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ABSTRACT:

With the growing interest in deep learning algorithms and computational design in the architectural field, the need for large, access-
ible and diverse architectural datasets increases. Due to the complexity of such 3D datasets, the most widespread techniques of 3D 
scanning and manual building modeling are very time-consuming, which does not allow to have a sufficiently large open-source 
dataset. We decided to tackle this problem by constructing a field-specific synthetic data generation pipeline that generates an arbit-
rary amount of 3D data along with the associated 2D and 3D annotations. The variety of annotations, the flexibility to customize the 
generated building and dataset parameters make this framework suitable for multiple deep learning tasks, including geometric deep 
learning that requires direct 3D supervision. Creating our building data generation pipeline we leveraged the experts’ architectural 
knowledge in order to construct a framework that would be modular, extendable and would provide a sufficient amount of class-
balanced data samples. Moreover, we purposefully involve the researcher in the dataset customization allowing the introduction of 
additional building components, material textures, building classes, number and type of annotations as well as the number of views 
per 3D model sample. In this way, the framework would satisfy different research requirements and would be adaptable to a large 
variety of tasks. All code and data is made publicly available: cdinstitute.github.io/Building-Dataset-Generator.

1. INTRODUCTION

The recent advances in CAD software showed the advantages
of using 3D models to the specialists working in various fields.
The advantages include the possibility of a 3D visualization of
a project, inclusion of all the relevant metadata related to it,
a relatively quick transformation to the desired representation,
and the modifications that are reflected on all the stages and
views. It is especially relevant to the field of architecture and
urban planning that involves a lot of different data required to
take into consideration as well as the spatial representation of a
project. At the same time, the time and resources required for
a full 3D model creation for a building project are one of the
obstacles that prevent some of the specialists of the field from
using 3D modeling in their pipelines.

A potential solution to this issue could be leveraging the Geo-
metric Deep Learning techniques for the generation of 3D mod-
els from a given input. This input could potentially be represen-
ted in various ways, for instance, as a set of constraints determ-
ining the project or an image representation. In the case of an
architectural project, it would be quite time-consuming to de-
termine a set of rules due to the complexity of the subject. The
use of the images would take advantage of the ability of Deep
Neural Networks to learn visual features in a self-supervised
manner.

One of the challenges the researchers face when dealing with
this question is availability of annotated 3D datasets. The com-
plexity of the 3D model creation process, a variety of software
∗ Corresponding author
† denotes equal contribution

and approaches to building modeling, differences in the mod-
eling quality, and the lack of access for the completed and fin-
ished 3D models make it difficult for the neural networks to
learn successfully. At this point, to our knowledge, there are no
existing architectural datasets at the building scale with a suffi-
cient amount of samples to perform Geometric Deep Learning.
Due to these reasons we provide the architectural community
with a data generation pipeline that automatically creates a syn-
thetic building dataset suitable for various Deep Learning tasks.
Due to the specificity of our contribution and the lack of the
datasets on this architectural scale, there are no benchmarks or
downstream metrics existing so far.

The establishment of a 3D dataset of building envelopes with
relevant information and development of a 3D reconstruction
framework could benefit a manifold of different industries such
as robot navigation, drone delivery, retails, urban planning, AR/
VR gaming experiences.

2. RELATED WORKS

3D Datasets The complexity of the urban planning and archi-
tecture fields create a variety of Deep Learning applications ap-
plicable to them. The drawback of this aspect is that differ-
ent tasks require different input and ground truth data not only
in terms of format but also in terms of internal requirements
within one format. For instance, generative design of a build-
ing facade would require a semantic segmentation annotation,
while 3D reconstruction would require a 2D representation of
a building as well as a 3D representation, the format of which
could vary based on the researcher’s approach (mesh, voxels,
point cloud). The intricacy of the subject of interest makes the
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dataset creation time-consuming, so while there are quite a few
3D datasets (Sun et al., 2018, Chang et al., 2015, Wu et al.,
2015, Kim et al., 2020, Xiang et al., 2014, Xiang et al., 2016,
Mo et al., 2019, Koch et al., 2019, Lim et al., 2013) (Table 1),
not many of them are related to architecture. The format issue
makes this scarce number even smaller when applied to a spe-
cific problem, such as facade reconstruction, 3D classification
or semantic segmentation of the building parts.
Urban 3D datasets are the most common ones in the field. This
is due to the availability of data at the city level (shapefiles),
open-source geospatial software and the relative ease of produc-
tion, as most of these datasets contain Level of Detail 1 (LoD1)
models (Gao et al., 2021). Level of Detail(LoD) is an important
characteristic of the architectural datasets that allows to specify
the amount of detail and generalization present in the 3D model
(Biljecki et al., 2016b). LoD1 refers to a building envelope
without any additional details while LoD4 indicates a detailed
building model with an internal structure.

The work that that aims to solve the same problem is 3DCityDB
(Yao et al., 2018), which contains the 3D representations of the
real cities. The advantage their system has, is the use of the real-
world data and texturing that gives more precise and realistic
representations of buildings. The drawbacks of their framework
include the limited amount of samples (as for the time of writing
the database mentions the cities of Berlin and New York), the
lack of meaningful information about the structures, absence of
the semantic segmentation related to the parts of the buildings
and the simplified models of the buildings (extruded polygons)
that do not include finer details. The models in 3DCityDB are
given in the urban context which could be seen as an advantage
or disadvantage based on the task; moreover, there are no im-
age annotations or separate 3D files the researchers could use
directly for Deep Learning purposes.

Another approach that is similar to ours is Random3DCity
(Biljecki et al., 2016a), that exploits procedural generation in
order to create a variety of building forms. However, the au-
thors aim to get a simplified building representation without the
use of the real-world texturing which makes it inapplicable to
single image to 3D reconstruction problem as we approach it.
Moreover, the tool is intended to be used in CityGML format
(Gröger and Plümer, 2012) that imposes certain limitations on
the researchers. The main advantage of this dataset is the pos-
sibility to decide the LoD level up to LoD4 which includes the
internal building structure and modularity that allows a relat-
ively easy scaling of the dataset and its variations.

The dataset that is closest to ours is Structured3D (Zheng et
al., 2020) that involves synthetic 3D models and image annota-
tions for the architectural interior space. The annotations of
this dataset include segmentation, depth and rendered images
as well as the objects’ structure and several interior configura-
tions. There are a few more synthetic interior 3D scene data-
sets such as SceneNet (Handa et al., 2015) or InteriorNet (Li et
al., 2018) (does not include 3D models). Unfortunately, all of
them tackle the problem at a different architectural scale con-
centrating on one interior space while our task requires building
exterior models with the information related to the structure.

Another disadvantage of the mentioned architectural datasets
is related to their construction process, as the building objects
they contain are not parametric, even the ones containing syn-
thetic data. This aspect puts some limitations on the research-
ers using these datasets. We address this issue in our solution by

providing a parametric building generation using programmatic
procedural approach.

3. DATASET GENERATION PIPELINE

3.1 Existing Datasets

Dataset Classes Samples Images Std-dev
IKEA 7 219 759 16.4
ShapeNetCore 55 51,300 307,800 1589.7
ShapeNetSem 970 9,033 72,000 343.3
PartNet 24 26,600 NA 322.4
ObjectNet3D 100 44,147 90,127 42.0
Pascal3D+ 12 79 30,899 1.9
ModelNet10 10 4,899 NA 243.9
ModelNet40 40 12,311 NA 215.7
MCB 68 58,700 +300,000 1040.1
ABC NA 1,000,000 NA NA
Pix3D 9 395 10,069 64.5

Table 1. Datasets with the statistics on the number of classes and
samples in each. Standard deviation is calculated for the number
of 3D models per main class, sub-classes were not considered.

The datasets that are used by the majority of the researchers
studying geometric deep learning usually consist of a hetero-
geneous set of items divided into several categories. While
being a good fit for research frameworks, these datasets could
hardly be used in industry due to the lack of specificity. One
major issue that arises while dealing with 3D datasets is class
imbalance which introduces a bias in the learning process if not
managed properly, as in Table 1.

Dataset Scale LoD Class 3D Models Images
Random3DCity 0 1-4 31 NA NA
3DCityDB (Berlin) 0 2 NA 550.000 NA
Structured3D 2 4 NA NA 196K
InteriorNet 2 4 158 1M models 20M
SceneNet RGB-D 2 4 37 NA 5M
Matterport3D 2 4 20 90 scenes 194K
Replica 2 4 88 18 scenes 20M
Gibson 1,2 4 NA 572 scenes NA
HyperSim 2 4 NA 461 77.4K

Table 2. Comparison of architectural datasets acoording to scale,
data available, format, number of classes and LoD. Scale is

presented as a set of categories {0, 1, 2}, where:
0 - city scale, 1 - building scale, 2 - interior scale

Dataset Render Depth Seg Nrm Format
Random3DCity X CityGML
3DCityDB X CityGML
Structured3D X X X Mesh
InteriorNet X X X X Mesh
SceneNet X RGB-D
Matterport3D X X X RGB-D
Replica X X Mesh
Gibson X X X X Mesh
HyperSim X X X Mesh

Table 3. Comparison of annotations provided by popular
architectural Datasets: Render(RGB), Depth maps,

Segmentation masks, Normal maps and 3D model formats.

As can be observed from the Table 2 the datasets that could
be used for the application of Deep Learning in the architec-
tural field are skewed to urban scale and interior scale (Chang
et al., 2017, Straub et al., 2019, Roberts and Paczan, 2020, Li
et al., 2018, Handa et al., 2015, Zheng et al., 2020) leaving a
building scale gap. To our knowledge there is only one open-
source dataset (Xia et al., 2018) that provides 3D models of
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the building structures. This dataset is rather rich in annota-
tions as it provides depth, normals and segmentation annota-
tions, rendered images as well as full 3D mesh models. Unfor-
tunately, this dataset, too, is focused primarily on the interior
space while leaving the building exterior without semantic seg-
mentation and texturing. Our dataset concentrates on this lim-
itation by providing a dataset similar in structure but applied to
the external appearance of the buildings rather than the internal
one. Another drawback of Gibson dataset is its size, as it does
not provide a sufficient number of building samples for geomet-
ric deep learning frameworks. Our solution for this problem is
generation of an arbitrary amount of building samples depend-
ing on the need of the research project.

At the same time, the unavailability of the datasets or data gen-
eration pipelines in the field of architecture results in unavail-
ability of the benchmarks related to the data generation pipeline
evaluation.

3.2 Requirements

From the analysis of the existing datasets we have inferred the
requirements for the new framework:

• Sufficient dataset size
• Class balance to avoid bias
• Modularity of data
• Variation and diversity in data
• Generating required ground truth signals
• Associated metadata generation
• Extensibility, to accommodate more classes/models

Since this dataset is mostly intended to be used in Deep Learn-
ing tasks, it is necessary for it to have a sufficient amount of
samples for the artificial neural networks to learn successfully.
The dataset should also be rich in details and alterations of ma-
terials, modules, shapes, dimensions. At the same time all the
classes and variations should not only be ample in the number
of samples but also balanced in order not to introduce an addi-
tional bias to the learning process.

The modularity requirement of the dataset that refers to the
parametric nature of a generated building allows for the sub-
stitution of different parameters and architectural components,
randomization, and modification of the object’s structure.

Architecture is a wide field with multiple problems that can be
solved via deep learning. To accustom to as many problems
from the spectrum as possible it fundamental to provide differ-
ent ground truth signals and metadata that would help in the
quantitative evaluation of the models’ performance. Moreover,
the wide range of possible applications requires the dataset to
be modular and extendable to be adjusted to different problems
based on the researchers’ needs.

3.3 Proposed framework

The synthetic data generation pipeline developed by us addresses
the prerequisites mentioned in the Subsection 3.2. It is intended
primarily for the 3D reconstruction based on parts assembly
task (Li et al., 2020), as we have identified that the image to
3D translation would have a major impact in many applications
in the architectural field. Although, it should be noted that the
annotations and modularity of the framework make it possible
to use the generated data for the other deep learning tasks as
well.

1 2 3 4 5

Figure 1. Initial types of the building envelopes. 1 - skyscraper;
2 - isolated building; 3 - patio; 4 - L-shaped building; 5 -

C-shaped building.

In order to adjust for all the possible applications of this dataset
it was decided to partially engage the user in the dataset creation
and give the freedom of setting a number of parameters that
define the content of the dataset and its variations.
It has been decided to define five classes at the initial stage of
the framework development, as can be seen in Figure 1.

3.4 Implementation details

In contrast to the existing generic 3D datasets, and alike many
architectural datasets, ours contains synthetic data only. This
difference allows generating the data relative to a particular re-
search problem in a customized manner. This characteristic
automatically lifts the problem of image-shape alignment present
in the other datasets (Sun et al., 2018) as the images, their seg-
mentation masks, and depth annotations are generated from the
mesh directly. For each sample we provide the 3D model in .obj
format, the point cloud consisting of 2048 points, the rendered
image, the ground truth annotations (segmentation mask, depth
image in .exr format, surface normals), and the metadata, which
will be expanded in the future editions.

3.5 Generation

The dataset size does not have an upper bound as it is created in
a generative manner, the user can define the number of samples
needed to be created and the classes the dataset should contain,
as well as the set of component modules (e.g. windows and
balconies) and textures to include. The user can add his own
modules as .obj files to be used in the building dataset genera-
tion.

The input parameters include level of detail (1 or 2), use of
materials, textures used (if any), modules used (if any), build-
ing types, generated image size, number of points per point
cloud, some of the output formats and the general character-
istics of the buildings defined by common knowledge and city
regulation base, for instance, minimum and maximum building
height, width and length. It is also possible to indicate whether
it is necessary to generate several views for one 3D building
model and how many. All the parameters need to be specified
in the configuration file.

The output consists of the following set of data, also illustrated
in Figure 2:

• Rendered image of a building, [.png format]
• Semantic segmentation mask of a building (each compon-

ent has its own color) [.png format]
• Depth map of a building [.png and .exr format; .png con-

tains normalized values and .exr contains the actual values]
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Figure 2. Sample of one 3D model generated by the pipeline with its annotations. 3 rows are 3 views of the model, fourth row shows
the mesh model and the point cloud generated for the building model. The annotation columns are: 1 - rendered image, 2 -

segmentation mask, 3 - depth image, 4 - image of surface normals.

• Map of surface normals showing the angle of each surface
with respect to the camera [.png format]

• 3D model of a building (mesh) [.obj format]
• Point cloud of a building, by default point cloud consists of

2048 points which can be changed by the user [.ply format]

Dataset Generation code, and sample dataset renders has been
made publicly available. 1

3.6 Domain Randomization

In order to adjust for the domain adaptation of the real-world
building data, it was necessary to introduce domain randomiza-
tion, which is considered one of the most successful techniques

1 github.com/CDInstitute/Building-Dataset-Generator

to handle the transfer from synthetic to real data(Tremblay et
al., 2018). The pipeline uses majorly the parameters and the
textures that are relatively close to the real-world ones in order
to be able to adjust for the domain adaptation task. Our data-
set generation framework has a parameter that allows to create
randomized sample images from the same 3D model sample.

The randomization parameters are:

• Texture, reflectance of various building components
• Light color, strength and position
• Camera position and angle

Randomization of the camera angle is illustrated in Figure 3.
The camera assumes a random position on the XY plane, while
its rotation along the local Z axis is limited by the range (40,
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Figure 3. One 3D model sample with multiple views illustrating
camera view randomization. The number of possible views per

model is defined by the user.

100) in order to take the most significant views of the building
model, close to the ones that could be taken in the real world.
Texture is randomized per building volume, as in Figure 5, with
a user-defined probability that all the volumes will be textured
with the same material. The textures are selected randomly
from the user-added textures. Light randomization is illustrated
in Figure 4.

3.7 Performance

We ran the dataset generation algorithm with different input
parameters on Windows 10 OS on CPU and GPU using AMD
Ryzen 7 3800-X 8-Core Processor and GeForce GTX 1080 and
report the performance in the Table 4. The images were rendered
with 500x500 dimensions. The dataset generation time heavily
depends on the number of components in the models, as gen-
eration of more components requires more time; thus, larger or

Figure 4. One 3D model sample with multiple views illustrating
light randomization. To better illustrate the changes in light the
Figure features one view from one model, while in the dataset

generation the light changes with the other randomization
parameters.

taller buildings require more time to be generated with respect
to the models with smaller dimensions.

As previously mentioned, due to the lack of accessible datasets
on the architectural scale and the specificity of the contribution,
there are no benchmarks and downstream metrics available in
the field.

4. LIMITATIONS

Building design can be considered a product design task of a
very high complexity as it involves multiple parameters densely
interconnected between them. This aspect makes the generation
of lifelike synthetic data rather complicated. One of the limita-
tions of the proposed dataset generation framework is the lack

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-337-2021 | © Author(s) 2021. CC BY 4.0 License.

 
341



Figure 5. One 3D model sample with multiple views illustrating
texture randomization. To better illustrate the changes in texture

the Figure features one view from one model, while in the
dataset generation volume textures change with the other

randomization parameters.

GPU EXR Multiview Time (hours)
1.7

X 2.7
X 1.17
X X 2.5

X 0.34
X X 0.8
X X 0.92
X X X 0.88

Table 4. Comparison of dataset generation performance across
different configuration settings(on a Windows 10 OS). The

generated dataset consisted of 100 model each, with 3 captured
views in multi-view setting.

of authenticity, as it does not provide the real-world data and
many visual features present in the photos made in an urban
environment lack in the rendered images.

Another limitation is the lack of the urban surroundings around
the building. The object is rendered in an empty scene which
does not occur in the real world and thus makes domain trans-
fer task more complicated. Moreover, the buildings generated
with the framework account for the most typical design pat-
terns present in the major cities, while the more creative and
outstanding operas of architecture are not included in the gen-
eration pipeline due to the high complexity of the problem. This
limitation is the most severe one as it narrows the range of pos-
sible building solutions and the entire variety of the architec-
tural forms is not presented in this work. Not only does it affect
the generalization capability of the neural networks, but it also
introduces a bias in the training process.

We are planning to address the mentioned limitations in our
future research work.

5. PERSPECTIVES

The proposed dataset is not free from limitations, which we in-
tend to tackle in our future works. This work is the first step to-
wards the use of Geometric Deep Learning in the field of Archi-
tecture, consequently, it opens multiple possible ways for future
development. One of them is to improve the quality and vari-
ation of the building models by adding various building types,
components and textures and by making the renders look more
realistic. Another possible development direction could be the
extension of the level of detail and the addition of the build-
ing parameters into the dataset as well as the internal building
structure. Moreover, it is important to develop the framework to
account for the limitation of not having the urban surroundings.
Expanding the framework in order to have the nearby buildings,
urban furniture, trees and other elements of urban environment
is fundamental for 3D reconstruction in architecture.

The exploration of the Geometric Deep Learning Frameworks
intended for single image to 3D reconstruction, their perform-
ance on the present dataset is equally important to the devel-
opment of the dataset generation framework, as it is the task
the dataset was intended for. This direction of research could
bring multiple practical implications related to the fields of ar-
chitecture, gaming, AR/VR, simulation and others. Moreover,
with the variety of annotation this dataset provides, it would be
possible to use it in the other Deep Learning tasks as well.

Finally, this dataset could serve as a base for the advances in
the field of generative architectural design via the exploitation
of Generative Adversarial Networks and their ability to learn
from the visual features. Moreover, the possibility to generate
synthetic data in various ways could facilitate domain adapta-
tion from synthetic to real data.

6. CONTRIBUTION

The contribution of this work consists of two principal parts:

• A detailed overview of the existing datasets related to the
architectural and urban fields as well as the main geometric
deep learning frameworks aimed at solving single image to
3D reconstruction task for buildings;
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• Providing the architectural and deep learning community
with a field-specific dataset generation pipeline targeted at
various tasks.

7. CONCLUSION

The overview of the frameworks related to the Single Image
to 3D Reconstruction task demonstrate the necessity of a field-
specific dataset due to their inability to generalize to unseen
data. The exploration of the existing architectures has sugges-
ted the necessary requirements and highlighted the weak points
of the existing architectural datasets, which later became the
foundation for our tool.

Presented dataset generation framework provides a field-specific
tool for the generation of 2D and 3D data in various formats.
This instrument gives the researchers the possibility to apply the
Deep Learning and Geometric Deep Learning techniques to the
architecture-related tasks. The framework proved to be able to
generate large amounts of various data in a short time compared
to the traditional methods previously exploited in the building
3D modelling and the consequent image rendering. Moreover,
the way the tool was built allows for extendability and custom-
ization of the dataset to the specific tasks within the architec-
tural field using task-specific building components, textures and
building typologies. It also addresses the limitations of the ex-
isting urban datasets we have given an extensive overview of.

However, this dataset is not without drawbacks, the main of
which is the use of the synthetic data instead of the real-world
data. This is the trade-off that was made due to the high com-
plexity and time and effort consumption of the 3D modelling
and 3D scanning processes. Our decision in favor for the syn-
thetic data opens multiple directions for the future work as on
the dataset framework as on the algorithms using this data to
learn. Moreover, the provided synthetic data facilitates the re-
search in 3D reconstruction related to the architecture field that
was not available in the open access previously.
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