the first n1 servers except server m.
The data which is unique to the server i, i ∈ [0, n1] is
x(i−1) t

2�+� t
2�. Hence, k − 1 = t partitions of data are

included in the newly added server.
Theorem 3: The code given in Construction 1 is a (n1, n2 =

n1 + 1, k = n1, c = 1) tiered gradient code where k is even.
Proof: We need to prove that the support condition given

in Condition 1 is satisfied by the code in Construction 1. Here,
M = {m}. The F matrix is a circulant matrix with each row
shifted by


t
2

�
towards right from the previous row. Hence,

if T2 = φ, Condition 1 holds. We will now consider the case
when |T2| = 1, m /∈ T1, |T1| = k − 2. That is precisely when
we have taken all the servers from the first n1 servers except
server m and one more server which is referred as server b.
When we picked the coordinates for the server n2, we have
included the coordinate which is unique to the server b. Hence,
Condition 1 is satisfied. Thus, Condition 1 is satisfied for all
cases and hence the code is a (n1, n2 = n1+1, k = n1, c = 1)
tiered gradient code for even k.

B. Tiered Gradient Codes for k ≤ n1 ≤ 2(k − 1)

In this subsection, we assume that k ≤ n1 ≤ 2(k − 1)
and provide a construction of tiered gradient codes based on
fractional repetition gradient codes. The goal is to design tiered
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gradient codes which perform smaller computation per server
than that is demanded by an (n2, k) gradient code. Here we
assume that n2 > 2(k − 1).

Construction 2: We pick p � 2(k−1)−n1. Let Q = 2(k−
1). Consider the matrices F1 and F2, where F1 = 1�n1

2 �×( Q
2 )

and F2 = 1�n1
2 	×( Q

2 ). The matrix F corresponding to the

tiered gradient code is given by F =
�
F1 0
0 F2

�
. The matrix

BM is as follows:
• If M ⊆ {1, . . . , n1

2 �}, then, BM =
�
0 1(n2−n1)×( Q

2 )

�
• For all other possibilities of M , we set, BM =�

1(n2−n1)×( Q
2 ) 0

�
,

where 1A×B is A × B matrix with all entries as 1.
Theorem 4: The code given in Construction 2 is a

(n1, n2, k, c) tiered gradient code where k ≤ n1 ≤ 2(k − 1).
Proof: To prove the theorem, we will check that the code

satisfies the span condition given in Lemma 1. It is clear that
whenever I2 �= φ, span condition is satisfied. Consider the case
when I2 = φ. In this case, we need that 11×Q to lie in the
span of any k rows of the F matrix. Since k ≥ n1

2 +1 > n1
2 �,

we will have at least one row each from the two types of rows
(corresponding to the F1 and F2 matrices) and hence the span
condition is satisfied.

The proof of Theorem 1 for k ≤ n1 ≤ 2(k−1) is as follows:
The number of samples per partition is d

Q . The computation
per server for the (n2, k) gradient code is proportional to
d
n2

(n2 − k + 1). The computation per server for the tiered
gradient code given in Construction 2 is proportional to

d
n1+p (n1 + p − k + 1). The theorem follows by noting that
when n1 + p < n2,

1
2

=
n1 + p − k + 1

n1 + p
<

n2 − k + 1
n2

.

Example 1: As an example, let n1 = 7, k = 5, c = 1,
and n2 = 10. In this example, we have a total of n2 = 10
servers and we launch n1 = 7 servers initially. For this
case, we divide data into eight partitions {D1, D2, · · · , D8}.
The first four servers, out of the 7 servers launched initially,
compute the sum of gradients of the first four partitions
(D1, D2, D3, D4) and the next three servers, out of the 7
servers launched initially, compute the sum of gradients of
the last four partitions (D5, D6, D7, D8).

After launching the first 7 servers, we wait for any one
server to finish its task. Suppose if the first server finishes
the computation, then we have got the sum of gradients of
the first four partitions. What we require now is the the sum
of gradients of the last four partitions. So what we do is,
we assign the task of computing the sum of the gradients of
the last four partitions to the remaining n2−n1 = 3 servers as
well. As of now, our position is one server has completed its
task and we have launched the remaining servers also. A total
of 9 servers are busy computing their tasks (since one server
has already completed its work). Since our recovery threshold
is k = 5 for this particular example, we just need outputs
from any 4 servers out of the remaining 9 servers working
now. If any 4 servers complete their task, it is ensured that
at least one of them is computing the sum of the gradients of

the last four partitions since, out of the remaining 9 servers,
3 servers compute the sum of the gradients of the first four
partitions and 6 servers compute the sum of the gradients of
the last four partitions.

With the server 1 results available which provides the sum
of gradients of the first four partitions, any 4 of the remaining
9 servers will provide the sum of gradients of the last four
partitions, thus giving the overall computation result. Here,
each server is computing the gradients of either the first four
partitions or the last four partitions. Each server performs a
computation on 4 out of 8 partitions, and thus on 1/2 of the
data. This is in contrast to each server performing computation
on 6/10 of the data in case of the (n2, k) gradient code.

C. Tiered Gradient Codes for n1 ≥ 3(k − 1)

In this section, we construct tiered gradient codes in which
a subset of servers under consideration will be allocated a
cyclic repetition gradient code of suitable parameters. We will
construct codes for all values of n2, with n1 − k + 1 compu-
tations per server. We note that this is the best possible, since
the gradient code restricted to first n1 servers has to be an
(n1, k) gradient code and n1 − k + 1 is the lower bound on
the number of computations per server of an (n1, k) gradient
code [1]. We make the following observation with respect to
the condition which the tiered gradient code has to necessarily
satisfy. These will in turn be used to construct certain tiered
gradient codes.

Lemma 2: Consider an (n1, n2, k, c = 1) tiered gradient
code. Suppose Q = n1 and the support of the F matrix
is picked as those given by the cyclic repetition gradient
code. Let the mth server finish its job in the first phase, i.e.
M = {m}. Let Lm denote the support of fm, and Zj denote
the support of bj (bj is the jth row of matrix BM ). Then,
the following holds: [0, n1 − 1] \ Lm ⊂ Zj , ∀j ∈ [n2 − n1].

Proof: Suppose not. Consider r ∈ {0, 1, . . . , n1−1}\Lm

and r /∈ Zj for some j ∈ [n2 −n1]. Based on the structure of
the cyclic repetition gradient code, there are k−1 rows in the F
matrix including m where the rth column is zero. Considering
these k − 1 rows and adding the jth row of the BM matrix,
we have a set of k rows which is required to satisfy the span
property. However, since the rth coordinate is zero in all these
rows, 11×Q cannot be in the span of these k rows. Hence,
Lemma 2 is necessary for the code to be (n1, n2, k, c = 1)
gradient code.

We consider Q = n1 and Cn1 = �n1−k+1
k−1 �. Initially,

the first n1 servers are launched. We assume (without loss
of generality) that the server 1 has finished the job in the first
phase. Then the remaining n2 − n1 servers are launched. We
will now construct codes for the case where n2 = n1 + Cn1 .
Let BM be a Cn1 × n1 matrix with bi representing the ith

row and Zi representing the support of bi, where i ∈ [Cn1 ].
Let the columns of the F and BM matrices be indexed by
[0, n1 − 1].

Construction 3 (n2 = n1 + Cn1 ): The support structure of
the matrix F is as follows:

supp(fi) = [i − 1, i + (n1 − k − 1)] mod n1.
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The procedure to design the support of each row of the BM

matrix is as follows.
If Cn1 = 1, the BM matrix is a row matrix. The k − 1

coordinates of Z1 are given by [n1 − k + 1, n1 − 1] ⊂ Z1.
We pick the remaining n1 − 2(k − 1) coordinates as a subset
of L1 = [0, n − k] such that at least one of every pair of
consecutive coordinates (modulo n1) is present in the set.

If Cn1 > 1, do the following. Let l = (n1 − k + 1) − (k −
1)Cn1 . The l + k − 1 coordinates of Zj , j ∈ [Cn1 ], are given
by [n1 − (l + k − 1), n1 − 1] ⊂ Zj, j = [Cn1 ]. Let

BM =
�
BM1 BM2 . . . BMk−1 BM �

�
Each submatrix BMj , where j ∈ [k− 1], is of size Cn1 ×Cn1

and the BM � matrix is of size Cn1×(l+k−1). The BM � matrix
constitutes the l+k−1 columns - [n1−(l+k−1), n1−1] of the
BM matrix filled with non zero entries. The support structure
for the remaining coordinates of the BM matrix is obtained
from the design of the support structure corresponding to the
matrices BMj , j ∈ [k− 1]. The support of the ith row of each
matrix BMj , where j ∈ [k−1], is of the form [i−1, i+Cn1−3]
mod Cn1 .

Now, we will present a randomized construction of the
matrices F and BM . The matrix H of size (n1 − k) × n1

is picked at random as given in Section III-D. Each vector fi
is calculated by solving the following equation

fi|LiH(:, Li)T = 0,

bi is calculated by solving the following equation

bi|ZiH(:, Zi)T = 0.

Proof: Initially, the first n1 servers are launched. Without
loss of generality, let us assume that the server 1 finishes the
job first. Then the remaining n2 − n1 servers are launched.
The procedure to design the support of each row of the BM

matrix is as follows. It is necessary that |Zj| = n1 − k + 1,
for each j ∈ [Cn1 ]. From Lemma 2, we have [0, n1−1]\L1 ⊂
Zj , j = [Cn1 ] and |[0, n1 − 1] \ L1| = k − 1. Thus k − 1
coordinates are included in each Zj , j = [Cn1 ]. We have to
add exactly |Zj| − (k − 1) = n1 − 2(k − 1) > 0 coordinates
from L1 to the set to complete the specification of Zj . We pick
these n1−2(k−1) coordinates as a subset of L1 = [0, n1−k]
such that at least one of every pair of consecutive coordinates
(modulo n1) is present in the set. We will refer to this condition
as consecutive coordinate property. It is possible to pick
n1−2(k−1) coordinates satisfying the consecutive coordinate
property only if n1 − 2(k − 1) ≥ �n1−k+1

2 �. We can easily
see that the above property is satisfied when n1 ≥ 3(k − 1).
In addition, these are also picked so that |Zj ∪ Zi| = n1, for
any j, i ∈ [Cn1 ].

The l coordinates from L1 - [(n1 − k) − (l − 1), (n1 − k)]
are also included in Zj . Thus, totally, l + k − 1 coordinates
are included in each Zj . We have to add |Zj| − (l + k− 1) =
n1 − 2(k − 1) − l more coordinates to Zj from L1 \ [(n1 −
k) − (l − 1), (n1 − k)] = [0, n1 − k − l]. That is, we need to
pick n1−2(k−1)− l from n1−k +1− l locations available.

Let BM � be the matrix obtained by taking the l + k − 1
coordinates corresponding to [n1 − (l + k − 1), n1 − 1] from

each row in the BM matrix, i.e., by taking the last l + k − 1
columns -[n1 − (l + k − 1), (n1 − 1)] from the BM matrix.
BM1 constitutes the first Cn1 columns of the BM matrix, BM2

constitutes the next Cn1 columns and so on. Hence, each BMj ,
j ∈ [k − 1], is a Cn1 × Cn1 matrix which is obtained by
taking distinct and consecutive Cn1 columns from the BM

matrix sequentially. n1 − 2(k − 1) − l more coordinates to
be added to Zj, j = [Cn1 ] is obtained from the design of
the support structure corresponding to the matrices BMj , j ∈
[k−1]. We have the support structure of the BM � matrix. The
support structure for the remaining coordinates of the BM

matrix is obtained from the design of the support structure
corresponding to the matrices BMj , j ∈ [k − 1].

The support of the ith row of each matrix BMj , where
j ∈ [k − 1], is of the form [i− 1, i + Cn1 − 3] mod Cn1 . The
cardinality of the support of each row of the BMj matrix is
Cn1 −1, i.e, there is exactly one zero in each row of the BMj

matrix at disjoint locations. Hence, the number of zeros in
each row of the BM matrix is exactly k − 1, which is exactly
what we needed. The cardinality of the support of union of any
two rows of the BMj matrix is Cn1 . Hence if we take union
of support of any two rows in the BM matrix, then it has
cardinality n1. That is, |Zr ∪ Zs| = n1, for any r, s ∈ [Cn1 ].
Hence the support structure of the BM matrix satisfies all the
required conditions.

Theorem 5: The code given in Construction 3 is a
(n1, n2 = n1 + Cn1 , k, c = 1) tiered gradient code where
n1 ≥ 3(k − 1) and Cn1 = n1−k+1

k−1 .
Proof: We have to show that Condition 1 is satisfied by

the code in Construction 3 with probability 1. Here M = {1},
assuming that the server 1 finished its task first. If T2 =
φ, the above condition follows from the support structure
of the cyclic repetition code. If |T2| = 1 and M ∈ T1,
then the support of the union of T1 and T2 is [n1] and hence
Condition 1 is satisfied. Now, we will consider the case when
|T2| = 1, M /∈ T1, |T1| = k − 2 and T1 is such that
| ∪i∈T1 Li| = n1 − k + (k − 2) = n1 − 2. Based on the
cyclic support structure of the F matrix, the above condition
is true whenever (k − 2) consecutive rows (modulo n1) are
picked. Hence, the two coordinates which are not included in
the union are consecutive. Since the support of rows in BM

matrix satisfies consecutive coordinate property, at least one
of the coordinates of the two coordinates which are not picked
up before will be included after adding the new row. So we
have, | ∪i∈T1 Li ∪j∈T2 Zj| ≥ (n1 − 1). Hence Condition 1 is
satisfied.

For the cases when |T2| ≥ 2, since Zi and Zj are chosen
such that Zi ∪ Zj = [n1], for any i, j ∈ [Cn1 ], we have that
the condition 1 being trivially satisfied. Thus, Condition 1 is
satisfied for all cases and hence the code is a (n1, n2 = n1 +
Cn1 , k, c = 1) tiered gradient code.

Example 2: Let n1 = 9, k = 3, c = 1 and n2 = 12. We
split data into 9 partitions -{x0, x1, . . . , x8}. The server i is
assigned data {xj , j ∈ [i − 1, i + 5]}. Each server computes
the gradients on their respective data. We assume that server 1
finishes its task first when n1 servers are launched. After
that the remaining n2 − n1 = 3 servers are launched. Since
server 1 doesn’t have {x7, x8} as its content, we have to
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TABLE II

TABLE THAT ILLUSTRATES THE VALUE OF C∗
n1

FOR ANY k ≥ p+4 AND n1 = 3(k−1)+p, FOR SOME INTEGER p. LET k� = p+4 AND n�
1 = 3(k�−1)+p.

IF k ≥ p + 4 AND n1 = 3(k − 1) + p, WE CAN WRITE k AND n1 IN TERMS OF k� AND n�
1 AS k = k� + p� AND n1 = n�

1 + 3p�, WHERE

p� = {0, 1, 2, . . .}

include {x7, x8} in the content of three added servers. Here,
l = 1. Hence, x6 needs to be included in the content of three
added servers. The last three columns of the BM matrix are
filled with non zero entries. Let BM =

�
BM1 BM2 BM �

�
.

The BM � matrix is obtained by taking the last three columns
of BM . Hence it is a 3 × 3 matrix. Both the BM1 and BM2

matrices are 3× 3 matrices. BM1 is the submatrix formed by
the first three columns of the BM matrix and BM2 is formed
by the next three columns of the BM matrix. The support of
the ith row of each of the matrices BM1 and BM2 is of the
form {i−1, i} mod 3. Hence the structures of BM1 , BM2 and
BM are of the form

BM1 = BM2 =

⎡
⎣∗ 0 ∗
∗ ∗ 0
0 ∗ ∗

⎤
⎦ and

BM =

⎡
⎣∗ 0 ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗

⎤
⎦ .

The symbol ∗ in the above matrices implies non zero entries
in those locations. The content of the three added servers
are {x0, x2, x3, x5, x6, x7, x8}, {x0, x1, x3, x4, x6, x7, x8} and
{x1, x2, x4, x5, x6, x7, x8} respectively. Out of the 8 servers
which haven’t finished the job earlier and the three added
servers, any two servers can give the sum of the gradients
along with server 1. Each server does 7/9 computations
compared to 10/12 required for the (n2, k) gradient code.

Remark 1: If n1 < n2 < n1 + Cn1 , we take the support
structure of any n2 − n1 rows of the BM matrix constructed
using Construction 3 (n2 = n1 + Cn1 ) to generate the

support structure for the BM matrix in this case. The support
structure of the matrix F , the construction of the BM and
F matrices using the above support structures are same as in
Construction 3.

D. Tiered Gradient Code for
k ≥ 4, n1 ∈ [3(k − 1), 3(k − 1) + (k − 4)]

In this subsection, we consider the case where k ≥ 4 and
n1 ∈ [3(k−1), 3(k−1)+(k−4)]. For such cases we provide
construction for n2 = n1 +C∗

n1
, where C∗

n1
≥ Cn1 . The value

of C∗
n1

is given in Table II.
For any integer p, if k ≥ p + 4 and n1 = 3(k − 1) + p,

the code construction is provided below. Let k� = p + 4 and
n�

1 = 3(k� − 1) + p, for some integer p. We can write k and
n1 in terms of k� and n�

1 as k = k� + p� and n1 = n�
1 + 3p�,

where p� = {0, 1, 2, . . .}. The value C∗
n1

varies from 2 to 6
depending upon k and n1, which is given in Table II. Let
(0 ∗ ∗)y represent the sequence {0 ∗ ∗} repeated y times, i.e,

(0 ∗ ∗)y =
�
0 ∗ ∗ 0 ∗ ∗ . . . . 0 ∗ ∗

�
1×3y

(4)

where ∗ represents some non zero entry. Similarly let (∗ ∗ 0)y

represent the sequence {∗ ∗ 0}, (0∗)y represent the sequence
{0∗}, (∗0)y represent the sequence {∗0} and (∗)y represent
the sequence {∗} repeated y times. We will now construct
codes for the case where n2 = n1+C∗

n1
. Let BM is a C∗

n1
×n1

matrix with bi representing the ith row and Zi representing
the support of bi, where i ∈ [C∗

n1
].
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TABLE III

TABLE THAT ILLUSTRATES THE SUPPORT STRUCTURE OF THE BM MATRIX ASSOCIATED WITH CONSTRUCTION 4

Construction 4 (n2 = n1 + C∗
n1

): The support structure of
the matrix F is as follows:

supp(fi) = [i − 1, i + (n1 − k − 1)] mod n1.

If C∗
n1

= 2, the support structure of the BM matrix is same as
in Construction 3. The support structure of the BM matrix for
all other values of C∗

n1
is given in Table III. The construction

of the BM and F matrices using the above support structures
are same as in Construction 3.

Discussion on Construction 4: The procedure to design
the support of each row of the BM matrix is as follows.
k − 1 coordinates of Zj are given by [n1 − k + 1, n1 − 1] ⊂
Zj , j ∈ C∗

n1
, which corresponds to the partitions that are not

included in server 1.
We pick the remaining n1−2(k−1) coordinates as a subset

of Lj = [0, n − k] such that at least one of every pair of

consecutive coordinates is present in the set. This is termed
as the consecutive coordinate property. And also, the support
structure of the BM matrix is designed in such a way that for
every T2, which is a subset of C∗

n1
of size � (1 ≤ � ≤ k − 1),

we have | ∪i∈T2 Zi| ≥ (n2 − k) + �.
Theorem 6: The code given in Construction 4 is a

(n1, n2 = n1 + C∗
n1

, k, c = 1) tiered gradient code where
k ≥ 4, n1 ∈ [3(k − 1), 3(k − 1) + (k − 4)].

Proof: We have to show that Condition 1 is satisfied by
the code in Construction 4. Here M = {1}, assuming that
server 1 finished its task first. If T2 = φ, Condition 1 follows
from the support structure of cyclic repetition code. If |T2| = 1
and M ∈ T1, then the support of the union of T1 and T2 is
[n1] and hence Condition 1 is satisfied. Now, we will consider
the case when |T2| = 1, M /∈ T1, |T1| = k − 2 and T1 is
such that | ∪i∈T1 Li| = n1 − k + (k − 2) = n1 − 2. Based
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on the cyclic support structure of the F matrix, Condition 1
is true whenever (k − 2) consecutive rows (modulo n1) are
picked. Hence, the two coordinates which are not included in
the union are consecutive. Since the support of the rows in the
BM matrix satisfies consecutive coordinate property, at least
one of the coordinates of the two coordinates which are not
picked up before will be included after adding the new row.
So we have, |∪i∈T1Li∪j∈T2Zj | ≥ (n1−1). Hence Condition 1
is satisfied. The support structure of the BM matrix is designed
in such a way that Condition 1 is satisfied. Hence, for the cases
when |T2| ≥ 2, Condition 1 is satisfied.

Thus, Condition 1 is satisfied for all cases and hence the
code is a (n1, n2 = n1 + C∗

n1
, k, c = 1) tiered gradient code.

Construction 5: (General n1, n2 ≥ 3(k − 1)). If n1, n2 ≥
3(k − 1),

1) we need to find a p such that the following condition is
satisfied, i.e., for Cn1 = �n1−k+1

k−1 �,

n2 ≤ n1 + p + Cn1+p = n1 + p +
n1 + p − k + 1

k − 1

p ≥ n2 − n1 −
n2 − k + 1

k
.

Hence the minimum value of p possible is p∗ = n2 −
n1 − n2−k+1

k �.
2) we need to find n+ =

min {n� ∈ [max {n1, n2 − 6}, n2 − 1]} such that
C∗

n+ = maxn�∈[max {n1,n2−6},n2−1] C
∗
n� .

3) we also need to find nmin =
min {n�� ∈ [max {n1, n2 − 6}, n2 − 1]} such that
n2 ≤ n�� + C∗

n�� .

Our objective is to maximize G1 in Theorem 1. Considering
point 1 alone, which is mentioned above, the maximum
G1 possible is G1

1 = min {n2 − (n1 + p∗), Cn1+p∗}. If we
consider the point 2, the maximum G1 possible is G2

1 =
min {n2 − n+, C∗

n+}. Similarly, if we consider the point 3,
the maximum G1 possible is G3

1 = n2−nmin. So summarizing
all the three points, the maximum G1 is max {G1

1, G
2
1, G

3
1}.

If G1 = G1
1, let n�

1 = n1 + p∗, else if G1 = G2
1, let

n�
1 = n+, else, let n�

1 = nmin. For n2 ≥ 3(k−1), we can use
Construction 3 where we replace n1 with n�

1 servers. Initially,
we launch n1 of n�

1 servers. After one of those servers finish
their tasks, the remaining n2 − n1 servers are launched.

Remark 2: In this case, for general n2, the amount
of computation per server required is n2−k+1−G1

n2−G1
, where

G1 = max{min{n2 − (n1 + p∗), �n1+p∗−k+1
k−1 �}, min{n2 −

n+, C∗
n+}, n2 − nmin}, p∗ = n2 − n1 − n2−k+1

k �, n+ =
min {n� ∈ [max {n1, n2 − 6}, n2 − 1]} such that C∗

n+ =
maxn�∈[max {n1,n2−6},n2−1] C

∗
n� , nmin =

min {n�� ∈ [max {n1, n2 − 6}, n2 − 1]} such that n2 < n�� +
C∗

n�� . This proves Theorem 1 for n1, n2 ≥ 3(k − 1).

E. Tiered Gradient Codes for
2(k − 1) < n1 < 3(k − 1), n2 ≥ 3(k − 1)

In this subsection, we provide tiered gradient codes for the
case where 2(k − 1) < n1 < 3(k − 1), n2 ≥ 3(k − 1). The

construction is in similar lines to that of Construction 5, except
that,

• for the point 1 mentioned in Construction 5, the ‘p’
should satisfy one more condition, i.e., n1 + p ≥
3(k − 1). So the minimum value of p possible is p∗ =
max {3(k − 1) − n1, n2 − n1 − n2−k+1

k �}.
• we have to replace n1 with 3(k − 1) in point 2 of

Construction 5, i.e., we need to find n+ =
min {n� ∈ [max {3(k − 1), n2 − 6}, n2 − 1]} such that
C∗

n+ = maxn�∈[max {3(k−1),n2−6},n2−1] C
∗
n� .

• for point 3 of Construction 5 also, we need to replace
n1 with 3(k − 1), i.e., we also need to find nmin =
min {n�� ∈ [max {3(k − 1), n2 − 6}, n2 − 1]} such that
n2 ≤ n�� + C∗

n�� .

Our aim is to maximize G2 in Theorem 1.
So considering all the points mentioned above,
the maximum G2 is max {G1

2, G
2
2, G

3
2}, where G1

2 =
min {n2 − (n1 + p∗), Cn1+p∗}, G2

2 = min {n2 − n+, C∗
n+}

and G3
2 = n2 − nmin. If G2 = G1

2, let n�
1 = n1 + p∗,

else if G2 = G2
2, let n�

1 = n+, else, let n�
1 = nmin. For

n2 ≥ 3(k − 1), we can use Construction 3 where we replace
n1 with n�

1 servers. Initially, we launch n1 of n�
1 servers.

After one of those servers finish their tasks, the remaining
n2 − n1 servers are launched.

Remark 3: In this case, for general n2, the amount
of computation per server required is n2−k+1−G2

n2−G2
,

where G2 = max{min{n2 − (n1 + p∗), �n1+p∗−k+1
k−1 �},

min{n2 − n+, C∗
n+}, n2 − nmin},

p∗ = max{3(k − 1) − n1, n2 − n1 − n2−k+1
k �}, n+ =

min{n� ∈ [max{3(k − 1), n2 − 6}, n2 − 1]} such that
C∗

n+ = maxn�∈[max{n1,n2−6},n2−1]C
∗
n� , nmin =

min{n�� ∈ [max{3(k − 1), n2 − 6}, n2 − 1]} such
that n2 ≤ n�� + C∗

n�� . This proves Theorem 1 for
2(k − 1) < n1 < 3(k − 1), n2 ≥ 3(k − 1), n2 ≥ 3(k − 1).

VIII. TIERED GRADIENT CODES FOR c > 1

In this section, we deal with the case where initially we
launch the first n1 servers and wait for c > 1 servers to
complete their tasks. After that the remaining n2 −n1 servers
are launched.

This section is organized as follows. Initially, we discuss
about tiered gradient codes for k ≤ n1 ≤ 2(k − 1) and
n2 > 2(k−1). Then we move on to n1, n2 ≥ 2(k−1)+(k−c).
Towards the end, we provide a discussion on codes for
2(k−1) < n1 < 2(k−1)+(k−c) and n2 ≥ 2(k−1)+(k−c).

For k ≤ n1 ≤ 2(k − 1) and n2 > 2(k − 1), we use
Construction 2, where we wait for c servers to complete their
tasks instead of one server.

For any specific n1 > 2(k − 1), we use the unique cyclic
repetition gradient code for the first n1 servers. We need to
show that the Condition 1 holds for the codes under considera-
tion. Let M = {i1, i2, . . . , ic}. If T2 = φ, Condition 1 follows
from the support structure of cyclic repetition code. If |T2| = 1
and some subset of M is included in T1, the support of the
union is [n1] and hence Condition 1 is satisfied. Consider the
case where |T2| = 1, M /∈ T1, |T1| = k− c− 1 and T1 is such
that | ∪i∈T1 Li| = n1 − k + (k − c − 1) = n1 − c − 1. Based
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on the cyclic support structure of the F matrix, Condition 1 is
true whenever (k − c − 1) consecutive rows (modulo n1) are
picked. Hence, the c + 1 coordinates which are not included
in the union are consecutive. So, each row in the BM matrix
should be designed in such a way that at least one of every
c + 1 consecutive coordinates should be non zero.

Now, we will construct codes where at least one of every
two consecutive coordinates is non zero in the BM matrix.
We consider Q = n1. Let C�

n1
= �n1−k+c

k−1 �. Initially,
we launch n1 servers. Let fi represent the ith row of the F
matrix and Li represent the support of fi, where i ∈ [n1].
Let bi represent the ith row of the BM matrix and Zi

represent the support of bi, where i ∈ [C�
n1

]. Let the columns
of the F and BM matrices be indexed by [0, n1 − 1]. Let
{i1, i2, . . . , ic} be the c servers who complete their tasks first.
Then, {Li1 , Li2 , . . . , Lic} is the support of {fi1 , fi2 , . . . , fic}
respectively.

The code construction for n1 ≥ 2(k − 1) + (k − c) and
n2 = n1 + C�

n1
is as follows.

Construction 6: (n1 ≥ 2(k − 1) + (k − c), n2 = n1 + C�
n1

)
The support structure of the matrix F is as follows: supp(fi) =
[i − 1, i + (n1 − k − 1)] mod n1. For some t ∈ [0, n1 − 1],
let

n1 − | ∪i∈{i1,i2,...,ic} Li| = g,

[0, n1 − 1] \ ∪i∈{i1,i2,...,ic}Li = [t, t + g − 1],
l = (n1 − k + c) − (k − 1)C�

n1
.

The l + k− c elements of Zj , for each j ∈ [C�
n1

], are given
by [t − l, t + k + c − 1] ⊂ Zj , j = [C�

n1
].

If C�
n1

= 1, pick the remaining coordinates so that consecu-
tive coordinate property is satisfied, i.e, at least one coordinate
from every possible pair of two consecutive coordinates are
picked up. Else if C�

n1
> 1, do the following. Let B∗

M be the
matrix obtained by shifting all the columns (say, y number of
shifts done to each column towards right) in the BM matrix
in such a way that the columns -[t − l, t + k − c − 1} of
the BM matrix become the last l + k − c columns in B∗

M ,
B∗

M =
�
BM1 BM2 . . . BMk−1 BM �

�
. Let Z∗

i represent the
support of the ith row of the B∗

M matrix. BM � is the matrix
obtained by taking the last l + k − c columns of the B∗

M

matrix. All the entries in the BM � matrix are non zero, i.e.,
[n1 − (l + k − c), n1 − 1] ⊂ Z∗

j , j ∈ [C�
n1

].
BM1 constitutes of the first C�

n1
columns of the B∗

M matrix,
B∗

M2
constitutes of the next C�

n1
columns and so on. Each BMj

is a C�
n1

×C�
n1

matrix which is obtained by taking distinct and
consecutive C�

n1
columns from the B∗

M matrix sequentially.
The support of the ith row of each matrix BMj , where

j ∈ [k − 1], is of the form [i− 1, i + C�
n1

− 3] mod C�
n1

. The
support structure of the BM matrix is same as that of the B∗

M

matrix with each column of the B∗
M matrix shifted towards

left by y. The construction of the BM and F matrices using
the above support structures is same as in Construction 3.

Proof: From Lemma 2, we have [0, n1 − 1] \
∪i∈{i1,i2,...,ic}Li ⊂ Zj , j = [C�

n1
]. Thus g coordinates are

included in each Zj , for each j ∈ [C�
n1

]. We have to add
|Zj | − g = n1 − k + 1 − g more coordinates to Zj from
∪i∈{i1,i2,...,ic}Li. That is, we need to pick n1 − k + 1 − g

from n1 − g locations available. Hence for the consecutive
coordinate property to be satisfied, n1 − k + 1− g ≥ �n1−g

2 �,
i.e., n1 ≥ 2(k − 1) + g. The maximum value that g can
take is k − c, which is basically when all the c servers who
finish first are consecutive ones. Considering the worst case
scenario, the consecutive coordinate property is satisfied when
n1 ≥ 2(k − 1) + (k − c), which is our range of n1 for which
the code is constructed.

The procedure to design the support of each row of the BM

matrix is as follows. It is required that |Zj | = n1 − k + 1, for
each j ∈ [C�

n1
]. No two servers among the first n1 servers

can have disjoint data set. It comes from the fact that 2(n1 −
k + 1) = 2n1 − 2(k − 1) > 2n1 − n1 = n1. The inequality in
the second step is satisfied since n1 ≥ 2(k−1)+(k−c). Hence
the set [0, n1 − 1] \ ∪i∈{i1,i2,...,ic}Li contains consecutive g
coordinates.

Pick any consecutive k−c coordinates from [0, n1−1] which
includes the above g coordinates. Let it be {t, t + 1, . . . , t +
k − c − 1}. Let [t, t + k − c − 1] ⊂ Zj , j = [C�

n1
].. Thus

k − c coordinates are included in each Zj, j = [C�
n1

]. Rest
of the coordinates of Zj , are picked to satisfy the consecutive
coordinate property. And also, these are picked so that |Zj ∪
Zi| = n1, for any j, i ∈ [C�

n1
]. The l coordinates - [t− l, t−1]

are also included in Zj . Thus, totally, l + k − c coordinates
are included in each Zj . We have to add |Zj | − (l + k − c) =
n1 − 2k + 1 + c− l more coordinates to Zj from [0, n1 − 1] \
[t− l, t+k−c−1]. That is, we need to pick n1−2k+1+c− l
from n1 − k + c − l locations available.

If C�
n1

= 1, we pick the remaining coordinates so that
consecutive coordinate property is satisfied. Else if C�

n1
> 1,

we do the following. Let B∗
M be the matrix obtained by

shifting all the columns in the BM matrix in such a way that
the columns -[t−l, t+k−c−1} in the BM matrix become the
last l +k− c columns in the B∗

M matrix. Let y be the number
of shift done to each column of the BM matrix towards right
to obtain the B∗

M matrix. Let Z∗
i represent the support of the

ith row of the B∗
M matrix.

Let BM � be the matrix obtained by taking the last l + k− c
columns of the B∗

M matrix. All the entries in the BM � matrix
are non zero, i.e., [n1 − (l + k − c), n1 − 1] ⊂ Z∗

j , j ∈ [C�
n1

].
BM1 constitutes of the first C�

n1
columns of the B∗

M matrix,
B∗

M2
constitutes of the next C�

n1
columns and so on. Hence,

each BMj is a C�
n1

×C�
n1

matrix which is obtained by taking
distinct and consecutive C�

n1
columns from the B∗

M matrix.
We have the support structure of the BM � matrix. The support
structure for the remaining coordinates of the B∗

M matrix,
i.e., n1 − 2k + c + 1 − l more coordinates to be added
to Z∗

j , is obtained from the design of the support structure
corresponding to the matrices BMj , j ∈ [k − 1].

The support of the ith row of each matrix BMj , where
j ∈ [k − 1], is of the form [i− 1, i + C�

n1
− 3] mod C�

n1
. The

cardinality of the support of each row of the BMj matrix is
C�

n1
−1, i.e, there is exactly one zero in each row of the BMj

matrix at disjoint locations. Hence, the number of zeros in
each row of the B∗

M matrix is exactly k − 1, which is exactly
what we needed.

The cardinality of the support of union of any two rows of
the BMj matrix is C�

n1
. Hence if we take union of support
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of any two rows in the B∗
M matrix, then it has cardinality

n1. That is, |Zr ∪ Zs| = n1, for any r, s ∈ [C�
n1

]. Since the
B∗

M matrix is obtained by column shift of the BM matrix,
the above property holds for the BM matrix also. Hence the
support structure of the BM matrix satisfies all the required
conditions.

Example 3: Let n1 = 9, k = 4, c = 2 and n2 = 11.
We split data into 9 partitions -{x0, x1, . . . , x8}. The server i
is assigned partitions {xj , j ∈ [i − 1, i + 4]}. Each server
computes the gradients on their respective data. Suppose
server 1 and 3 finish their tasks first when n1 servers are
launched. After that the remaining n2 − n1 = 2 servers are
launched. Server 1 or 3 do not have {x8} as their contents.
Here, k − c = 2 and l = 1. Hence we have to include
{x7, x8, x0} in the content of the two added servers. The
first column and the last two columns of the BM matrix is
filled with non zero entries. Shift each column of the BM

matrix by 8 units towards right to obtain the B∗
M matrix,

B∗
M =

�
BM1 BM2 BM3 BM �

�
. The BM � matrix is obtained

by taking the last three columns of the B∗
M matrix. Hence it is

a 2×3 matrix. BM1 , BM2 and BM3 are 3×3 matrices. BM1 is
the submatrix formed by the first columns of the B∗

M matrix,
BM2 is formed by the next three columns of the B∗

M matrix
and BM3 by the next three columns. The support of the ith

row of each of the matrices BM1 , BM2 and BM3 is of the form
{i − 1} mod 2. Hence the structures of the BM1 , BM2 , BM3

and B∗
M matrices are of the form

BM1 = BM2 = BM3 =
�
0 ∗
∗ 0

�
and

B∗
M =

�
0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗ 0 ∗ ∗ ∗

�
.

The entries ∗ represent non zero values. Shift each column,
in the B∗

M matrix, 8 units towards left to obtain the support
structure of the BM matrix,

BM =
�
∗ 0 ∗ 0 ∗ 0 ∗ ∗ ∗
∗ ∗ 0 ∗ 0 ∗ 0 ∗ ∗

�
.

The content of the two added servers are
{x0, x2, x4, x6, x7, x8} and {x0, x1, x3, x5, x7, x8}
respectively. Out of the 8 servers which haven’t finished the
job earlier and the two added servers, any three servers can
give the sum of the gradients along with server 1 and 3. Each
server does 6/9 computations compared to 8/11 required for
the (n2, k) gradient code.

For n1 ≥ 2(k − 1) + (k − c), n2 < n1 + Cn1 , we take
the support structure of any n2 − n1 rows of the BM matrix
constructed using Construction 6 (n2 = n1 +C�

n1
) to generate

the support structure for the BM matrix in this case. The
support structure of the matrix F , the construction of the BM

and F matrices using the above support structures is same as
in Construction 3.

Example 4: Consider Example 3 with n1 = 9, k = 4,
c = 2. Consider n2 = 10. Here, C�

n1
= 2. Hence, n2 − n1 =

1 < 2. The setting is same as in Example 3. The only
difference is that n2 − n1 < C�

n1
. Hence we can use any

one row of the BM matrix from Example 3 to generate the
BM matrix for this case. Let us take the first row. Hence,

BM =
�
∗ 0 ∗ ∗ 0 ∗ ∗ ∗ ∗

�
, where the symbol ∗ represent

non zeros entries. Hence the content of the one added server is
{x0, x2, x3, x5, x6, x7, x8}. Out of the 8 servers which haven’t
finished the job earlier and the one added servers, any three
servers can give the sum of the gradients along with server 1.
Each server does 7/9 computations compared to 8/10 required
for the (n2, k) gradient code.
For n1 ≥ 2(k− 1) + (k − c), n2 > n1 + C�

n1
, we need to find

a p such that the following condition holds, i.e.,

n2 ≤ n1 + p + C�
n1+p = n1 + p +

n1 + p − k + c

k − 1

p ≥ n2 − n1 −
n2 − k + c

k
.

Hence the minimum value of p possible is p∗ = n2 − n1 −
n2−k+c

k �. So, for n2 > n1 + C�
n1

, we can use Construction 6
where we replace n1 with n1 +p∗ servers. Initially, we launch
n1 of n1 + p∗ servers. After c of those servers finish their
tasks, the remaining n2 − n1 servers are lauched.

Example 5: Consider n1 = 9, k = 4, c = 2 and n2 = 12.
Here, C�

n1
= 2. Hence n2 > n1 + Cn1 . Here, p∗ = 1

and Cn1+p∗ = 2. So, we split data into 10 partitions -
{x0, x1, . . . , x9}. The server i is assigned data {xj, j ∈ [i −
1, i+5]. Each server computes the gradients on their respective
data.

Initially the first n1 servers are launched. Suppose server 2
and 4 finish their tasks first. After that all the remaining servers
are launched. Since server 2 or 4 doesn’t have {x1} as their
content, k−c = 2 and l = n1+p∗−k+1−(k−1)Cn1+p∗ = 2,
we have to include {x0, x9, x1, x2} in the content of server
11 and 12. The last three and the first column of the BM

matrix are filled with non zero entries. Shift each column of
the BM matrix by 9 units towards right to obtain B∗

M matrix.
B∗

M =
�
BM1 BM2 BM3 BM �

�
. BM � is a 2×3 matrix obtained

by taking the last four columns of B∗
M . BM1 , BM2 and BM3

are 2 × 2 matrices. BM1 is the submatrix formed by the first
two columns of the B∗

M matrix, BM2 is formed by the next
two columns of the B∗

M matrix and BM3 by the next two
columns. The support of the ith row of each of the matrices
BM1 , BM2 and BM3 is of the form {i− 1} mod 2. Hence the
structures of the BM1 , BM2 , BM3 and B∗

M matrices are of the
form

BM1 = BM2 = BM3 =
�
0 ∗
∗ 0

�
and

B∗
M =

�
0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗

�
.

The entries ∗ represent non zero values. Shift each column,
in the B∗

M matrix, 9 units towards left to obtain the support
structure of the BM matrix,

BM =
�
∗ ∗ ∗ 0 ∗ 0 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ 0 ∗ 0 ∗ 0 ∗

�
.

The content of the two added servers are
{x0, x1, x2, x4, x6, x8, x9} and {x0, x1, x2, x3, x5, x7, x9}
respectively. Out of the 9 servers which haven’t finished the
job earlier and the two added servers, any three servers can
give the sum of the gradients along with servers 2 and 4. Each
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server does 7/10 computations compared to 9/12 required
for the (n2, k) gradient code.

Theorem 7: The code given in Construction 6 is a tiered
gradient code where n1, n2 ≥ 2(k − 1) + (k − c).

Proof: We need to prove that Condition 1 is satisfied
by the code in Construction 6. Let M = {i1, i2, . . . , ic}. If
T2 = φ, Condition 1 follows from the support structure of the
cyclic repetition code. If |T2| = 1 and some subset of M is
included in T1, then the support of the union is [n1] and hence
Condition 1 is satisfied. For the case of |T2| ≥ 2, since Zi and
Zj are chosen such that Zi ∪ Zj = [n1], for any i, j ∈ [C�

n1
],

we have that Condition 1 is trivially satisfied.
Construction 7: (General n1, n2 ≥ 2(k − 1) + (k − c)). If

n1, n2 ≥ 2(k− 1)+ (k− c), we need to find a p such that the
following condition is satisfied, i.e.,

n2 ≤ n1 + p + C�
n1+p = n1 + p +

n1 + p − k + c

k − 1

p ≥ n2 − n1 −
n2 − k + c

k
.

Hence the minimum value of p possible is p∗ = n2−n1−
n2−k+c

k �. Our objective is to maximize G3 in Theorem 1.
So considering the above mentioned point, the maximum G3

possible is min {n2 − (n1 + p∗), C�
n1+p∗}. So, for n2, n1 ≥

2(k − 1) + (k − c), we can use Construction 6 where we
replace n1 with n1 + p∗ servers. Initially, we launch n1 of
n1 + p∗ servers. After c of those servers finish their tasks,
the remaining n2 − n1 servers are launched.

Remark 4: For n1, n2 ≥ 2(k−1)+(k−c), the computation
per server required is proportional to n2−k+1−G3

n2−G3
, where

G3 = min {n2 − (n1 + p∗), �n1+p∗−k+c
k−1 �}, p∗ = n2 −

n1 − n2−k+c
k �. This proves Theorem 1 for general c and

n1 ≥ 2(k − 1) + (k − c).
For 2(k−1) < n1 < 2(k−1)+(k−c) and n1 ≥ 2(k−1)+(k−
c), the construction is in similar lines to that of Construction 7,
except that, for the condition mentioned in Construction 7,
the ‘p’ should satisfy one more condition, i.e., n1 +p ≥ 2(k−
1) + (k − c). So the minimum value of p possible is p∗ =
max {(2(k − 1) + (k − c)) − n1, n2 − n1 − n2−k+c

k �}.
Our aim is to maximize G4 in Theorem 1. So noting

the point mentioned above, the maximum G4 possible is
min {n2 − (2(k − 1) + (k − c)), C�

n1+p∗}. So, for n2 ≥ 2(k−
1)+(k− c), we can use Construction 6, where we replace n1

with n1+p∗ servers. Initially, we launch n1 of n1+p∗ servers.
After c servers finish their tasks, the remaining n2−n1 servers
are launched.

Remark 5: For 2(k − 1) < n1 < 2(k − 1) + (k − c), n2 ≥
2(k − 1) + (k − c), the computation per server
required is proportional to n2−k+1−G4

n2−G4
, where

G4 = min {n2 − (2(k − 1) + (k − c)), �n1+p∗−k+c
k−1 �},

p∗ = max
{(2(k − 1) + (k − c)) − n1, n2 − n1 − n2−k+c

k �}. This
proves Theorem 1 for general c and n1 ≥ 2(k − 1) + (k − c).

IX. CONCLUSION

This paper provides a framework for tiered gradient codes
where all redundant gradient computation servers are not

launched at the same time. The framework assumes that
when c out of n1 launched servers finish execution, n2 − n1

additional servers can be launched, with a property that any
k of the servers can be used to compute the gradients. The
framework allows for asynchronous launching of servers, and
speculative execution by delayed launching of certain servers.
Improvement in task computations per server is shown as
compared to the case where all n2 servers are launched without
waiting for the results from c out of n1 servers. It can be
noted that the number of data partitions for the tiered gradient
coding scheme is always different from that of the gradient
coding scheme. In fact, our advantage over gradient coding is
achieved by changing the number of partitions.

Coding across epochs, and allowing multiple messages
per iteration have been shown to improve the computation
[29], [30], while their impact with tiered gradient codes is
open. This paper does not consider intermediate feedback
while the job is in operation, while impact of such feedback
based on [14], [15] is an important next step. Extension of
the proposed framework to approximate gradient computa-
tions as in [17], [18] is another important problem. Finally,
the servers may be heterogenous and considering such impact
in multi-tiered gradient code designs is open (Such problem
for gradient codes has been studied in [16]).
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