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Abstract

The computationally expensive nature of ab initio molecular dynamics simulations

severely limits its ability to simulate large system sizes and long time scales, both of

which are necessary to imitate experimental conditions. In this work, we explore an

approach to make use of the data obtained using the quantum mechanical density func-

tional theory (DFT) on small systems and use deep learning to subsequently simulate

large systems by taking liquid argon as a test case. A suitable vector representation

was chosen to represent the surrounding environment of each Ar atom, and a �-NetFF

machine learning model where, the neural network was trained to predict the di↵erence

in resultant forces obtained by DFT and classical force fields was introduced. Molec-

ular dynamics simulations were then performed using forces from the neural network

for various system sizes and time scales depending on the properties we calculated. A

comparison of properties obtained from the classical force field and the neural network
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model was presented alongside available experimental data to validate the proposed

method.

Introduction

The modeling of a condensed phase system involving chemical processes spanning multiple

time and length scales is particularly challenging. Ab initio molecular dynamics (AIMD)

which explicitly treats electronic degrees of freedom is naturally the first method of choice,

however computationally demanding, thus prohibiting its application to large molecular

systems.1,2 Classical molecular dynamics (MD) simulations employing force fields can do a

proper sampling of the phase space of large systems (up to million atoms),3,4 but underlying

interatomic potentials are often not accurate enough to obtain quantitavely accurate results.

Their transferability to situations that were not originally used in the parameterization is

questionable, which further limits their accuracy.

The need to construct a multiscale model (considering electronic, nuclear dynamics5–7

and their coupling to slower, cooperative motions of the system) to capture accurate dy-

namics of chemical processes cannot be overstated.8–10 The fundamental question is: Can

one quantify the relevance of atomistic models to electronic interactions employing any nu-

merical formalism and how corresponding MD errors reflect emergent features in ab initio

driving forces? One of the most successful approaches relies on quantum mechanical (QM)

calculations on gas-phase (sometimes considering the implicit solvent model) clusters to pa-

rameterize a model meant for bulk phase simulations. Another empirical procedure is based

on the minimization of a “loss function” or “objective function” between simulated and

experimental physical properties.

With the increasing availability of computational resources and data, machine learning

(ML) techniques have been popularly applied to predict quantum mechanical properties.11–17

A plethora of sophisticated ML approaches exist: For predicting ground state energies, ap-
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proaches, such as, boosted regression tree algorithms,18 high-dimensional neural network

potential energy surfaces using symmetry functions,11 continuous-filter convolutional lay-

ers17 and single-atom atomic environment vectors (AEV)13 have been used. Atomization

energies for molecules have been predicted based on nuclear charges and atomic positions

only.19 Multiple electronic, ground, and excited-state properties have also been predicted

simultaneously using Coulomb matrices in conjunction with deep multi-task artificial neural

networks.14,20 The bag-of-bonds model was used to predict accurate electronic properties

of molecules, such as, their polarizability and molecular frontier orbital energies.21,22 Using

artificial neural networks (ANNs), energies of molecules have also been predicted as a sum

of intrinsic bond energies, while also providing valuable insight into the relative strengths

of bonds as a function of their molecular environment.16 ANNs have also been used along

with genetic algorithm (GA) optimization to discover unconventional spin-crossover com-

plexes, which emphasizes their power for discovering new inorganic materials.23 Recently

an ML model was proposed where a novel molecular descriptor inspired by classical force

fields terms – bonds, angles, non-bonded interactions and dihedrals to perform geometry

optimizations along with predicting their energies.24 This model employs feed-forward fully

connected deep neural networks. Graph neural networks were used to predict solvent-solute

interaction map25 for studying solvation free energies of drug-like molecules/solute. Instead

of applying ML techniques to directly compute properties of new molecules through inter-

polation in chemical compound space, recently, ML of force field parameters was performed

for semi-empirical modeling.26

In the recent years, machine learning (ML) has emerged as a potential technique for de-

veloping a new generation of highly accurate force fields (FFs) for simulations of molecules

and materials. Ramprasad and coworkers27–29 have developed ML-based atomistic force

fields for MD simulations. They have mainly focused on bulk solid-state materials. Another

approach, on-the-fly ML of QM forces in MD simulations was recently reported by Li and

coworkers30 on bulk Si. The smooth overlap of atomic positions (SOAP) metric has been
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used to construct potential energy surfaces, and its performance was evaluated for small

silicon clusters.15 Gaussian approximation potentials have been used to generate trajectories

for water dimers, energetics path for a migrating vacancy and the transformation of rhombo-

hedral graphite to diamond.31 Another popularly used class of ML-FFs based on Gaussian

process (GP) regression was developed for stduying 19-atom Ni nanocluster32 as well as

adsorption energies of small molecules on NiGa and RhAu nanoclusters.33,34 Interatomic

potentials for metallic aluminium, carbon and dimer potentials for noble gases have been

reconstructed using neural networks.35 The e↵ects of such fitted potentials on the calculation

of physical properties obtained from their trajectories, at di↵erent physical conditions, such

as, temperature and pressure, need to be studied to further reinforce on their future applica-

tions. Machine learning is also being successfully used to analyze longtime scale simulation

data on large systems.36,37

As the area of development of ML-FFs for MD simulations is expanding towards assessing

and improving the accuracy and transferability of the model, learning and predicting atomic

forces have been receiving notable successes. Because, atomic forces can be seen as true QM

observation within the BO-approximation to abide by the Hellmann-Feynman theorem.38

The energy of a molecular system would then be recovered through appropriate integration

of the force-field kernel. ML models are often trained on reference data obtained from QM-

based methods, such as, density functional theory (DFT) within the Kohn-Sham formalism.

DFT continues to exist as one of the most popular and widely used QM-target from molecular

regime14,19,21,27,39–42 to condensed matter and materials informatics.11,15,20,31,43–48

In this article, we explore an approach in which DFT calculations for smaller systems can

be used, in conjunction with machine learning to simulate larger systems at a computational

e↵ort comparable to classical force fields, while being able to predict forces similar to DFT.

A �-NetFF model that uses the di↵erence in forces obtained from the molecular mechanical

force field and the quantum mechanical DFT approaches to train the NN was introduced

for constructing the force field for MD simulations. The predictive power of the present ML
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model was assessed by calculating dynamical and thermodynamical observables including

the liquid-vapor interface, which require su�cient sampling of the configuration space, by

employing MD simulations. This method does not require explicit parameterization and

does end-to-end prediction of forces using the neural network. One of the main features of

this model is that larger systems of multiple sizes can be applied using the same trained

model of smaller-sized 96-atom system.

Methodology

The workflow in constructing the�-NetFF model includes: (1) creation of a reference dataset

from a large number of diverse atomic environments, and calculating the forces for each

environment using DFT method, (2) constructing an input vector for each atom which is

then mapped to the resultant force it experiences, (3) learning from the generated data by

training a suitable machine learning model to predict forces on each atom, and (4) finally,

running large length scale plus long time scale MD simulations using forces predicted from

the trained model. The entire workflow is portrayed schematically in Figure 1, which is

discussed in detail in the following subsection. As the model learns the di↵erence between

a reference force field and DFT forces, we name the method �-NetFF . The code for the

�-NetFF model is freely available from https://github.com/devalab/delNetFF.

Generating the dataset

The primary system used for generating the data for ML contained 96 argon atoms in a cubic

box of size 16.7 x 16.7 x 16.7 Å3. The size of the box was chosen such that the density (1.37

g/cc) was close to that of the experimental density of liquid argon (1.396 g/cc) reported at

87.3 K.49 We then augmented this dataset with additional structures with sparsely populated

argon atoms. To imitate lower densities of argon, the number of atoms was kept the same,

and the box size was increased such that, the density decreased in steps of 0.005 g/cc, starting
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Figure 1: Workflow to train the �-NetFF and to perform simulations using the predicted
forces.
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from 1.37 g/cc upto 0.1 g/cc. This resulted in 255 unique box sizes with a maximum box size

of 39.96 x 39.96 x 39.96 Å3. 2500 frames were generated for every density, which resulted in

a total of 637,500 frames.

Generating frames

The arrangement of atoms in a frame for a particular box size was obtained using the Poisson

disk algorithm.50 This algorithm is used to pack points inside a n-dimensional box where

the distance between no two particles should be less than a parameter r, called the Poisson

disk radius. This algorithm was used because random samples tend to produce clusters and

consequently large empty spaces between points. Points generated using uniform random

generators guarantee a uniform placement probability of points, but not a uniform coverage

of the n-dimensional sampling space. Additionally, random sampling makes it very hard to

place all points at some distance apart from each other, which is essential in our case to

avoid two atoms being too close together resulting in non-physical contacts. A comparison

between points generated by a uniform random and the Poisson disk algorithm is shown in

Figure 2.

Calculating forces for each frame

DFT was chosen as the ab initio method to calculate forces because of its speed of cal-

culations, so that a dataset can be generated in a reasonable amount of time. The DFT

calculations were performed using the CP2K/Quickstep package51,52 with the BLYP53,54

exchange-correlation (XC) functional and the Goedecker-Teter-Hutter (GTH) pseudopoten-

tial.55,56 Each frame had 96 atoms, as described above, and varying cell sizes according to

the density. The cell shape was always chosen to be cubic for all densities. The energy

cuto↵ used in the expansion of electron density in plane waves was set to 300 Ry, while the

SCF energy convergence threshold was set to 10�6 Hartree/atom. For optimizing the wave

function, the orbital transformation (OT) method57 was used with the DIIS58,59 minimizer.
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(a) Uniform random samples (b) Poisson disk samples

Figure 2: Comparison between random and Poisson disk samples for 300 points in a 2-D
space.

In addition to the DFT calculations, forces were also obtained using a Lennard-Jones (LJ)

argon potential with � = 3.40 Å and ✏ = 114.99 K as the Lennard-Jones parameters.60

Construction of the input vector

Taking each atom as a central atom for every frame, we calculated the relative positions of

all the other atoms with respect to the central atom in the Cartesian coordinate representa-

tion, i.e., the central atom remains at the origin, with all other atoms around it. With respect

to the central atom, only the closest image (by applying periodic boundary conditions in all

directions) of the surrounding atoms was considered. Then we sort the surrounding atoms

with respect to distance from the origin (central atom) and rotate all the coordinates, such

that, the nearest atom lies on the positive X-axis. The resultant force on the central atom

is also rotated by the same amount. In the rare case when there are more than one closest

atoms, one of them was randomly chosen for the rotation step.
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This rotation step helps the neural network to learn the forces e�ciently and predict

them more accurately because:

• The state space for all possible configurations is greatly reduced if the nearest atom

always lies on the same axis for all the samples. We found this method of representation

to be more accurate as compared to including more samples by randomly rotating the

configurations as reported before in the Poisson disk algorithm, without aligning the

nearest atom.

• The component of the resultant force in the direction of the nearest atom is generally

higher than the directions perpendicular to it. This is made clear by Figures 3 and

4 which show the frequency distribution of forces along all axes before and after the

rotation step, respectively.

For example, consider a frame s consisting of N atoms, with jth atom as the central

atom. Let F s be the forces array containing N resultant force vectors. Now, to get feature

vector for atom j:

1. We get a new coordinate frame Rs
0

i
= Rs

i
� Rs

j
8 i 2 [1, N ], where Rs

i
represents the

coordinates of the ith atom in frame s.

2. Discard Rs
0

j
(now a zero vector) from Rs

0
, as now the central atom lies at the origin.

3. Now we sort Rs
0
based on the Euclidean distance from the origin for each Rs

0
i
. As the

input to a neural network has to be of a fixed length, we consider only the 50 closest

atoms in Rs
0
. This is similar to having a distance cuto↵ used in MD simulations for

calculating non-bonded interactions.

4. Rotate the coordinates of all atoms such that the closest atom lies on the positive X-

axis. This rotation is done along the path which covers the shortest angular distance

from the atom’s position vector to the positive X-axis. While training the model,

further rotate the resultant force on atom j, i.e. F s

j
, by the same amount. This
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(a) X-component (b) Y-component

(c) Z-component

Figure 3: Distribution of the three components of the force before aligning vector connecting
the origin and the nearest atom to the X-axis.
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(a) X-component (b) Y-component

(c) Z-component

Figure 4: Distribution of the three components of the force after aligning vector connecting
the origin and the nearest atom to the X-axis.
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would enable computing the “loss function” from the predicted forces which are now

consistent with the reference forces.

5. Now both Rs
0
and F s

j
are scaled using the reversible transformations:

Rs
00
=

Rs
0 � µpos

�pos

(1)

F s
0

j
=

F s

j
� µfrc

�frc

(2)

where µpos & µfrc are the means of the coordinates and forces in the training data,

respectively; �pos & �frc are their corresponding standard deviations.

The force used as the target vector is the di↵erence between the force on the central

atom when the forces are computed using a classical force field and a DFT force field,

respectively (Fclassical � FDFT ). This di↵erence was used instead of training the network

with just FDFT to prevent atom overlaps while running the simulation using forces from the

neural network, since the training data would not include configurations involving atomic

positions with non-physical contacts. This approach is philosophically similar to the �-

machine learning model proposed earlier61 for predicting thermochemical properties. In this

study, the forces from the network are used in the form of a corrective force on top of forces

computed from the classical force field. This prevents atoms overlapping or moving into one

another. This might happen when the neural network makes successive slightly inaccurate

predictions, allowing two atoms to come too close. After that, since they are too close, and

this configuration is now unknown to the network, they are not repelled apart as strongly

as they should be, causing the problem to continue, and accumulate during the remaining

length of the simulation. Hence using the classical force field ensures that the repulsive force

is high enough when atoms come too close, while at the same time the corrective force from

the network attempts to mimic the DFT force field. Additionally, the di↵erence between
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the forces lie in a smaller range than the forces themselves, which enables better capturing

of the variations and ultimately, prediction by the network.

Training the neural network

We used the Keras62 neural networks API running on top of TensorFlow63 to construct,

train and validate the model. The network has an input layer, six densely connected hidden

layers and an output layer. The neural network architecture is depicted in Figure 5. The

input coordinates are processed to get a feature vector for each atom. The output forces are

scaled back and rotated as described above before using them in the simulation.

The dataset has 637,500 frames, each consisting of 96 atoms, resulting in 61.2 million

data points. The model was trained with a batch size of 2048 and an initial learning rate

of 5⇥ 10�4, which was reduced in case the learning stagnated over successive epochs. Mean

squared error was used as the loss function along with the Adam64 optimizer for updating

the weights. All the hidden layers were activated using the ReLU65 activation function. 70%

of the entire dataset was used for training and the rest 30% was used for validation.

Running simulations using forces from �-NetFF

The OpenMM package66,67 was used to run the simulations using the forces predicted by

�-NetFF . The forces obtained from �-NetFF for each atom are added to the reference

model forces (Lennard-Jones here) before the new positions and velocities are calculated by

the integrator. The predicted forces added to the forces calculated using the Lennard Jones

potential were fed through the custom force support in OpenMM. At each timestep, the

positions of all the particles are used to construct a surrounding vector for each particle and

all the vectors are submitted in one batch to the neural network. Output from �-NetFF is

rotated back into the Lab Reference frame before adding them to the Lennard-Jones forces.

Several analyses such as radial distribution function, di↵usion coe�cient, densities at liquid-

13



Figure 5: Architecture of the neural network used for the present �-NetFF model. The
numbers of inputs, outputs and the number of nodes in each hidden layer are given in
parenthesis.
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vapor equilibrium and coe�cient of viscosity have been performed to validate the approach,

details of which are presented in the Results and Discussion section.

Results and Discussion

The e↵ectiveness of the trained model in real world scenarios can be better understood by

calculating physical properties using trajectories generated by using the neural network in

addition to the ability to predict the target force data. Here, we calculate the radial distribu-

tion function of liquid argon and compare it with the DFT data. To test the e↵ectiveness of

the trained model on a non-uniform particle distribution scenario, we perform liquid-vapor

equilibrium simulations and compare the results with experimental data. The coe�cient of

di↵usion and shear viscosity for argon are also calculated and compared with experimental

data under various physical conditions to thoroughly validate the proposed method.

Accuracy of the model

Figure 6 shows the coe�cient of determination and the percentage of predictions within 25%

and 50% tolerance of the labels for training and validation. For example, a 25% tolerance of

the labels with Fclassical = 100 nN and FDFT = 120 nN would mean that 15 nN  Fmodel 

25 nN and 115 nN  Ffinal(= Fclassical + Fmodel)  125 nN . It was observed that the

learning stagnated at a coe�cient of determination value of around 0.92 after 6 epochs, after

which no significant improvements were observed. It was also observed that after 6 epochs,

more than 85% of the predictions in the validation set were being predicted within a 50%

error tolerance.
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Figure 6: Coe�cient of determination and percentage of predictions within 25% and 50%
tolerance values.

Liquid structure

The structure of liquid argon can be examined by using the radial distribution function

(RDF). The RDF shows the location of the solvation shells and its deviation from the gen-

eral shape can indicate the presence of unpredictable artifacts of a new force field. The 96

atom argon system at 85K from Maerzke et al.60 was taken. A DFT trajectory using this

system was generated and its RDF was plotted for reference. The experimental data was

obtained from Yarnell et al.68 The calculated RDF is shown in Figure 7.

The thermodynamic and energetic properties of liquid argon are sensitive to many body

contributions but the structure of the liquid (and hence RDF) is not69 - which explains the

good agreement between experimental data and the distributions obtained by classical, DFT

and the model. It can be observed in Figure 7 that the RDF generated by the �-NetFF

model seems to reproduce the DFT RDF satisfactorily, indicating that the simulation is

using forces which are similar to what a DFT simulation would produce. Note that the

objective of the model is to match DFT accuracy. Calculation of some properties presented

below reveal better agreement with experimental data as compared to the classical force

field.
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Figure 7: Radial distribution functions of liquid argon generated using trajectories obtained
using the LJ potential, DFT and �-NetFF along with that obtained using experiment.
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Di↵usion Coe�cient

The self-di↵usion coe�cient can be calculated from a molecular dynamics trajectory by us-

ing two di↵erent methods - the Green-Kubo method (based on the velocities),70–73 and the

Einstein method (based on the positions).74 These two methods are di↵erent but equivalent.

The self-di↵usion coe�cient from the Einstein method is obtained by relating the mean

square displacement (MSD) of a certain particle over a certain time interval.75 When the

observation time tends to infinity, the self-di↵usion coe�cient is given by:

D = lim
t!1

1

6Nt
h

NX

i=1

[ri(t)� ri(0)]
2i (3)

where t is the simulation time, N is the total number of particles in the simulation and ri(t)

is the displacement vector of the ith atom at time t, and the angular bracket denotes the

ensemble average.

All the calculations were performed using a 500 atom argon system with a step size of

2 fs. A cubic cell was used with periodic boundary conditions in all directions. 50 ps of

equilibrium was followed by a production run of 200 ps.

Figure 8 shows an example of log-log plot of MSD with respect to time along with

the fitted line from which the di↵usion coe�cient is obtained. Refer Figures S1–S4 in the

Supplementary Information for all the log-log plots. The initial part (short times) of the

plot was not included in the calculation because the particles follow a ballistic trajectory,

as indicated by the MSD being proportional to t2 before going into the di↵usive regime and

being proportional to t. Long time-separations were also not included in the calculation

because of the availability of very few points in the trajectory, and hence the statistics for

these points are not optimal.

Table 1 shows the comparison between di↵usion coe�cients obtained from simulations

using the classical force field, �-NetFF model, and experimental values of Naghizadeh and

18



Figure 8: Log-log plot of MSD vs time for classical force field at 13.07 bar and 90 Kelvin.
The blue line is the t asymptote and the green line is the t2 asymptote. The black dashed
line represents the line whose slope is used to compute the di↵usion coe�cient.

Table 1: Comparison of self-di↵usion coe�cients calculated using various methods with the
experimental values at di↵erent thermodynamic conditions.

Pressure (bar) Temperature (K) Experiment76 Classical �-NetFF

13.07

90 2.32 1.98 (-14.66) 2.24 (-3.45)
100 3.43 2.65 (-22.74) 3.09 (-9.91)
110 4.73 4.09 (-13.53) 4.42 (-6.55)
120 6.17 4.59 (-25.61) 5.33 (-13.61)
130 7.74 6.21 (-19.77) 7.26 (-6.2)

58.6
94 2.38 1.95 (-18.07) 2.465 (3.57)
103 3.34 2.84 (-14.97) 3.61 (8.08)
108 4.16 3.11 (-25.24) 3.82 (-8.17)

a Numbers in the parentheses are % error wrt the experiment value;
b Di↵usion coe�cients units are in 10�9m2s�1
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Figure 9: Self-di↵usion coe�cients of argon obtained at di↵erent temperatures at 13.07 bar
and 58.6 bar.

Rice (1962).76 Since di↵usion coe�cient calculations require longer time scale trajectories

(especially for gaseous states, owing to the high mean free path),77 it is not feasible to

calculate this property using a DFT trajectory.

The di↵usion coe�cient calculations indicate that the classical force fields lead to a lower

di↵usion coe�cient than the experimental data. The coe�cients obtained using forces from

the �-NetFF , as shown in Table 1, are closer to the experimental values, indicating that

the DFT force field would give values which are closer to experiment.

At 13.07 bar, the values obtained from the classical force field are much lower than the

experimental data, with an average error percentage of -19.26%. However, the values ob-

tained from �-NetFF have an average error percentage of -7.94% with the maximum error

percentage -13.61% occurring at 120K.

At 58.6 bar, the data from the classical force field has an average error percentage of

-19.43% while �-NetFF produces 6.6% average error, with the maximum deviation of -8.17
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K occurring at 108 K. The general shape of the plots at both pressures indicate that the

model generated trajectories follow the trend of the classical trajectories, due to the Fclassical

contribution in the force model. However the corrective terms learned by the model, shift

the calculated values closer to the experimental data.

Liquid-vapor density profile

To evaluate the performance of the model on a system with a changing density profile, we

simulated a liquid-vapor interface system and compared the density profile with that of

classical force fields and experimental data. For simulating the liquid-vapor interface, an

equilibrated system (cubic) of liquid argon is placed between two empty regions. The initial

configuration is a cubic liquid slab in the middle, and along the z-direction there are two

regions of vacuum (see Figure 10).

Figure 10: Initial snapshot of the liquid-vapor system.

Molecular dynamics simulations were performed with 2400 argon atoms at constant tem-

perature and volume, and periodic boundary conditions were applied in x, y and z-directions.

The step size was taken as 2 fs. The two systems taken in accordance with the density of

liquid argon at the specified temperature are shown in Table 2.
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Table 2: The two systems chosen for the liquid-vapor interface simulation. L is the length
of the side of the simulation box.

T(K) ⇢(g/cc) Lx = Ly (Å) a Lz (Å)

94.4 1.374 48.753 100
119.8 1.176 51.348 100

a Initial equilibration of the slab was done in a cubic box with dimensions Lz = Lx.

Figure 11 shows the density profiles, ⇢(z) in g/cc along the z-direction which is the di-

rection normal to the slab surface used in the MD simulation. The density profile being

symmetric about z=0, i.e. the midpoint, supports the case of the system being properly

equilibrated. Density values obtained in the liquid and vapor regions are compared with

experimental data (see Table 3). Indeed the �-NetFF model is able to generate di↵erent

density values for di↵erent regions in the system. The model generated values are much

closer to the experimental data as compared to the classical force field. It is also evident

that the thickness of the liquid slab is approximately the same for both the force fields.

(a) 94.4 K (b) 119.8 K

Figure 11: Vapor-liquid density profile along the z-direction which is normal to the interface
in the simulation. Blue line represents the classical force field while the green line represents
�-NetFF .
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Table 3: Liquid-vapor Interface: ⇢v and ⇢l are the vapor and liquid densities at equilibrium.

Temperature (K) ⇢v(expt)
⇢v ⇢l(expt)

⇢l
Classical �-NetFF Classical �-NetFF

94.4 0.01089 0.00627 0.01208 1.3507 1.326 1.378
119.8 0.05947 0.02877 0.05352 1.1645 1.251 1.171

a All density values are in g/cc

Shear viscosity

The Green-Kubo approach (Equation 4) uses the running integral over time of the pressure

tensor autocorrelation function to calculate shear viscosity.78

⌘ =
V

kBT

Z 1

0

hP↵�(t) · P↵�(0)idt (4)

where, V is the system volume, kB is the Boltzmann constant, T is temperature, P↵� is

the ↵� element of the pressure tensor, ↵, � 2 [x, y, z], and the angular bracket denotes the

ensemble average.

Multiple stress tensor terms can be used to improve averaging statistics across the ensem-

ble.79–81 For our calculations, we used all six independent components of the stress tensor.

The integral is now given by,81,82

⌘ =
V

10kBT

X

i

X

j

Z 1

0

hPOS

ij
(t) · POS

ij
(0)idt (5)

where POS

ij
is the symmetrized and traceless stress sensor expressed as,

POS

ij
= !ij

 
Pij + Pji

2
� �ij

3

X

k

Pkk

!
(6)

Here, �ij is the Kronecker delta, !ij = 1 for i 6= j and !ij = 4/3 for i = j.83 Due to the

weight factors !ij, the factor of 10 appears in Equation 5.

All the calculations were done using a 500 argon atom system. A cubic cell was used with

periodic boundary conditions in all directions. Because the stress autocorrelation function
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is a property of the system as a whole, it has a non decaying long time tail. Hence, to

improve statistical accuracy, the final viscosity (Figure 12) reported was averaged over 15

individual trajectories (Figures S5–S6 in the Supplementary Information). Due to the well-

known,84 large oscillations at very short times and noise at very long times, these regions are

excluded from the fitting procedure. Table 4 illustrates the calculated viscosity at 3 di↵erent

temperature and pressure combinations. At 94.4 K, the classical force field has a 31%

deviation from the experimental value, which goes above 50% at 135 K. The calculations

done using the forces from the �-NetFF , however, are much closer to the experimental

values, evident by the 15% deviation at 94.4 K and going upto 54% at 135 K.

Table 4: Comparison of viscosity coe�cients calculated using various methods with the
experimental values at di↵erent thermodynamic conditions.

Temperature and Pressure Experiment Classical �-NetFF

94.4 K and 1 atm 0.197 0.258400(31.16) 0.227747(15.6)
110 K and 4.93 atm 0.0092 0.01428(55.21) 0.012568(36.6)
135 K and 4.93 atm 0.01116 0.02133(91.12) 0.01729(54.9)

a Numbers in the parentheses are % error wrt experiment value;
b Coe�cient of viscosity are in centipoise

E�ciency

Comparison between times taken by di↵erent simulation-setups are shown in Table 5. All

systems were run on a system with a 20 core (40 threads) CPU and 1 Nvidia GeForce GTX

1080 Ti GPU. All trajectories were written onto a solid state drive (SSD) to minimize the

time spent on saving the data to persistent storage. It is important to note that when the

neural network pipeline was used to run any simulation, optimizations such as cell lists78 and

Verlet lists85 were not used while constructing atom environments at each timestep. They

can greatly improve the speed of the atom environment construction step. It should also be
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(a) 94.4 K and 1 atm (b) 110 Kelvin and 4.93 atm

(c) 135 Kelvin and 4.93 atm

Figure 12: Time evolution of viscosity coe�cients calculated using various methods at dif-
ferent thermodynamic conditions.
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noted that the speed of the 96 atom system does not scale well with respect to the number

of CPU cores because of the bottleneck of sending and receiving data between processes.

It can be observed that, as expected, the classical setup is clearly the fastest irrespective

of the size of the system. The DFT calculations become computationally expensive for

real-time applications for systems with more than a few hundreds atoms. Even if a system

can fit within its computational requirements, the time taken to calculate forces for each

timestep would be so high that any reasonably long simulation would take a very long

time to finish. This is evident by the fact that the 96 atom DFT simulation proceeds at

a rate of only 348 timesteps per hour. In contrast, simulations run by the model, along

with being significantly faster than DFT, do not have an exponentially increasing demand

for computational resources with respect to increasing system sizes. This also allows for

the prospect of running multiple independent simulations of the same system to improve

statistical accuracy.

Table 5: Simulation time comparison of di↵erent simulation-setups.

System Setup
Atoms Timesteps Classical DFT �-NetFF

96
100,000

20 minutes 12 days 3 hours
2400 70 minutes infeasible 14 hours
10,000 3 hours infeasible 44 hours

Conclusion

In this work, we explore a deep learning based method of imitating DFT derived forces to

simulate systems with larger sizes and longer time scales. This method involves (a) con-

structing random configurations of atoms and obtaining forces for each configuration to be

used as a dataset; (b) choosing a suitable atomic environment vector representation of each

atom; (c) training the neural network; and (d) running simulations using predicted forces
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and calculating desired properties by taking suitable system sizes and time scales. The shape

of the RDF being similar to that of a DFT trajectory indicates that the forces coming from

the neural network are biased in the direction of the resultant DFT forces. Density values

of liquid and vapor regions obtained from the liquid slab simulation validate the model’s

robustness to perform on a changing density profile. Di↵usion coe�cient and viscosity cal-

culations indicate that the new forces bias the simulation closer towards experimental data,

indicating that these properties calculated from a long DFT simulation would most likely

be closer to experimental values as compared to a purely classical force field. Finally, the

time comparison data further emphasizes the e�ciency of the model to run long and mul-

tiple replicate simulations which are vital in the calculation of thermodynamic and kinetic

properties. Future work to modify the feature vector to extend this method to complex

multicomponent systems is in progress.

Supporting Information

The Supporting Information is available free of charge at xxxxxxx. Plots of mean squared

displacements used for calculating di↵usion constants and plots of stress tensor autocorrela-

tion functions.
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Building machine learning force fields for nanoclusters. J. Chem. Phys. 2018, 148,

241739.

(33) Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cum-

mins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F., et al. Machine-learning methods

enable exhaustive searches for active bimetallic facets and reveal active site motifs for

CO2 reduction. ACS Catalysis 2017, 7, 6600–6608.

(34) Jinnouchi, R.; Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided

machine-learning algorithm. J. Phys. Chem. Lett. 2017, 8, 4279–4283.

(35) Dolgirev, P. E.; Kruglov, I. A.; Oganov, A. R. Machine learning scheme for fast extrac-

tion of chemically interpretable interatomic potentials. AIP Advances 2016, 6, 085318.

(36) Wang, Y.; Ribeiro, J. M. L.; Tiwary, P. Machine learning approaches for analyzing

and enhancing molecular dynamics simulations. Current Opinion in Structural Biology

2020, 61, 139–145.

(37) Chattopadhyay, A.; Zheng, M.; Waller, M. P.; Priyakumar, U. D. A probabilistic frame-

31



work for constructing temporal relations in replica exchange molecular trajectories.

Journal of chemical theory and computation 2018, 14, 3365–3380.

(38) Stanton, R. Hellmann-Feynman Theorem and Correlation Energies. J. Chem. Phys.

1962, 36, 1298–1300.

(39) Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Sche✏er, M.; Von Lilien-

feld, O. A.; Tkatchenko, A.; Müller, K.-R. Assessment and validation of machine learn-

ing methods for predicting molecular atomization energies. J. Chem. Theory Comput.

2013, 9, 3404–3419.

(40) Rupp, M.; Ramakrishnan, R.; Von Lilienfeld, O. A. Machine learning for quantum

mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 2015, 6, 3309–3313.

(41) Hirn, M.; Poilvert, N.; Mallat, S. Quantum energy regression using scattering trans-

forms. arXiv preprint arXiv:1502.02077 2015,

(42) Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K.-R.
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Diffusion Coefficient

All the log-log plots of mean squared displacement (MSD) vs. time at different temperatures

and pressures are shown. Blue line is the t asymptote and green line is the t2 asymptote.

MSD increasing at the rate of t2 indicates ballistic behaviour which is the case when the

particles do not collide with each other. MSD increasing at the rate of t indicates diffusive

behaviour with collisions taking place between particles. The higher the mean free path of

a system, the longer it takes to enter the diffusive regime. The black dashed line represents

the region of the fitted line used to calculate the diffusion coefficient.
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(a) 90 Kelvin (b) 100 Kelvin

(c) 110 Kelvin (d) 120 Kelvin

(e) 130 Kelvin

Figure S1: Log-log plots of MSD vs time for different temperatures with Lennard-Jones
forces at 13.07 bar.
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(a) 90 Kelvin (b) 100 Kelvin

(c) 110 Kelvin (d) 120 Kelvin

(e) 130 Kelvin

Figure S2: Log-log plots of MSD vs time for different temperatures using forces from the
neural network at 13.07 bar.
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(a) 94 Kelvin (b) 103 Kelvin

(c) 108 Kelvin

Figure S3: Log-log plots of MSD vs time for different temperatures with Lennard-Jones
forces at 58.6 bar.
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Figure S4: Log-log plots of MSD vs time for different temperatures using forces from the
neural network at 58.6 bar.
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Shear Viscosity

Individual trajectory stress tensor autocorrelation functions (SAF) along with the averaged

SAF (black line) are shown. The red dashed line shows the best fit line obtained. The region

between the two red dots are used for fitting.

(a) 94.4K and 1 atm (b) 110 K and 4.93 atm

(c) 135 K and 4.93 atm

Figure S5: SACF plots using Lennard Jones forces
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(a) 94.4K, 1 atm (b) 110 K and 4.93 atm

(c) 135 K and 4.93 atm

Figure S6: SACF plots using forces from the neural network
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