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An emerging hallmark of cancer is metabolic reprogramming, which presents opportunities for cancer 
diagnosis and treatment based on metabolism. We performed a comprehensive metabolic network 
analysis of major renal cell carcinoma (Rcc) subtypes including clear cell, papillary and chromophobe 
by integrating transcriptomic data with the human genome-scale metabolic model to understand the 
coordination of metabolic pathways in cancer cells. We identified metabolic alterations of each subtype 
with respect to tumor-adjacent normal samples and compared them to understand the differences 
between subtypes. We found that genes of amino acid metabolism and redox homeostasis are 
significantly altered in RCC subtypes. Chromophobe showed metabolic divergence compared to other 
subtypes with upregulation of genes involved in glutamine anaplerosis and aspartate biosynthesis. A 
difference in transcriptional regulation involving HIF1A is observed between subtypes. We identified 
E2F1 and FOXM1 as other major transcriptional activators of metabolic genes in RCC. Further, the 
co-expression pattern of metabolic genes in each patient showed the variations in metabolism within 
RCC subtypes. We also found that co-expression modules of each subtype have tumor stage-specific 
behavior, which may have clinical implications.

Major biological processes namely reproduction, development, wound healing and tissue regeneration require 
cell proliferation. Cells proliferate in response to growth-promoting stimulus however, under adverse conditions 
they move into a reversible, non-proliferating state termed quiescence. Cells gauge the strength of proliferative 
and anti-proliferative signals through multiple molecular players to make cellular decisions. Cancer is a prolif-
erative disease that arises when the regulatory control of quiescence-proliferation reversible transition is lost. 
An emerging hallmark of cancer is metabolic reprogramming, which helps to meet the energy demand for cell 
growth and division. Initial studies by Otto Warburg pointed to aerobic glycolysis, however recent advances have 
started to reveal other metabolic alterations and plasticity of cancer metabolism1,2. Understanding the differences 
in metabolism between normal and cancer cells can shed light on the adaptations that promote disease progres-
sion and may also facilitate the identification of therapeutic metabolic targets.

Mutations or epigenetic alterations in cancer can influence the expression of metabolic genes. Studies have 
explored transcriptome data of different cancers to understand the transcriptional dysregulation of metabolic 
genes. These studies are based on data generated by The Cancer Genome Atlas (TCGA) program. A pan-cancer 
analysis of different cancer types found a convergent metabolic landscape with upregulated nucleotide synthesis 
and downregulated mitochondrial metabolism as the main features3. Rosario et al.4 analyzed the gene expression 
of metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) and found that pentose and glu-
curonate interconversions (PGI) is significantly dysregulated in many cancer types while the polyamine synthesis 
is uniquely upregulated in prostate adenocarcinoma (PRAD). Peng et al.5 identified metabolic subtypes in 33 
cancer types based on seven major metabolic processes. These metabolic subtypes showed clinical relevance and 
association with somatic drivers.

A recent study on TCGA data revealed that the classification of 33 cancer types is dominated by tissue-type 
or cell-of-origin differences6. This provides a basis for a focused pan-cancer analysis of individual tissues to map 
the cancer subtype-specific changes in the metabolism. Renal cell carcinoma (RCC) is a heterogeneous cancer 
with major histological subtypes including clear cell (KIRC), papillary (KIRP) and chromophobe (KICH). These 
RCC subtypes differ in the cell-of-origin with clear cell and papillary originating from cells of proximal convo-
luted tubule while chromophobe originating from cells of distal convoluted tubule of the nephron7. Recently, 
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we showed that the site-of-origin dominates the classification of these subtypes using deep learning and histo-
pathological images8. A multi-platform genomic data analysis on RCC also showed the site of origin as one of 
the major determinants in the classification of these subtypes7,9. Molecular characterization of RCC revealed 
the subtype-specific mutations, methylation, and pathways10. RCC subtypes have distinct glycolytic and mito-
chondrial gene expression patterns. A metabolically divergent (MDD) group with poor survival is identified in 
KICH10. The histologic review also reclassified some KIRC samples as KICH10. Other studies on RCC specifically 
focused on metabolic alterations of KIRC11,12. The metabolic network of KIRC is associated with chromosome 3p 
loss of heterozygosity12. A comprehensive metabolic characterization of RCC subtypes specifically less common 
KICH and KIRP is required since most of the pan-RCC studies9,10 focus on analyzing the expression patterns 
within the tumor and/or restrict to selective metabolic pathways.

Genome-scale metabolic models (GEMs) provide a comprehensive view of metabolism and serve as a scaffold 
for interpreting high throughput data13. Network-based approaches have revealed the systems-level alterations of 
specific cancers and led to the reconstruction of cancer GEMs14–16. To further obtain insights into the metabolism 
of RCC subtypes, a network-based analysis was performed by integrating transcriptomic data with the human 
genome-scale metabolic model. Our study revealed the role of amino acid metabolism and redox homeostasis 
in RCC subtypes in-addition to glycolysis and TCA cycle alterations. A difference in glutamine metabolism is 
observed between subtypes, which is linked to the difference in transcriptional regulation involving HIF1A. The 
analysis showed that E2F1 and FOXM1 are other major transcriptional activators of metabolic genes in RCC. 
Further, we also identified metabolic modules that are linked to clinical traits of RCC subtypes based on the 
co-expression pattern of genes.

Results
Rcc shows high variation in metabolism compared to other cancer types. We screened 14 cancer 
types from TCGA (Table S1) based on the availability of RNA-Seq data of both tumor and tumor-adjacent normal 
samples (668 samples). The human genome-scale metabolic model HMR2 (see methods) was used to study the 
metabolic differences between matched normal and tumor samples. The relationship between different cancer 
types was explored based on the fold-change in the expression of HMR2 genes between matched normal and 
tumor samples. This was done to eliminate the tissue-of-origin differences between cancer types. The principal 
component analysis (PCA) revealed that RCC samples have high variance compared to other tumor samples 
(Fig. 1). RCC samples separated into two sub-groups corresponding to RCC subtypes. Further, KIRC and KIRP 
samples clustered together compared to KICH.

Reporter metabolic pathways in Rcc subtypes. The differential gene expression (DGE) analysis 
between matched normal and tumor samples showed that metabolic genes were predominately downregulated in 
RCC subtypes (Table S2). We performed the transcriptional factor enrichment analysis of differentially expressed 
genes17. The downregulated genes were associated with HNF4A, LXR, RXR and PPARA in RCC (adj p-value 
<0.05, Table S3). The upregulated genes were associated with E2F1 and FOXM1 in RCC and with HIF1A in 
KIRC and KIRP (adj p-value <0.05, Table S4). The FOXM1 expression level was higher in late stage samples 
of KIRP and KICH while the E2F 1 expression level was higher in RCC (data not shown). We characterized the 
metabolic network-based alterations of RCC by mapping the gene expression changes to the reactions in HMR2 
and identified reporter metabolites and pathways18,19. Figure 2 shows the reporter pathways of KICH, KIRC, and 
KIRP (Data S1).

one carbon metabolism. We found that the glycine, serine and threonine metabolism was downregulated 
in KICH. Serine and glycine provide one-carbon units to the folate cycle through one-carbon metabolism20. 
Further, conversion of choline, another source of one-carbon units, into glycine was downregulated (BHMT, 
CHDH, DMGDH, SARDH). The one-carbon metabolism was also downregulated in KIRC (Fig. 2). However, a 
compartment-specific change was observed in RCC subtypes. We found that genes encoding cytosolic enzymes 

Figure 1. Principal component analysis (PCA) of 14 cancer types. The log fold-change in expression of highly 
varying genes (361) between matched normal and tumor samples was used to perform the PCA.
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of the folate cycle (SHMT1, MTHFR) were downregulated while mitochondrial genes (SHMT2, MTHFD2) were 
upregulated in KICH (Fig. 3). These mitochondrial genes were also upregulated in KIRP. On the other hand, both 
cytosolic and mitochondrial genes of the folate cycle were downregulated in KIRC. Further, genes involved in the 
methionine cycle (BHMT, MAT1A, MAT2A) and methionine salvage pathway (ADI1, AMD1, TAT) were down-
regulated in KICH. We also found most of these genes were downregulated in KIRP and KIRC.

Glutathione metabolism. Serine and glycine are also precursors for glutathione synthesis. We found that 
extracellular glutathione metabolism was downregulated in KICH (Fig. 2). Genes of glutathione salvage path-
way, gamma-glutamyltransferases (GGT1, GGT2 and GGT5), alanyl aminopeptidase (ANPEP) and glutathione 
S-transferases (GSTA1, GSTA5, GSTM1, GSTM2, GSTT2) were downregulated (Fig. 3). However, we observed that 
the gene involved in the de novo synthesis of glutathione was upregulated (GCLC) in KICH. This pathway requires 
cysteine and glutamate, which in turn might depend on the extracellular uptake of these amino acids. We found that 
the cysteine/glutamate transporter SLC7A11 was significantly upregulated in RCC subtypes. Further, KIRP and KIRC 
also showed similar alterations in glutathione metabolism. However, genes of de novo synthesis were unaltered in KIRC.

Aromatic amino acid metabolism. Metabolism of aromatic amino acids was altered in RCC (Fig. 2). We 
observed that phenylalanine, tyrosine and tryptophan biosynthesis and tryptophan metabolism were downregu-
lated. Phenylalanine and tryptophan are essential amino acids while tyrosine is produced in vivo. Phenylalanine 
hydroxylase (PAH) gene involved in tyrosine synthesis from phenylalanine was significantly downregulated in 
RCC. Genes involved in the conversion of tryptophan into serotonin and tryptamine (TPH1, DDC) were also 

Figure 2. Reporter pathways of RCC subtypes. The upregulated pathways are shown in red and downregulated 
pathways are shown in blue. The cellular compartment is specified as prefix c, m and s corresponding to cytosol, 
mitochondria and extra-cellular, respectively. p-values are log transformed (−log10p) and minus (−) represents 
the downregulation of pathway.
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downregulated. However, indoleamine 2, 3-dioxygenase 1 (IDO1) and tryptophan 2, 3-dioxygenase 2 (TDO2) 
genes involved in the first step of tryptophan/kynurenine pathway were upregulated in all three subtypes.

Alanine, aspartate and glutamate metabolism. Genes involved in the conversion of alanine to pyruvate 
(AGXT, AGXT2, and GPT), aspartate to L-arginino-succinate (ASS1), glutamine to glutamate (GLS), glutamate to 
α-ketoglutarate (GLUD2) and glutamate to succinate route (GAD, GABAT, SSADH) were downregulated in RCC. 
Interestingly, genes involved in the interconversion of oxaloacetate and aspartate (cytosol: GOT1, mitochondrial: 
GOT2) were upregulated only in KICH, while downregulated in KIRC (Fig. 4). In this pathway, glutamate is converted 
to α-ketoglutarate and aspartate in mitochondria by GOT2 and aspartate is converted into oxaloacetate (OAA) in 
the cytosol by GOT121. ASNS involved in the conversion of aspartate to asparagine was upregulated in RCC. Further, 
the gene encoding malate dehydrogenase enzyme, MDH2 was also upregulated which suggests that aspartate-malate 
shuttle is affected in KICH. Additionally, mitochondrial NADP-dependent malic enzyme ME3 involved in the conver-
sion of malate to pyruvate was upregulated. This reaction is associated with NADPH production and maintenance of 
redox22. Despite overall downregulation of branched chain amino acids metabolism in RCC (Fig. 2), the expression of 
branched chain aminotransferase (BCAT1), the first gene of this pathway, was upregulated in RCC (Fig. 4). This reac-
tion generates glutamate as a byproduct, which can support de novo glutathione biosynthesis or anaplerotic reactions.

Figure 3. One carbon metabolism is affected in KICH. The expression of genes involved in folate cycle, 
methionine cycle and glutathione synthesis is altered. Downregulated genes are shown in blue while 
upregulated genes are shown in red colour.

Figure 4. Metabolic divergence in KICH. Genes of TCA cycle, aspartate synthesis and malate-aspartate shuttle 
are upregulated (red) while genes involved in glutamine metabolism are downregulated (blue).
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Arginine and proline metabolism. Genes involved in arginine and proline metabolism and polyamine 
synthesis were downregulated in RCC. Ornithine decarboxylase (ODC1), the rate limiting enzyme of polyamine 
synthesis was downregulated in KICH and KIRC. An alternative route to polyamines generation from arginine 
via agmatine was also affected since genes encoding arginine decarboxylase (AZIN2) and agmatinase (AGMAT) 
were downregulated. Further, genes that participate in the urea cycle namely nitric oxide synthase (NOS), argin-
ase 2 (ARG2) and ornithine transcarbamylase (OTC) were also downregulated in RCC. These genes control the 
conversion of arginine to citrulline, arginine to ornithine and ornithine to citrulline, respectively. However, in 
KICH, we observed that OTC was upregulated.

central carbon metabolism. Glycolysis/ gluconeogenesis pathway and fructose and mannose metabolism 
were upregulated only in KIRP and KIRC. HIF1A target genes of the glycolytic pathway (GLUT1, HK2, HK3, 
ALDOA, GAPDH, PGK1, ENO1, LDHA, and PDK1) were upregulated. On the other hand, the TCA cycle and 
oxidative phosphorylation were upregulated in KICH (Figs. 2 and 4). Further, genes involved in pyruvate to 
acetyl-CoA conversion (DLAT, PDH) and acetate to acetyl-CoA (ACSS1, ACSS3) conversion were upregulated in 
KICH and were downregulated in KIRC and KIRP. However, genes involved in the conversion of pyruvate to oxo-
acetate (PC) and oxoacetate to PEP (PCK1, PCK2) were downregulated in RCC. UDP glucuronosyltransferase 
family genes were mostly downregulated in KICH and KIRP while upregulated in KIRC. These genes participate 
in the interconversion of D-glucuronate and UDP-D-glucuronate. The pentose phosphate pathway, purine and 
pyrimidine metabolism were also upregulated in KIRP (Fig. 2).

fatty acid metabolism. Fatty acid synthase (FASN) was upregulated in KICH and KIRP. Genes of fatty acid 
degradation, ketogenesis (HMGCS2), cholesterol metabolism (CYP7A1, CYP8B1, CYP27B1), steroid hormone 
synthesis, lipid transport (APOA1, APOA2 and APOA5) and carnitine shuttle were downregulated suggesting 
altered lipid metabolism in RCC. Further, the metabolism of xenobiotics by cytochrome P450 was also downreg-
ulated in KICH. Although most genes of this pathway were downregulated, few members of the cytochrome P450 
superfamily with known links to cancer were upregulated in KICH (CYP1A1, CYP3A4, CYP3A7)23.

co-expression of metabolic genes in Rcc. In the previous analysis, we considered only the matched 
normal and tumor samples to identify reporter metabolic pathways. We extended this study to include all the 
available samples of RCC to understand the variations within tumor samples at the level of metabolism. We 
performed unsupervised Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules of 
co-expressed genes and explored their variation in a cancer-stage specific manner. We identified 7 metabolic 
modules in KICH which showed disease- and stage-specific changes. M5_CH, M6_CH and M7_CH modules 
showed a negative correlation with the disease while M1_CH, M2_CH and M3_CH modules showed a positive 
correlation with the disease (Table 1). The M5_CH module was downregulated in most tumor samples (Fig. 5) 
while M6_CH and M7_CH modules showed differences with respect to few late stage samples that resembled 
normal samples. Interestingly, these late stage samples mostly correspond to metabolically divergent KICH 
(KICH-MDD) samples reported recently (Fig. S1). Major pathways associated with each module are provided in 
Table 1 (see Data S2). The M5_CH module included downregulated reporter metabolic pathways. The M6_CH 
module was associated with protein modification and glycosphingolipid metabolism while the M7_CH module 
was associated with sphingolipid metabolism, and starch and sucrose metabolism. Both these modules showed a 
significant correlation with the overall survival time (Table 1).

The upregulated M1_CH and M2_CH modules also showed differences with respect to KICH-MDD samples 
(Fig. S1). These late stage samples resembled normal samples. The M2_CH module was associated with oxidative 
phosphorylation while the M1_CH module was associated with propanoate metabolism, valine, leucine, and 
isoleucine metabolism, tricarboxylic acid cycle and glyoxylate dicarboxylate metabolism (Table 1 and Data S3). 
Further, this module included genes (GOT1, GOT2, BCAT1 and GCLC) that were found to be dysregulated 
in our study. We found that genes of glutathione metabolism, propanoate metabolism and alanine, aspartate 
and glutamate metabolism can distinguish KICH-MDD samples (Fig. 6). Both M1_CH and M2_CH modules 
showed a significant correlation with stages and overall survival time. The M3_CH module showed a higher 
stage-specific correlation and was associated with aminoacyl-tRNA biosynthesis and isolated reactions in HMR2 
corresponding to cell cycle genes (Table 1). This module also included metabolic genes involved in pyrimidine 
metabolism (POLA2, RRM2, POLD1, POLE2, POLR3D, CAD, POLR3G, POLE), glycosaminoglycan metabolism 
(CHPF, CHPF2, B3GAT2, B3GALT6, CHSY3, CHST14), amino acid metabolism (DNMT1, SHMT2, MTHFD2, 
DNMT3B, TYMS, SRM, TDO2, ASNS) and lipid metabolism (FASN, ELOVL5, NRF1, FADS2, SQLE, CYP2R1, 
P4HB). We observed that the M3_CH module was specific to KICH-MDD.

We identified metabolic modules of KIRP that showed disease- and stage-specific changes. M1_RP, M2_RP, 
M3_RP and M4_RP modules showed a negative correlation with the disease while M5_RP, M6_RP, M7_RP and 
M8_RP modules showed a positive correlation with the disease (Table 2). KIRP samples showed a heterogeneous 
behavior in different modules (Fig. S2). The modules were either upregulated or downregulated in only some 
KIRP samples from different stages. The M2_RP module was associated with many reporter metabolic pathways 
and the M1_RP module was associated with the tricarboxylic acid cycle and glyoxylate dicarboxylate metabo-
lism and oxidative phosphorylation (Table 2 and Data S2). The upregulated M5_RP module was also associated 
with oxidative phosphorylation suggesting a complex pattern of gene expression in this pathway. On the other 
hand, the M3_RP module was downregulated in most KIRP samples and is associated with O-glycan metabolism 
and prostaglandin biosynthesis (Fig. S2). Further, the M8_RP module was upregulated in mostly late stages of 
KIRP and was associated with nucleotide metabolism (RRM2, CAD, TYMS, POLA2, NT5E, NME7, POLE2, 
POLR2D, POLE3, POLR3G, TK1, POLE). This module also included genes linked to HIF1A transcriptional 
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activity (LDHA, NT5E, CA9, HK2), carbohydrate metabolism (RPIA, PFKFB4, NUP107, NUP62, HAS3, NUP43, 
ENO2, PFKP, NUP37), one carbon metabolism (MTHFD1L, MTHFD2, DNMT3B, TYMS) and cell cycle.

In KIRC, modules M2_RC, M3_RC and M4_RC showed a positive correlation with the disease while M1_RC, 
M7_RC, M8_RC and M9_RC modules showed a negative correlation with the disease (Table 3). The M4_RC 
module was upregulated in most late stage KIRC samples (Fig. S3). However, M2_RC and M3_RC modules were 
upregulated only in some KIRC samples. Major pathways associated with each module are provided in Table 3 
(see Data S2). The M4_RC module was associated with glycolysis and fructose and mannose metabolism. This 
module also included genes of cell cycle, purine metabolism and HIF1 transcriptional activity (PRKCG, PRKCB, 
SLC2A1, PIK3CD, ENO1, ENO2, HK2, HK1, HK3, LDHA, PGK1, ALDOA, GAPDH, PDK1). The M6_RC mod-
ule showed weak correlation with stages of KIRC and it included genes of pentose and glucuronate interconver-
sions (UDP Glucuronosyltransferase family genes) and glycine, serine and threonine metabolism (DMGDH, 
SHMT1, BHMT, BHMT2, CHDH, SARDH). Further, M8_RC and M9_RC modules were downregulated in most 
KIRC samples. The M8_RC module was associated with protein modification and glycine, serine and threonine 
metabolism while the M9_RC module was associated with tricarboxylic acid cycle and glyoxylate dicarboxylate 
metabolism and other reporter metabolic pathways.

Discussion
Identifying the shared and unique features of RCC subtypes is important for differentiating subtypes and for an 
effective treatment. Different evidences suggest that cancer cells reprogram the metabolism to meet the require-
ment of cell growth and division. This presents opportunities for cancer diagnosis and treatment based on met-
abolic biomarkers and targets, respectively. In this work, we have performed the metabolic network analysis 
of RCC subtypes to reveal the systems-level alterations. In addition to metabolic changes, we also studied the 
co-expression pattern of metabolic genes in each sample to understand the variations in RCC metabolism.

We found that amino acids: glycine, serine and threonine metabolism (one-carbon metabolism), alanine, 
aspartate and glutamate metabolism, aromatic amino acid and branched chain amino acid metabolism were 
downregulated in RCC compared to tumor-matched normal samples (Fig. 2). One carbon metabolism fuels the 
synthesis of amino acids, nucleotides, and polyamines, regulates the gene expression epigenetically and maintains 
redox homeostasis through methionine cycle24,25. We also found that the polyamine synthesis pathway was down-
regulated in RCC. However, studies have shown that the gene expression and metabolites of one-carbon metabo-
lism are upregulated only in aggressive KIRC11,12. Polyamines regulate cell proliferation and its levels are high in 
multiple cancers26,27. These differences can be attributed to tumor or stage-specific differences. We found that the 
expression of genes in glutathione (GSH) metabolism was dysregulated in RCC, which can affect the GSH levels 
and sensitivity to the oxidative stress. Our observations are consistent with recent studies focusing on glutathione 

Module (Size) Disease Stage
Overall 
Survival Pathways

M1_CH (755) 0.59 (3e-11) 0.27 (0.006) 0.31 (0.005)

Propanoate metabolism 
(1.9E-3), Valine, leucine, and 
isoleucine metabolism (3.1E-
3), Tricarboxylic acid cycle 
and glyoxylate dicarboxylate 
metabolism (1.8E-2)

M2_CH (455) 0.54 (2e-9) 0.37 (9e-5) 0.34 (0.002)
Oxidative phosphorylation 
(1.1E-14), Nucleotide 
metabolism (2.2E-3), N-glycan 
metabolism (9.3E-3)

M3_CH (269) 0.35 (3e-4) 0.54 (2e-9) −0.22 (0.05)

Isolated (2.8E-3), Lysine 
metabolism (3.5E-3), 
Aminoacyl-tRNA biosynthesis 
(8.4E-3), Chondroitin heparan 
sulfate biosynthesis (1.5E-2)

M4_CH (352) −0.33 (7e-4) −0.21 (0.03) −0.26 (0.02) Isolated (1.4E-12), Transport, 
Golgi apparatus (4.6E-4)

M5_CH (1138) −0.9 (9e-40) −0.72 (7e-18) −0.18 (0.1)

Metabolism of xenobiotics by 
cytochrome P450 (4.6E-13), 
Glycine, serine and threonine 
metabolism (3.7E-7), Alanine, 
aspartate and glutamate 
metabolism (1.9E-4)

M6_CH (227) −0.32 (8e-4) −0.11 (0.2) −0.32 (0.004)

Protein modification (2.3E-
6), Chondroitin heparan 
sulfate biosynthesis (2.0E-3), 
Glycosphingolipid metabolism 
(4.3E-2)

M7_CH (413) −0.69 (2e-16) −0.39 (3e-5) −0.44 (4e-5)
Nucleotide metabolism (2.8E-
4), Sphingolipid metabolism 
(8.5E-3), Starch and sucrose 
metabolism (2.9E-2)

Table 1. Correlation between module eigengene (ME) expression value and disease, stages and overall 
survival for KICH. Pearson correlation is given with the p-value inside the bracket. HMR2 metabolic pathways 
associated with each module are given with corresponding p-value inside the bracket. The entire list of pathways 
is provided in Data S2.
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metabolism in KICH28,29. We also observed that the pentose phosphatase pathway genes were upregulated in 
RCC. The pentose phosphatase pathway intermediates are shown to be high in a metabolomic study of KIRC11. 
Although aromatic amino acid metabolism was downregulated in RCC, the tryptophan/kynurenine pathway 
genes (TDO1 and IDO1) were upregulated. Kynurenines have an immunoregulatory role of restricting the T cell 
activation30. UDP glucuronosyltransferase family of genes were differentially expressed in RCC subtypes. These 
genes are shown to be dysregulated to a different extent and in different directions across cancers4.

The canonical route to generate glutamate from glutamine for anaplerotic reactions was also downregulated 
(Fig. 4). However, the upregulation of glutamic-oxaloacetic transaminase enzymes GOT1 and GOT2 in KICH suggest 
a non-canonical route to utilize the carbon and nitrogen derived from glutamine (Fig. 4). Coloff et al.31 have shown that 
the upregulation of transaminases and downregulation of GLUD can promote glutamine anaplerosis and non-essential 
amino acids (NEAA) synthesis in proliferating mammary epithelial cells. Further, GOT1 and GOT2 can trigger a series 
of reactions involving the conversion of aspartate to pyruvate. This can potentially play a role in maintaining the redox 
state by increasing NADPH/NADP+ ratio. Human pancreatic ductal adenocarcinoma (PDAC) relies on the pathway 
involving GOT1 and knockdown of it is shown to increase reactive oxygen species and a decrease in growth32.

An increase in the expression of GOT1/2 and mitochondrial genes in only KICH suggests metabolic diver-
gence. KIRC and KIRP showed an increase in the expression of genes in glycolytic pathway and fructose and 
mannose metabolism. The upregulated metabolic genes in KIRC and KIRP were linked to HIF1A, while in KICH 
were linked to the cell cycle transcriptional activators E2F1 and FOXM1 (Table S4). von Hippel-Lindau tumor 
suppressor (VHL) loss and HIF1A stabilization is the hallmark of KIRC12. Further, HIF1A is shown to inhibit 
the flux from glycolysis to the TCA cycle and promote glutamine reductive carboxylation (reverse TCA flux) for 
citrate generation. Interestingly, HIF1A is also shown to suppress the expression of aspartate producing genes 
GOT1 and GOT233. We also found argininosuccinate synthase 1 (ASS1) expression was downregulated, which 
can increase aspartate availability and is associated with poor prognosis in multiple cancers34,35. In RCC, an 
increase in aspartate levels can promote cell proliferation due to its role in nucleotide synthesis36. In KICH, genes 
related to the aspartate-malate shuttle were also upregulated suggesting that aspartate can act as an anaplerotic 
source for the TCA cycle. Further, FOXM1 and its targets (ASNS and FASN) were upregulated in RCC37. ASNS 
promotes the synthesis of asparagine, which is shown to be a suppressor of apoptosis in response to the glutamine 
withdrawal38. FASN has an important role in tumor growth and survival39. On the other hand, the down regulated 
metabolic genes are associated with HNF4A, PPAR and LXR (Table S3). HNF4A is a proximal tubule specific 

Figure 5. Eigengene (ME) expression profile of metabolic modules in KICH. y-axis represents expression 
values and x-axis represents KICH samples coloured according to the stages (normal - black, stage 1 - yellow, 
stage 2 - green, stage 3 - blue and stage 4 - red).
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transcription factor and is downregulated in late stages of KIRP and KIRC7. PPAR and LXR are nuclear receptors 
involved in the regulation of lipid metabolism40,41.

The co-expression pattern of metabolic genes showed that most metabolic changes in KICH-MDD are similar 
to other KICH samples and normal samples. Mitochondrial/oxidative metabolism was downregulated in MDD 
compared to other KICH samples consistent with the previous observation10. Genes of glutathione metabolism, 
propanoate metabolism and alanine, aspartate and glutamate metabolism were also differentially expressed in 
KICH-MDD. AMPK-mTOR signaling involved in mitochondrial biogenesis is shown to be dysregulated in 
KICH42. We observed that the expression of components of the AMPK complex was significantly upregulated 
in KICH samples compared to MDD samples (PRKAA2, PRKAB1, PRKAG1, PRKAG2). On the other hand, we 
found that a module related to cell cycle, pyrimidine metabolism and amino acid metabolism (M3_CH) showed 
positive correlation with stages of KICH and was specific for the MDD group. The mitochondrial one-carbon 
metabolic genes of this module were upregulated. This pathway helps to maintain the mitochondrial redox home-
ostasis during tumor growth43. The MDD group also consists of samples that were reclassified as KICH from 
KIRC and these samples displayed the characteristics of the HIF1A cluster with its targets upregulated (e.g. CA9). 
These observations suggest that MDD samples have low AMPK and mitochondrial activity and high cell cycle 
and HIF1A activity. These features can be related to the aggressiveness of RCC samples. A similar classifica-
tion of hepatocellular carcinoma (HCC) samples into HIF1A and AMPK clusters with the more aggressive stage 

Figure 6. Metabolic pathways associated with KICH-MDD. Eigengene (ME) expression profile of metabolic 
pathways is shown. y-axis represents expression values and x-axis represents KICH samples coloured according 
to the stages (normal - black, stage 1 - yellow, stage 2 - green, stage 3 - blue and stage 4 - red) and subtype 
(MDD - cyan).
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belonging to the HIF1A cluster has been shown44. The active and functional form of mitochondria has been 
associated with a less aggressive form of tumors. Damaged mitochondria lead to enhanced ROS production and 
a higher mutational load45. We also found a module related to cell cycle and HIF1 transcriptional activity was 
upregulated in late stage samples of KIRC and KIRP, which can serve as a biomarker for staging. Although KIRC 
and KICH show distinct metabolic phenotypes (glycolytic and oxidative), KIRP showed a more heterogeneous 
behavior. In KIRP, the mitochondrial metabolism was not fully downregulated. This can represent a hybrid phe-
notype with a subclass of samples showing aggressive phenotype like KIRC and less aggressive phenotype like 
chromophobe. A hybrid metabolic phenotype utilizing both glycolysis and oxidative phosphorylation is shown 
to exist based on the mutual antagonism between HIF1 and AMPK46.

In summary, our work not only confirmed the previous findings on RCC metabolism9–12 but also further 
explored the metabolic differences between RCC subtypes. We specifically showed the metabolic divergence of 
KICH compared to other subtypes and linked the subtype-specific metabolic changes to the difference in the tran-
scriptional regulation. The co-expression of metabolic genes showed the pattern of gene expression in each patient. 
KICH showed uniform metabolic changes compared to KIRC and KIRP across stages except for the MDD samples. 
We also found co-expression modules that showed tumor stage-specific behavior. Thus, our study identifies met-
abolic features associated with RCC subtypes, which can help towards cancer diagnosis and prognosis. Presently, 
positron emission tomography (PET) imaging with the glucose analogue 18F-fluorodeoxyglucose (18F-FDG) and 
18F-glutamine is used to detect altered glucose uptake and glutamine metabolism in RCC, respectively36,47,48. Isotope 
tracers such as 13C are also used in the reconstruction of metabolic pathways in cancer49,50. 13C-glucose based tracer 
study showed the metabolic reprogramming in Fumarate hydratase (FH)-deficient renal cancer51. Further, defec-
tive mitochondria in RCC can impose tumor transformation by deuterium (heavy hydrogen) oncoisotope accu-
mulation52. Therefore, extracellular deuterium depletion (deupletion) can act as a metabolic therapeutic adjuvant 
and deupletion can be initiated via diet and potables in integrative therapeutic settings52,53. These studies warrant 
consideration of altered metabolism to treat RCC. Furthermore, metabolic alterations identified by integration of 
genome-scale and transcriptomic data of less common RCC subtypes have to be supported by global metabolomic 
profiling to explore new opportunities for diagnostic and therapeutic intervention.

Methods
In this study, TCGA pan-cancer RNA-Sequencing (RNA-Seq) data were obtained from Genomic Data Commons 
(GDC) portal (https://gdc.cancer.gov/). The pan-cancer atlas includes preprocessed gene expression data of 20531 
genes from 33 cancer types. We restricted our analysis to 14 cancer-types that have at least 15 tumor-adjacent 
normal samples for clustering the cancer types based on the metabolic differences. Table S1 shows the number of 

Module (Size) Disease Stage
Overall 
Survival Pathways

M1_RP (335) −0.38 (9e-13) −0.24 (4e-5) 0.0088 (0.9)

Valine, leucine and isoleucine 
degradation (8.3E-12), 
Tricarboxylic acid cycle and 
glyoxylate dicarboxylate 
metabolism (1.1E-10), Propanoate 
metabolism (1.9E-4), Oxidative 
phosphorylation (0.02)

M2_RP (428) −0.36 (4e-11) −0.26 (6e-6) 0.068 (0.2)

Glycine, serine and threonine 
metabolism (6.6E-10), Pyruvate 
metabolism (4.8E-6), Arginine 
and proline metabolism (8.3E-5), 
Alanine, aspartate and glutamate 
metabolism (8.2E-4)

M3_RP (474) −0.82 (2e-79) −0.3 (2e-7) −0.084 (0.2)

O-glycan metabolism (1.6E-4), 
prostaglandin biosynthesis (2.3E-
3), Keratan sulfate biosynthesis 
(5.4E-3), Estrogen metabolism 
(7.9E-3)

M4_RP (954) −0.27 (6e-7) −0.07 (0.2) −0.033 (0.6) Isolated (2.43E-19), Inositol 
phosphate metabolism (0.01)

M5_RP (618) 0.28 (2e-7) 0.17 (0.004) −0.0048 (0.9)

Oxidative phosphorylation (2.8E-
5), Nucleotide metabolism (1.4E-
4), Aminoacyl-tRNA biosynthesis 
(1.3E-3), N-glycan metabolism 
(0.01), Pyrimidine metabolism 
(0.01)

M6_RP (417) 0.34 (5e-10) 0.011 (0.9) −0.0051 (0.9) Glucocorticoid biosynthesis (0.03)

M7_RP (203) 0.27 (1e-6) 0.086 (0.1) −0.032 (0.6)
Amino sugar and nucleotide sugar 
metabolism (2.7E-3), Purine 
metabolism (0.03)

M8_RP (166) 0.5 (1e-21) 0.64 (3e-35) −0.16 (0.005) Nucleotide metabolism (0.01), 
Pyrimidine metabolism (0.02)

Table 2. Correlation between module eigengene (ME) expression value and disease, stages and overall survival 
for KIRP. Pearson correlation is given with p-values inside the bracket. HMR2 metabolic pathways associated 
with each module are given with corresponding p-value inside the bracket. The entire list of pathways is 
provided in Data S2.
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matched normal and tumor samples for each cancer type. The TCGA sample barcode scheme was used to map 
the tumor and tumor-adjacent normal samples. The human genome-scale metabolic model (HMR version 2.0) 
was used to study the cancer metabolism. HMR2 is a comprehensive model with 8181 reactions, 3161 unique 
metabolites, and 3765 genes. The log fold-change difference in HMR2 gene expression between matched normal 
and tumor samples was calculated and top 10% genes with high variance across samples (361 genes) were used 
for the PCA.

To specifically map the metabolic changes of RCC subtypes, the RNA-Seq raw count data of KIRC, KIRP 
and KICH were obtained from the GDC portal. We used only pairs of tumor and tumor-adjacent normal sam-
ples (25 for KICH, 32 for KIRP and 72 for KIRC) to perform differential gene expression analysis of HMR2 
genes for each subtype using DESeq2, which also performs normalization internally using the median of ratios 
method54. Benjamini-Hochberg method was used to adjust the p-value of genes obtained in the DESeq2 analysis. 
The adjusted p-value of genes was used to integrate the gene expression and the genome-scale metabolic model to 
identify reporter metabolites by the reporter metabolite algorithm (RMA)18. This method transforms the p-values 
into Z-scores using the inverse normal distribution function and scores a metabolite based on aggregating Z 
scores of its k neighboring genes:

∑=
=

Z
k

Z1
(1)metabolite

i

k

i
1

The Z score of each metabolite was corrected for background distribution (Eq. 2). 100000 sets of k genes were 
chosen at random to compute mean (µk) and standard deviation (σk).

Module (Size) Disease Stage
Overall 
Survival Pathways

M1_RC (315) −0.3 (1e-13) −0.058 (0.2) 0.0044 (0.9)

Oxidative phosphorylation (1.1E-
15), Arachidonic acid metabolism 
(2.1E-3), prostaglandin 
biosynthesis (2.3E-3), Pentose 
and glucuronate interconversions 
(3.1E-3)

M2_RC (516) 0.29 (4e-13) 0.32 (2e-15) −0.086 (0.05)
Nucleotide metabolism (9.5E-3), 
Aminoacyl-tRNA biosynthesis 
(1.8E-2)

M3_RC (256) 0.31 (7e-15) 0.24 (5e-9) −0.2 (4e-6)
Glucocorticoid biosynthesis 
(6.1E-4), Starch and sucrose 
metabolism (1.9E-2), Lysine 
metabolism (1.5E-2)

M4_RC (422) 0.77 (3e-118) 0.56 (8e-49) −0.11 (0.01)
Fructose and mannose 
metabolism (2.2E-2), Glycolysis/
Gluconeogenesis (2.3E-2), 
Porphyrin metabolism (3.8E-2)

M5_RC (228) 0.18 (8e-6) −0.043 (0.3) 0.033 (0.5)
Protein modification (1.8E-8), 
Chondroitin heparan sulfate 
biosynthesis (6.0E-6), Purine 
metabolism (2.0E-3)

M6_RC (323) −0.063 (0.1) −0.13 (0.001) 0.14 (0.001)

Metabolism of xenobiotics by 
cytochrome P450 (1.3E-7), 
Glycine, serine and threonine 
metabolism (2.6E-5), Pentose 
and glucuronate interconversions 
(3.7E-4).

M7_RC (728) −0.28 (7e-12) −0.28 (8e-12) 0.034 (0.4)
Isolated (4.9E-25), Transport, 
Golgi apparatus (1.3E-3), Inositol 
phosphate metabolism (0.01)

M8_RC (465) −0.9 (1e-210) −0.48 (9e-36) −0.076 (0.09)

Protein modification (9.8E-
3), Serotonin and melatonin 
biosynthesis (9.8E-3), Glycine, 
serine and threonine metabolism 
(1.2E-2), Retinol metabolism 
(2.8E-2)

M9_RC (322) −0.71 (5e-91) −0.48 (2e-34) 0.12 (0.007)

Valine, leucine and isoleucine 
degradation (1.4E-16), 
Tricarboxylic acid cycle and 
glyoxylate dicarboxylate 
metabolism (8.9E-12), Alanine, 
aspartate and glutamate 
metabolism (6.2E-7)

Table 3. Correlation between module eigengene (ME) expression value and disease, stages and overall survival 
for KIRC. Pearson correlation is given with p-values inside the bracket. HMR2 metabolic pathways associated 
with each module are given with corresponding p-value inside the bracket. The entire list of pathways is 
provided in Data S2.
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σ
=

− µZ Z( )
(2)metabolite

corrected metabolite k

k

Corrected Z scores were used for the p-value calculation. This method assumes that genes linked to the metab-
olite are co-expressed. Further, reporter pathways were also identified by aggregating the score of n metabolites 
(Eq. 3) of a pathway19.

∑=
=

Z
n

Z1
(3)pathway

m

metabolite

n

metabolite
1

We identified the direction of change of reporter pathways by performing the analysis with only upregulated 
or downregulated genes in each subtype. Since RMA was performed between only tumor and tumor-adjacent 
normal samples, we extended our study to analyze the co-expression pattern of metabolic genes in all available 
RCC samples (81 KICH, 290 KIRP and 518 KIRC samples) in the GDC portal. This was done to understand the 
variations within the tumor samples and to map the tumor-stage specific changes. Co-expression networks of 
HMR2 genes were constructed for KICH, KIRC, and KIRP by performing the WGCNA in R55. WGCNA organ-
izes the co-expressing genes into modules of functional pathways. Pearson correlations between gene expression 
levels were computed to construct the correlation matrix. The sign of correlations was retained by performing a 
linear transformation:

=
+ | |

S
cor x x1 ,

2 (4)ij
i j

A weighted adjacency matrix was constructed using a function = βa Sij ij , where β represents soft-threshold 
power that is calculated by a scale-free topology criterion. We obtained β = 14 for KIRC and β = 12 for KIRP and 
KICH. A topological overlap matrix (TOM) was obtained from the adjacency matrix and hierarchical clustering 
was performed using a distance measure 1-TOM56. Modules of minimum size 100 were identified using dynamic 
tree cut algorithm57. The module eigen-gene (ME) expression value was obtained using Singular Value 
Decomposition (SVD). Pearson’s correlation between ME value and clinical traits: disease (normal-0, tumor-1), 
stage (normal-0, stage I-1, stage II-2, stage III-3, stage IV-4) and survival data, was calculated to identify relevant 
tumor modules55. We performed hypergeometric test to identify HMR2 metabolic pathways associated with the 
modules. Eigengene expression values of individual pathways of significant modules were also visualized to con-
firm the stage-specific changes. The transcriptional factor enrichment analysis of differentially expressed genes 
was performed using Enrichr17. The upregulated and downregulated genes (adjusted p-value ≤ 0.05) between 
matched normal and tumor samples of each subtype were used as target genes. Enrichr provides different gene-set 
libraries to identify transcription factor from the target gene list. We used multiple libraries including ChEA and 
ENCODE_and_ChEA_Consensus_TFs to identify transcriptional factors associated with upregulated and down-
regulated genes.
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