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Conformance Checking Methodology Across Discharge

Summaries and Standard Treatment Guidelines

VEERA RAGHAVENDRA CHIKKA and KAMALAKAR KARLAPALEM, International Institute of

Information Technology

Conformance checking of treatment plans in discharge summary data would facilitate the development of clinical decision
support system, treatment plan quality assurance, and new treatment plan discovery. Conformance checking requires ex-
traction of medical entities and relationships among them to form a computable representation of the treatment plan present
in the discharge summary. We propose a workflow representation of patient’s discharge summary that is referred to as
workflow instance. We employ a multi-layer perceptron neural network to extract relationships between medical entities to
construct the workflow instance. The aim of this work is to check the conformance of the workflow instance against standard
treatment plan. Standard treatment plans are extracted from the treatment guidelines provided on healthcare websites such
as WebMD, Mayo Clinic, and Johns Hopkins. For each disease, these guidelines are curated, aggregated, and represented as a
workflow specification. We commend multiple measures to compute the conformance of workflow instance with workflow
specification. We validate our conformance checking methodology using discharge summary data of three diseases, namely
colon cancer, coronary artery disease, and brain tumor, collected from THYME corpus and MIMIC III clinical database. Our
approach and the solution can be used by hospitals and patients to determine adherence, gaps, and additions to standard
treatment plans. Further, our work can facilitate to identify common errors and goodness in actual enactment of treatment
plans, which can further lead to refinement of standard treatment plans.
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1 INTRODUCTION

A treatment plan defines the necessary therapeutic interventions for a patient’s medical problem. It includes
guidelines for each particular diagnosis. Healthcare providers follow several standard treatment plans for various
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diseases, such as acute and chronic heart failure [28] and pulmonary hypertension [14]. Consistent execution
of such standard treatment plans is essential for the best evidence of treatment success. Research [42] con-
ducted on 10,000 patients with inflammatory breast cancer showed that under-utilization of trimodality treat-
ment (chemotherapy, surgery, and radiation therapy) have a negative impact on patient survival. Survival rates
are highest among patients who have undergone trimodality treatment than the combination of chemotherapy
plus surgery, radiation therapy plus surgery, or surgery alone. Similar cohort studies on hypertension [3] and
osteoporosis [6] reported the under-treatment of recommended care. Another study [46] suggests an effective
implementation of a standardized post-resuscitates protocol to improve survival rates among cardiac arrest pa-
tients, thus emphasizing the importance of following standard treatment plans. In cases like these, determining
deviations in the treatment process helps to caution healthcare providers for immediate corrective measures.
The advantage of such an analysis is twofold: first, to monitor the quality assurance of the treatment provided,
and second, to discover new treatment plans for different co-morbidities, which would further aid in improving
the standard treatment plans based on expert physicians’ best practices rather than on traditional systematic
trials [21].

The objective of this study is to systematically determine the conformance of discharge summary’s treatment
plan with the standard treatment guidelines. The discharge summary is one of the primary documents used
for storing and retrieving information about a patient’s hospitalization [31]. A discharge summary contains a
patient’s medical information that includes the reason for patient’s admission, physical findings (symptoms),
laboratory tests, treatments, and responses to treatments. It acts as a main source of information about the treat-
ment provided to the patient for further continuity of care [5]. Digitization of health records and documents
have generated a large number of discharge summaries. Analyzing such a large number of free-text discharge
summaries manually is a strenuous task. Hence, there is a requirement for machine-readable and processable
representation for discharge summary information. Some of the representations include temporally abstracted
event sequences [5], ICD procedural code sequences [34, 57], and comprehensive event sequences (comprised
of diagnosis, lab tests, medications, etc.) [53]. But these sequence representations are ineffective in capturing
parallel or overlapping medical entities that occur at the same time. To overcome this limitation, Wang et al. [54]
developed a graph-based representation where nodes indicate medical entities and edges indicate temporal dif-
ference among the entities. Enhancing this idea, we propose a graph representation for the discharge summary,
referred to as workflow instance, orchestrated with nodes as medical entities and edges as semantic relations
(associated with, administered for, and shows) among the entities. Thus, for the medical entities with semantic
types of medical problems, tests, and treatments, we have a total of eight relationships: Test Associated with
Test (TeATe), Treatment Associated with Treatment (TrATr), Problem Associated with Problem (PAP), Test As-
sociated with Treatment (TeATr), Treatment Administered for Problem (TrAP), Test Administered for Problem
(TeAP), Treatment Shows Problem (TrSP), and Test Shows Problem (TeSP).

Standard treatment guidelines for disease/disorders are well specified by various health institutes, such as
Mayo Clinic [27], WebMd [56], and Johns Hopkins [18]. For each disease, medical entities, such as symptoms,
tests, and treatments, can be extracted from each institute’s guidelines. These medical entities collected from
each institute are aggregated and manually curated to represent in the form of graphical representation that is
referred to as workflow specification of the disease.

A workflow is a cumulative, concise, and explicit version of a complex set of activity sequences. The concept
of workflow is analogous to a process in business process modeling [12]. The usual notion of conformance in
process modeling is that an executable process with low-level details should hold conformance with the abstract
process with high-level granularity [26]. Similarly, in our work, the workflow instance of a discharge summary
is considered as a trace of a possible execution corresponding to a workflow specification. Therefore, by adopt-
ing the concepts from business/process models, we define various conformance measures for comparing the
workflow instance with the specification [12].
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In summary, the novelty of this work lies in automatically extracting the semantic relations to construct the
workflow representation, and the methodology for the conformance checking problem.

The major contributions of our work are as follows:

(1) We build a multi-layer perceptron neural network (MLPNN) model using novel lexical, context, and simi-
larity features to automatically extract medical relations from the discharge summary and to form workflow
instance.

(2) We generate a human-curated workflow specification for a disease by gathering standard treatment guide-
lines from various web sources.

(3) We propose graph-based conformance measures to evaluate the conformance of workflow instance with
the corresponding workflow specification of a standard treatment plan.

Scope of the work. Our study is based on relation extraction, machine learning techniques, and the comparative
evaluation aspect of the workflow. Our focus is mainly on establishing the conformance methodology and show-
ing the results based on the datasets that are publicly available. In this approach, any of our machine learning
modules can be replaced by other best techniques to improve the qualitative performance of the system.

The rest of the article is organized as follows. In Section 3, we describe the overall architecture of our sys-
tem. Next, in Section 3.2, we describe an MLPNN to extract a workflow instance of the discharge summary. In
Section 3.3, we propose conformance measures to check conformance of a workflow instance with its respective
workflow specification/treatment plan. In Section 4, we elaborate conformance checking methodology on a case
study. Finally, in Section 5, we illustrate our experiments on three diseases with real discharge summaries and
conclude our findings and discussions.

2 RELATED WORK

Workflow instance. Generating workflow instance from the discharge summary constitutes extracting medical
entities and relationships among them. We extract medical entities by using machine learning techniques de-
veloped in our previous work that has shown comparable performance with state-of-the-art systems [44]. In
this work, we focus on medical relation extraction. Identifying semantic relations among medical entities is a
challenging task involving the extraction of context and structure of the text [2]. Hence, mere bag-of-words and
co-occurrence techniques are not effective to detect these relations [2]. Significant prior research has focused on
pattern-based methods where these structures are manually analyzed to build patterns for relations [1]. Even
though such patterns were able to achieve good precision, they were not sufficient to identify all patterns for
good recall. A recent I2b2 challenge [50] encouraged the research on identifying relationship types between
medical problems, tests, and treatments. Most of participants in the challenge used a support vector machine
(SVM) classifier for identification of the relationship type among the entities [11, 35, 41]. Among these, the SVM
classifier [41] has been shown to be effective for this relation extraction task. Motivated by the recent success of
deep learning techniques, we experimented with neural network models trained using novel similarity features
in identifying the relationships.

Workflow specification. There are various well-known representations for treatment guidelines, such as
GLIF [32] and PROforma [47]. GLIF is a common representation format that facilitates guideline sharing across
organizations. These guidelines encompass appropriate usage of specific technologies, surgical procedures, and
tests as part of clinical care [32]. PROforma is more focused on designing guideline modeling language for de-
cision support systems and guidelines. However, each of these representations were developed to incorporate
different kinds of knowledge addressing particular modeling challenges [13]. In this work, we create a workflow-
based representation with semantic relations that allows us to check conformance of a discharge summary’s
treatment plan. Other systems that are relevant to our study include PRODIGY [37] and GUIDE [38]. PRODIGY
is a clinical decision system that advises on prescriptions when provided with a problem header, patient scenario,
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Fig. 1. Conformance checking methodology. Top: Human-annotated process where the standard resources and discharge
summaries are manually processed to identify medical entities and relationships. The respective relationships are connected
to form workflow representations that are then compared to get the conformance score. Bottom: The automated process.
The discharge summary is automatically processed by using Medical Entity Identification and Relation Extraction to extract
medical entities and relationships to get a workflow instance. Conformance Measures are used to automatically compute
conformance of workflow instance with manually created workflow specification.

and therapy. GUIDE is a clinical care workflow management system for effective utilization of organization re-
sources such as supporting the ward, pharmacy, imaging, laboratories, and external resources [38]. These tools
are built to address different problems and cannot be compared with our conformance checking methodology,
where we use publicly available treatment guidelines and discharge summaries.

Conformance checking. Even though several studies [3, 6, 33] were focused on computing the percentage of
population who have not received a specific therapeutic procedure, the conformance checking on a patient’s
whole treatment plan is a less explored problem. Our work closely aligns with CareGap [16, 52], which corre-
lates the physician’s treatment decisions with the treatment guidelines provided by a clinical decision support
system for adult soft tissue sarcoma patients. In CareGap, the treatment plan is mentioned as a single sentence,
such as “Wide excision surgery and adjuvant radiotherapy pre- or post- operation.” In addition, CareGap is de-
pendent on the clinical decision support system in recommending a treatment plan of only one disease with
specific attributes. In our work, we considered the treatment plan of a patient’s entire visit by using the dis-
charge summary. Our workflow representation can incorporate various symptoms, tests, and treatments and
their relationships to any disease, and in general, our solution can be easily extended to other diseases.

3 CONFORMANCE CHECKING

We developed a conformance checking methodology to process discharge summary and standard resources
data to create workflow specification and workflow instance, which are then compared to derive conformance
score. The methodology, which includes human-annotated and automated components, is shown in Figure 1. In
human-annotated processing, to ease manual effort, as a first step each document is processed by a MetaMap
biomedical tool [4] to extract entities that are then human curated to get the ground-truth entities. These entities
are connected by relationships to form workflow representation (detailed in Section 4). In automated processing,
the discharge summary is passed through a Medical Entity Identification module to generate medical entities
that are then processed by Relation Extraction to generate relationships that are connected to form a workflow
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instance. This instance is compared with human-curated workflow specification to compute a conformance score
using Conformance Measures. Each of these modules are elaborated in the following sections.

3.1 Medical Entity Identification

Medical Entity Identification is analogous to the traditional Named Entity Recognition (NER) task in the med-
ical domain. In a sequence labeling problem like NER, the goal is to predict the sequence of output labels for a
given sequence of the input text. A typical approach for the natural language NER task is to use BIO tagging to
tag the named entity. In BIO tagging, B, I, and O tags refer to Beginning of a named entity, Intermediate words
of the named entity, and Others, respectively. We used the popular sequence labeling machine learning model
Conditional Random Fields (CRF) for tagging the text. CRF is modeled using features such as term features,
part-of-speech (POS) tags, phrase tags, prefix, suffix, and UMLS features. CRF uses BIO tagging to automati-
cally identify medical entities of semantic types: symptom, test, treatment, and medication. Our CRF model has
achieved comparable performance with state-of-the-art techniques as described in our previous work [44]. As a
next step, these medical entities are passed to the Relation Extraction module.

3.2 Relation Extraction

The Relation Extraction module identifies the relationship types (from eight pre-defined classes: TrATr, TrAP,
TrSP, TrATe, TeAP, TeSP, TeATe, and PAP) among the medical entities. We used a neural network–based approach
to automatically identify these relationships.

3.2.1 Multi-Layer Perceptron Neural Network. Motivated with the recent success of neural networks in many
NLP applications, we explored a multi-layer neural network to extract relationships (edges) of workflow instance.
MLPNN learns a function f : Rn → Rc , where n is the number of features and c is the number of output class
labels1 [10]. Each layer computes h = tanh(Wx + b), where h ∈ Rk is the output,W ∈ Rnxk is the weight matrix,
x ∈ Rn is the input features, tanh is the activation function, b ∈ Rk is the bias, and n and k are input and output
dimensions of layer.

Output layer. For the output layer, the Softmax activation function is used to compute probability estimates of
the output labels:

pj =
eŷj∑C

i=1 e
ŷi

, j = 1 . . .C, (1)

where ŷj is the output of the last layer and C is the total number of class labels.
Loss function. Cross entropy is used as the loss function. For our multi-class classification, cross entropy loss

is given as

loss = −
C∑

j=1

yj log(pj ), (2)

where yj is a binary indicator; it is equal to 1 for correct label j and 0 otherwise. C is the total number of class
labels.

Training. To train our model, we used a stochastic gradient descent algorithm to optimize our loss function.
The neural network parameters are updated during training using back propagation. In the next section, we
discuss the features used to train our model.

3.2.2 Features Used for Relation Extraction. We used three kinds of features for building our machine learning
model: lexical, context, and similarity.

Lexical features. Lexical features are created from a word string of relation arguments. These features include
the word string of relation arguments, an individual word and lemma of the words forming relation arguments,

1Output class labels include eight pre-defined relationship types and one NULL relationship. The NULL relation implies that there is no

relationship between the pair of entities.
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Table 1. Features for the Sentence “Colonoscopy Showed a malignat mass in the Proximal Ascending Cecum”

Type Feature Example

Lexical features

Word string of relation arguments colonoscopy, (cannot match
“malignat mass” because of
misspelling)

Individual word colonoscopy, mass
Lemma colonosco-, malign-, mass
Concept types Test, symptom

Context features

Word in between relation arguments showed, a
POS tags VB (verb), DT (determiner)
Chunk tags B-VP(verb phase), B-NP (noun

phase)
Two words preceding first argument —
Two words succeeding first argument showed, a
Two words preceding second argument showed, a
Two words succeeding second argument in, the
Word sequence in-between showed a
POS tag sequence in-between VB DT
Chunk tag sequence in-between B-VP B-NP

Similarity features Levenshtein distance similarity colonoscopy, mass, malignat
(matches the word “malignant” since
their Levenshtein distance is 1)

Note: We intentionally misspelled the term malignant to show the utility of the similarity feature.

and concept types. Table 1 shows example features from the sentence “Colonoscopy showed a malignat mass in
the proximal ascending cecum” for entities “colonoscopy” and “malignant mass.” For these entities, the lexical
features are “colonoscopy,” “mass,” “colonosco,” “malign,” and so forth.

Context features. Context features deal with word string contents in between the relation arguments. Con-
text features include any word, POS tag, chunk tag, words preceding and succeeding the relation arguments,
any concept type used in between the relation arguments, word sequence, POS tag sequence, and chunk tag se-
quence. Only top frequent sequences are considered as features that have occurred more than once in the training
dataset. The number of top words, POS tags, and chunk sequences identified are 187, 197, and 221, respectively.
The shortest dependency path between the pair of entities is used as the feature. In the case of inter-sentential
relations, dependency trees of two sentences are combined to form a single tree [48]. Dependency of entities
across these sentences is identified using the shortest path in the newly constructed tree. Table 1 shows example
context features based on neighboring word strings “showed a” and “in the.”

Similarity features. The preceding lexical and context features are susceptible to misspellings and minor lexical
variations in the word strings. To overcome this, the Levenshtein distance similarity metric is used. Levenshtein
distance is the number of additions, deletions, and substitutions needed to change one string to another. Em-
pirically, we choose a Levenshtein distance of 2 to compute the similarity. From Table 3 (shown later), in the
Similarity Features row, even though the word malignat is misspelled in the given sentence, the Levenshtein
distance helps us find the nearest matching word malignant with less than two transformations. However, this
metric works better only when the string length is greater than 4. For example, the word mass may match words
such as as or ass, which is not correct.

The lexical and context features were used as defined in existing studies [41]. The similarity features are the
novel features introduced in this work.
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3.3 Conformance Measures

The workflow specification created from various sources contains near exhaustive information about the treat-
ment plan of a particular disease, in that it contains many of the possible symptoms, tests, treatments, and medi-
cations, whereas a workflow instance contains only information about current clinical events based on the condi-
tion of the patient for a particular duration of time from entry to discharge. Given a discharge summary, confor-
mance checking involves the comparison of the workflow instance of a patient with the workflow specification of
the disease of which the patient is diagnosed. The workflow specification for particular a patient is identified by
extracting the disease terms from our previous work [44]. The number of disease terms present in the discharge
summary is used to assign the treatment plan workflow specification of the disease for the discharge summary.

The conformance measure reveals how well events in a workflow instance are in compliance with the work-
flow specification. We experimented with various measures for checking conformance. Our conformance mea-
sures are mainly inspired by a precision metric (|a ∩ b |/|a |), where a and b are sets. They signify the precision
with which workflow instance Wi adheres to workflow specification Ws . The higher measure implies that the
workflow instance conforms to the treatment plan used in the standard specifications. We cannot use a recall
metric for our problem because as the workflow specification is very large compared to a workflow instance,
recall is always near zero.

3.3.1 Node Measure. The node elements are compared considering syntactic and semantic aspects of natural
language. The syntactic aspect includes the edit distance of the two strings (Levenshtein distance) [25], where
the semantic aspect focuses on the meaning of the words of two labels using WordNet and UMLS [7, 22]. Word
edit distance and character edit distance are used to quantify the similarity of the elements. These are further
enhanced by stemming and stopword removal techniques. A major challenge with discharge summaries is han-
dling the synonyms of medical terms. For example, the medical term cancer is also represented using names such
as adenocarcinoma, carcinoma, and ademos. A biomedical ontology such as UMLS is used to handle synonyms,
where a cluster of similar medical terms is represented with a concept. For example, all medical terms of the
concept cancer are clustered and represented with a concept unique identifier (CUI). CUIs along with text values
are used to compare the elements. Given two graphs дi = (Vi ,Ei ,Li ) and дs = (Vs ,Es ,Ls ),Vi andVs are nodes, Ei

and Es are edges, and Li and Ls are labels of the corresponding graphs. The conformance score of дi is defined as

CSnode =
|дi ∩ дs |
|дi |

, (3)

where |дi ∩ дs | denotes the common nodes in дi and дs , and |дi | and |дs | denote the number of nodes in дi and
дs , respectively.

3.3.2 Graph Measure. Similarity based on common nodes and edges is represented as the graph measure [29].
LetCE (дi ,дs ) be the number of common edges in дi and дs ; the conformance score based on the total number of
matched nodes and edges is defined as

CSдr aph =
1
2

(
|дi ∩ дs |
|дi |

+
|CE (дi ,дs ) |
|Ei |

)
, (4)

where |дi ∩ дs | denotes the common nodes in дi and дs , |CE (дi ,дs ) | denotes number of common edges, Ei is the
number of edges of дi , and |дi | and |дs | denote the number of nodes in дi and дs , respectively.

3.3.3 Trace Measure. A trace is defined as the sequence of events in the execution of workflow specification.
In conformance checking, a trace ofWi has to be mapped with the traces of workflow specification to quantify
their similarity [15]. However, a workflow specification can have a large number of traces, which makes it
difficult to compute the longest common subsequence for each trace. Thus, we define a metric considering
the sequences up to three consecutive entities—that is, a window of size 3. Since we are using an overlapping
and connected sub-sequence window approach, we can achieve the sequence order present in the workflow
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instance. Considering the complexity of long traces, we believe that these triplet (window of size 3) sequences
instead of long traces would be a reasonable assumption in the conformance measure. Let CT (дi ,дs ) represent
the common three consecutive nodes in дi and дs , and let Ti be the number of triplets in дi ; the conformance
score based on the total number of matched triplets is defined as

CStr ace =
1
3

(
|дi ∩ дs |
|дi |

+
|CE (дi ,дs ) |
|Ei |

+
|CT (дi ,дs ) |
|Ti |

)
. (5)

3.3.4 Common Maximal Subgraph Measure. Common maximal subgraph similarity is developed in Bunke
and Shearer [8] and Labriji et al. [23]. Let Common maximal subgraph, denoted by CMS (дi ,дs ), is the largest
common subgraph between дi and дs . The conformance score based on the maximal subgraph is defined as

CScms =
|CMS (дi ,дs ) |
|дi |

. (6)

4 HUMAN-ASSISTED CONFORMANCE CHECKING

4.1 Data Preparation

Workflow specification of a disease is extracted from the treatment guidelines provided by healthcare web
sources such as Mayo Clinic [27], WebMD [55], and the National Comprehensive Cancer Network [17]. To create
workflow instances, we collected discharge summaries of three diseases, namely colon cancer, coronary artery
disease (CAD), and brain tumor, from the THYME corpus [45] and the MIMIC III clinical database [19]. Our
dataset is composed of 300 discharge summaries with 100 each belonging to the three diseases.

Our goal for workflow extraction from these documents has two challenges: (1) extraction of medical entities/
terms from the text and (2) identifying relationships between the entities. Medical entities from these docu-
ments are first extracted by using a MetaMap biomedical tool [4] for initial annotations. These initial entities
are human curated to get the ground-truth entities of semantic types: problem, test, and treatment (treatment/
medication). These entities are connected using eight pre-defined relationship types. Entities with the same se-
mantic type are connected using the associated with relationship type, hence the relationships: TeATe, TrATr,
and PAP. This relationship type is also used to connect test and treatment by TeATr. Entities with the seman-
tic types of problem and test/treatment are connected using the administered for and shows relationship types:
TrAP, TeAP, TrSP, and TeSP. These relationships implicitly incorporate temporal ordering of medical entities.
For example, the administered for relationship type implies that the problem occurred before test/treatment and
the shows relationship type implies the other way round. In the case of the relationship type associated with, the
entity that is mentioned earlier is considered to be as the one that occurred earlier. These individual relationship
pairs may span within the sentence or across the multiple consecutive sentences. If the individual relationships
are not connected with one or the other pairs, this results in gaps in the workflow. Hence, assuming that the
medical entities in a discharge summary of one particular disease are related, we fill any gaps by connecting the
individual relationship pairs to the nearest entities with the associated with relationship type to form a workflow.

Conformance scores are annotated based on comparing the workflow instance created from the discharge
summary and the corresponding workflow specification of the disease. Each discharge summary is manually
annotated by a conformance score on a scale from 0 to 1, where 0 = no conformance, 0.5 = partial conformance,
and 1 = total conformance.

The annotation procedure for each of the preceding tasks is a two-step process as presented in Styler et al. [45]:

(1) Annotation phase: Two annotators were provided with discharge summaries for annotating medical enti-
ties and relationships of workflow instances and conformance scores with respect to workflow specifica-
tion. Although the kappa inter-annotation agreement among annotators is approximately 0.70 in each of
the tasks, we passed the annotations through a verification phase where the conflicts were resolved.
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Fig. 2. Workflow Specification. Left: A high-level treatment plan framework with activities shown in text boxes and ar-
rows show the flow of activities. Each activity is composed of low-level events shown in the large rectangular boxes on
the right side. Right: Treatment plan of colon cancer in the workflow representation. The rectangular boxes represent
test/treatment/medication, and ellipses represent sign/symptom/outcome. These entities are connected using pre-defined
relationships.

(2) Verification phase: In the verification phase, a third annotator performed adjudication on the annotations
to produce ground-truth annotations.

These ground-truth annotations are used to evaluate relation extraction and conformance measures as
given later in Section 5.

4.2 Colon Cancer Example

4.2.1 Workflow Specification. The workflow specification of a disease is modeled based on standard treatment
guidelines available on standard web sources. For each disease, we manually extract medical entities and their
relationships from treatment guidelines and model them as a workflow specification. Figure 2 shows a sample
workflow specification of colon cancer.2 A high-level specification of the patient’s treatment activities, shown on

2These workflow figures are only for representational purposes. Our solution for relation extraction and conformance checking are performed

at a much lower level—that is, on medical entities and relationships.
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Table 2. Extraction of the Workflow Instance from Discharge Summary Snippet (Left) Sample Text of
Discharge Summary (Right) Workflow Instance with Medical Entities and Relations

the left, includes Admission, Initial/Next Checkup, Tests, Treatment, Medication, and Discharge. A treatment plan
can be a sequence of activities (Admission→ Initial Checkup→ Tests→ Treatments→Medication→ Discharge).
However, in reality, tests or treatments can be conducted multiple times for chronic conditions. Such scenarios
can be captured by back links that show the possibility of flow from Treatments→ Tests, Tests→ Initial Checkup,
or within Tests itself. In the right half of Figure 2 is a workflow snippet of Colon Cancer diagnosis. The initial
checkup is the first activity carried out after admission, which is mostly concerned with the condition of the
patient. A few Symptoms of colon cancer are cancer, bowel habits, rectal bleeding, and abdominal discomfort. Tests
are conducted based on these symptoms from the initial checkup. Tests activity contains diagnostic procedures
such as Colonoscopy, Cancer staging, CT-scan, MRI, and ultrasound. One or more of these tests are performed
to diagnose the patient based on colon cancer symptoms. The preceding tests may reveal any of the findings:
stage I, stage II, stage III, stage IV, small polyps, and large polyps. Therapeutic procedures are conditioned upon
the findings of Tests, such as stage and severity of the cancer. A few cases are listed next:

• For findings, stage I and small polyps, the therapeutic procedure of mucosal resection is carried out.
• If stage I has large polyps, laparoscopic surgery is performed.
• For stages II, III, and IV, one or more treatments from laparoscopic surgery, partial colectomy, chemother-

apy, and radiation therapy are performed.

In an ideal post-procedure scenario, cancer can either be completely removed or partially removed. If the cancer
cells are completely removed (no cancer), the patient would be discharged with the prescriptions and suggestions
represented by activity Medication. If the cancer cells are not removed completely (has cancer), then the workflow
continues from activity Initial/Next Checkup, which is represented by the separate sub-workflow following the
treatment plan.

4.2.2 Workflow Instance of a Discharge Summary Diagnosed for Colon Cancer. A workflow instance consists
of all events that happen in the clinical time line. Table 2 shows an example discharge summary snippet and the
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Fig. 3. Graphical form of the workflow instance of Table 2. Each box shows medical entities of the same head semantic type
as given in Figure 2. Tests of each sentence are presented in separate boxes for better representation. However, comparison
of the workflow instance with workflow specification happens at the entity and relationship level.

workflow instance containing medical terms and relations among them. Even though the occurrence of future
or follow-up procedures is uncertain, they are included in the workflow instance to check whether the planned
treatment adheres to workflow specification. Figure 3 shows the graphical representation of the workflow in-
stance. This instance explains that the patient has been diagnosed with adenocarcinoma, which resulted in grade
3/4. The patient will further undergo a sequence of diagnostic procedures, such as CT, staging, MRI, and EUS, fol-
lowed by treatment, surgical evaluation. Figure 3 is shown only for representational purposes. However, medical
entities and their relationships are the atomic components of the workflow instance that are further used.

4.2.3 Mapping the Workflow Instance to Workflow Specification. Mapping of the workflow instance to work-
flow specification starts with the first event, adenocarcinoma. The problem adenocarcinoma maps to its synonym
cancer of workflow specification. Diagnosis is a generic term for the high-level entity test, which resulted in grade
3/4, implying stage III/IV. Then, the workflow continues with a sequence of tests connected by the associated with
relation (TeATe). This set of tests, including CT, MRI, staging, and EUS is mapped to CT-scan, MRI, cancer stag-
ing, and ultrasound, respectively. Finally, the flow is from tests to treatment, where surgical evaluation refers to
the treatment laparoscopic surgery. Thus, the given workflow instance completely conforms with the workflow
specification of Colon cancer with a conformance score of 1.0.

5 RESULTS

5.1 Workflow Instance Relation Extraction

5.1.1 Experimental Setup. The main challenge in our work is to automatically identify the relationships
among entities present in discharge summaries. We are mainly focused on entities with semantic types: medical
problem, test, and treatment (treatment plus medication). In this work, we have used a total of eight relation-
ships between the semantic types: TeATe, TrATr, PAP, TeATr, TrAP, TeAP, TrSP, and TeSP. In our experiments,
we assume that the medical terms and their semantic types are already known as in other existing works [40,
43]. Our dataset is composed of 300 discharge summaries collected from the THYME corpus [45] and the MIMIC
III clinical database [19]. Statistics of the distribution of relationship types in our dataset is given in Table 3.

To have a comparative analysis on a highly class imbalanced dataset, performance metrics such as precision,
recall, and F-score were used. Standard classification metrics of precision (P), recall (R), and F-score (F) were used
to evaluate workflow instance relation extraction. The whole dataset is randomly divided into training (70%) and
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Table 3. Data Statistics of the Whole Dataset:
Relationship Types and Number of Instances

Relationship Types Total Train Test
ALL 3,929 2,559 1,370
TrAP 525 354 171
TrSP 453 296 157
TrATr 1205 819 386
TeAP 98 50 48
TeSP 240 144 96
TeATe 197 147 150
TeATr 239 132 107
PAP 872 617 255

Table 4. Comparison of Different Classification Models
for Identifying All Relationship Types Among Medical

Entities (Problem, Test, and Treatment)

Classifier Precision Recall F-Score
Co-occurrence (baseline) 0.53 0.90 0.67
MLP NN 0.8 0.76 0.77

SVC (linear, C=0.1) 0.77 0.73 0.74
SVC (linear, C=0.025) 0.8 0.68 0.72
SVC (rbf, c=1000) 0.8 0.66 0.7
Decision tree 0.66 0.67 0.65
Nearest neighbors 0.49 0.55 0.49

Note: The baseline system has given better recall, and MLP NN has given

good performance with a high precision and F-score.

testing (30%) using train_test split [36]. We used the Scikit-learn library [36] to implement the machine learning
classifiers.

5.1.2 Comparative Performance of MLPNN with Other Classifiers. Relation extraction among medical entities
is formulated as a multi-class classification task [11]. We implemented a baseline system based on a co-occurrence
approach that has shown value on relation extraction tasks in the literature [51]. We experimented with several
well-known classifiers based on SVM, decision trees, and k-nearest neighbor. Each classifier’s hyper-parameter
values were empirically chosen based on fivefold cross validation on the training dataset. Table 4 shows the
comparative results of different classifiers, namely MLPNN [10], SVM [9], decision tree [39], and nearest neighbor
classifier [20]. Each classifier is modeled using all of the features. Results show that the co-occurrence baseline
system had higher recall than any other approach, as it considers all possible relations that can exist among
the entities [51]. However, MLPNN outperformed all systems on precision and F-score. MLPNN showed 3%
improvement over the best accuracy of SVM (cost-weight C = 0.1) with statistical significance of a one-way
analysis of variance (ANOVA) test p-value < 0.05.

5.1.3 Class-Wise Performance of MLPNN with All Features. Table 5 summarizes the class-wise results of
MLPNN modeled based on all of the features explained in Section 3.2.2. We see that the relationships TrATr,
TeATe, and PAP have high accuracy, as the similar semantic-type neighbor entities are grouped together in the
construction of workflow. The relationship TeAP has shown relatively low accuracy because of a low number of
samples (refer to Table 3).
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Table 5. Class-Wise Performance of the MLPNN
Classifier with All Features

Relationship Types Precision Recall F-Score
All 0.78 0.76 0.77
TrAP 0.63 0.66 0.64
TrSP 0.83 0.7 0.76
TrATr 0.79 0.9 0.84
TeAP 0.65 0.23 0.34
TeSP 0.83 0.75 0.78
TeATe 0.87 0.9 0.88
TeATr 0.66 0.5 0.57
PAP 0.87 0.81 0.84

Note: A high F-score was noted for relationship types with

higher numbers of samples.

Table 6. Performance Evaluation of Lexical (L), Context (C), and
Similarity (S) Features Using Feature Ablation

Features Used Precision Recall F-Score Difference
All features (L+C+S) 0.78 0.76 0.77 —
-Lexical (C+S) 0.6 0.54 0.56 –0.21

-Context (L+S) 0.73 0.7 0.71 –0.06

-Similarity (L+C) 0.76 0.72 0.74 –0.03

Note: Each feature has shown improvement in the performance of the model.

5.1.4 Contribution of Each Feature. To examine the contribution of each feature, we ablate each feature from
the model. Table 6 summarizes the results with feature ablation. The first row shows the performance of the
MLPNN model trained with all of the features. The remaining rows show the result with the removal of each
feature. The Difference column in Table 6 shows the significance of lexical, context, and semantic features on
the model by 21%, 6%, and 3%, respectively.

5.2 Conformance Score

The conformance score is computed between the discharge summary and the standard treatment plan. A dis-
charge summary is represented as a workflow instance with medical entities as nodes and relationships as edges.
Each workflow instance is compared with the corresponding disease’s workflow specification (standard treat-
ment plan) and manually labeled with a ground-truth conformance score on a scale from 0 to 1 explained in
Section 4.1. We automatically compute conformance scores for each workflow instance based on the measures
provided in Section 3.3. These conformance measures are validated by finding their correlation with ground-truth
scores [30] using the Spearman rank correlation coefficient (Spearman rho) and the Pearson product-moment
correlation coefficient (PPMCC) [24]. The Spearman rho finds the monotonicity in the ranking order of scores
but does not measure the difference in the magnitude. PPMCC measures the linear dependence of metric values
with manual scores. These coefficients imply the correlation of conformance measures with that of ground-truth
scores on discharge summaries. Table 7 summarizes the results of these measures on three diseases. Results show
that the trace measure shows slightly better evaluation in relative ordering of discharge summaries. The node
measure, graph measure, and trace measure show high Pearson coefficients for CAD, colon cancer, and brain
tumor, respectively. This leads to the fact that no unique correct measure exists for conformance and that one
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Table 7. Spearman Rho and PPMCC Coefficients on the Workflow Instances
of Three Diseases Indicating the Correlation of Our Conformance

Measures with Manually Annotated Scores

Disease Conformance Measure
Evaluation Metric
Spearman Rho Pearson Coe

Colon cancer

Node measure 0.661 0.633
Graph measure 0.768 0.713

Trace measure 0.776 0.712
CMS measure 0.443 0.379

CAD

Node measure 0.698 0.708

Graph measure 0.728 0.707
Trace measure 0.729 0.703
CMS measure 0.501 0.452

Brain tumor

Node measure 0.628 0.685
Graph measure 0.735 0.705
Trace measure 0.767 0.710

CMS measure 0.452 0.386

Note: All coefficient values are statistically significant with p-value < 0.01.

of the measures can be picked based on the application [49]. Low correlation of the CMS measure implies that
common maximal sub-graph might not essentially contain the significant medical entities in the treatment plan.

6 DISCUSSION

Our neural network approach that incorporates lexical, context, and similarity features generates relationships
among the medical entities to give a workflow representation from free text and outperformed traditional mod-
els. Performance comparison with other works is not possible because of the difference in the datasets. Thus,
we have experimented with other traditional baseline classifiers such as SVM and decision trees. Specifically,
our method using MLPNN achieved an F-score greater than 0.77 compared to SVM and decision trees with
corresponding F-scores of 0.74 and 0.65, respectively. The novelty of this approach is not only in improving per-
formance over traditional baseline models but rather in using the novel similarity features that work better in
identifying relationships.

The significance of conformance scores is illustrated using two different patient scenarios. Table 8 shows the
discharge summary snippets and their corresponding workflow instances of two patients with ground-truth
conformance scores (CSдroundtruth ) of 1 and 0.5, respectively. In the first row, a patient diagnosed with CAD
underwent Coronary Artery bypass graft and aortic valve replacement using mosaic porcine valve. The different
conformance measures for the workflow instance are shown in the first cell. For each measure, a different thresh-
old can be chosen empirically to estimate a low or high conformance score of a discharge summary. The second
row shows the diagnosis of a diabetic patient for CAD with a conformance score of 0.5. The patient had to con-
tinue with the medications Neo-synephrine and insulin for maintaining blood pressure and sugar under control,
respectively. Here, the terms insulin and sugar under control are specific to diabetes. Workflows of such specific
conditions have resulted in a lower conformance score with the specification (compared to the first row). Identi-
fying such less conformance patients has two advantages: first, to help a doctor in identifying such co-morbidity
cases and pay focused attention, and second, these co-morbidity cases can be leveraged in formulating co-morbid
specific treatment plans. For example, a CAD treatment plan specific to a patient with diabetes can be suggested
for future patients. Thus, the proposed conformance measures would allow us to effectively identify patient
records that would help in modifying the treatment plan used by healthcare providers.
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Table 8. Extraction of the Workflow Instance from Discharge Summary Snippet (Left) Sample Text
of Discharge Summary (Right) Workflow Instance with Medical Entities and Relations

Note: Conformance measures of discharge summaries are provided under each snippet.

Further, we evaluated our solution by considering discharge summaries with a conformance score less than
or equal to 0.5 and a conformance score greater than 0.5. These two sets of discharge summaries gave a few
interesting patterns. The therapeutic procedure hemicolectomy (removal of part of colon) is often followed by
anastomotic leak→ emergency surgery and ileostomy→ blood transfusion (DocID: ID015_clinic_043). In addition,

ACM Transactions on Computing for Healthcare, Vol. 1, No. 3, Article 13. Publication date: May 2020.



13:16 • V. R. Chikka and K. Karlapalem

most common co-morbidities of the diseases have been identified. For example, the Coronary Artery Disease
medical entity often occurs with diabetes, high cholesterol, and hypertension, and, Brain tumor has co-morbidities
such as eye blurring, aphasia, and urinary dysfunction. In some cases, a discharge summary can contain diagnosis
of multiple disorders. For example, a discharge summary (DocId: ID197_clinic_579) contains procedures (e.g.,
colonoscopy, Appendectomy, and Cystoprostatectomy) that are related to colon cancer, appendix, and prostate gland.
By analyzing the workflow instances of discharge summaries, we found new diagnostic procedures of colon
cancer such as proctocolectomy and anoscopy, which are not present in the treatment guidelines extracted from
web sources. Populating such knowledge from discharge summaries can in turn improve the standard treatment
plans.

Our study has some limitations. First, diseases with co-morbidities involve high variability of treatment pro-
cesses that are often complicated. It is not straightforward to implement the treatment guidelines of individual
disease directly. Such scenarios require specialized treatment plans for a specific set of co-morbidities. Second,
in this work, all procedures are considered to be at the same level of detail. For example, chemotherapy and its
drug regimes, such as FOLFOX and FOLFIRI are considered as separate procedures. However, in general, these
drug regimes are part of the therapeutic procedure chemotherapy. Third, we only used publicly available web
sources treatment guidelines to model workflow specification. Given the flexibility of workflow representation,
any new treatment guidelines can be easily incorporated in our solution.

However, our study has important applications: first, concise representation of discharge summaries in a com-
putable form (workflow) allows clinicians to check the patient history records in a shorter time frame; second,
discovery of new treatment plans for different co-morbidities; and third, in a real-world setting, an individual
health record can be documented for every 72 hours of patient stay. Provided that the individual health record is
properly documented, the conformance score alerts the doctor to take note of the patient case if it deviates from
the standard treatment plan. Our work is a proof of concept that demonstrates the importance of conformance
checking for quality healthcare.

7 CONCLUSION

In this article, we addressed an important and challenging problem of determining the conformance of the pa-
tient’s discharge summary to standard treatment plan. Our study was based on public domain data that was
available as discharge summaries and treatment plans extracted from reputed health sites. The key contributions
are (i) modeling the conformance problem as a problem of determining whether a workflow instance conforms
to its workflow specification, (ii) determining workflow specification from treatment plans, (iii) extracting the
workflow instance from the discharge summary using various classifiers with novel additional features, and
(iv) attributing the conformance score for a discharge summary to its treatment plan. Our experimental results
on three diseases and 300 discharge summaries show the viability of our solution. The aim of our work is a
project wherein patients can upload their text discharge summary and get a conformance score with respect to
standard treatment plans. The user will also be able to determine variation in treatments from standard plans.
Thus, medical providers manage conflicts with patients in agreeing to a treatment plan. The key idea of work-
flow specification and its conformance to the workflow instance is powerful, and can be applied to other domains
such as maintenance work and project management.

7.1 Data Availability

The data used in this work is available from the authors upon reasonable request.

7.2 Code Availability

Source code of this work is available from the authors upon request.
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