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ABSTRACT: Solvation free energy is a fundamental property that influences various chemical and biological processes, such as
reaction rates, protein folding, drug binding, and bioavailability of drugs. In this work, we present a deep learning method based on
graph networks to accurately predict solvation free energies of small organic molecules. The proposed model, comprising three
phases, namely, message passing, interaction, and prediction, is able to predict solvation free energies in any generic organic solvent
with a mean absolute error of 0.16 kcal/mol. In terms of accuracy, the current model outperforms all of the proposed machine
learning-based models so far. The atomic interactions predicted in an unsupervised manner are able to explain the trends of free
energies consistent with chemical wisdom. Further, the robustness of the machine learning-based model has been tested thoroughly,
and its capability to interpret the predictions has been verified with several examples.

■ INTRODUCTION

Application of modern artificial intelligence/machine learning
(AI/ML) methods to problems in fundamental science has
surged in the last few years. This seems to alter the nature of
computations that are traditionally performed in chemistry,
biology, and related areas.1−3 Typically, computations are
performed using computer programs developed based on
methods in physics such as quantum mechanics and classical
mechanics. However, machine learning algorithms use existing
data to build predictive models. Machine learning methods are
effective in processing high-dimensional data, which are in
general difficult for human perception or existing methods. In
the recent past, a number of studies on development of machine
learning models to predict quantum mechanical/density
functional theory energies, drug properties, retrosynthetic
pathways for organic molecules, material properties, etc. have
been reported.4−10 Several successes of machine learning
methods within a short span of time seem to give rise to a
perception that these methods will become valuable tools in
scientific research. However, one of the most important
criticisms of machine learning methods is the explainability.
There have been efforts in this direction in the area of artificial
intelligence to develop algorithms that not only make accurate
predictions but also are capable of interpretations that allow for
the possible understanding of the phenomenon.11−13

Solvation, a process that is primarily driven by the nature of
interactions between solute and solvent molecules, is of
immense importance in a number of physical, chemical, and
biological processes (protein folding, chemical reactivity,
protein−substrate binding, colloids, etc.).14,15 In fact, a large
majority of chemical and biological processes occur in solution,
and hence, solvation free energy plays a central role. For
example, all cellular processes including protein−protein
interactions, protein−nucleic acid complex formation, pro-
tein−substrate formation, protein folding, etc.16−18 that are
essential for the existence of life occur in aqueous conditions,
and these processes are often assisted by solvent molecules.
Solvation free energy is the free energy change when a molecule
in its gaseous state is transferred to a given solvent. Solvation free
energy is related to a number of target properties crucial in
molecular design, among other important applications. The
pharmacokinetic properties, namely, distribution and absorp-
tion, can be assessed using the solvation free energies.19−21
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The calculation of solvation free energies is typically carried
out using molecular dynamics (MD) simulations and primarily
using the alchemical free energy methods.22−24 MD simulations
are performed on a series of nonphysical intermediate states
between the solute in the gas phase and in the solution phase.
This serves as a path to calculate the free energy difference
between the two states. The two most commonly used
alchemical methods are free energy perturbation (FEP) and
thermodynamic integration (TI).25 Bennett’s acceptance ratio
(BAR) and multistate Bennett’s acceptance ratio (MBAR)
methods are also useful for the calculation of solvation free
energies.23,26 These methods have been shown to yield free
energy values that are comparable to experiments.27−30

Accuracies of free energy calculations mentioned above are
mostly limited by the quality of the force field used for both
solute and solvent. These methods are also computationally
expensive, which makes quantitative quick and accurate
estimation of solvation free energies impractical. Additionally,
deriving an adequate quality force field involves a large number
of quantum chemical calculations and molecular dynamics
simulations, which adds to the computational complexity of the
problem. Density functional theory and quantum mechanical
calculations are also useful in calculating solvation free energies
typically using continuum solvation models.31,32

In the past few years, several machine learning ap-
proaches2,33,34 have been proposed to predict aqueous solubility
of druglike molecules using the FreeSolv data set.35 These
methods are inherently restricted to the prediction of free energy
of solvation for a single solvent (water) and cannot be
generalized to all organic solvents. Some factors that contribute
to the extent of solubility of a solute in any solvent, for example,
H-bonding and hydrophobic interactions, can be extended to
any other solute−solvent pair. Hence, a generic method can be
used to determine the solubility of solutes in a new solvent.
Recently, Lim and Jung proposed a model “Delfos” that used
recurrent neural networks to predict the solubility of molecules
in any generic solvent.36 In the Delfos model, molecular
embedding was obtained from SMILES sequence using
Mol2Vec37 featurization technique. Although SMILES repre-
sentations have been widely used as feature representations for
druglike molecules, there has been a widespread shift to
chemical graph-based representations lately.38,39 This can be
explained due to the limitations of the SMILES-based methods.
First, the SMILES representations do not explicitly account for
molecular similarity. There are challenges associated with the
learning of the SMILES syntax using deep learning-based
models. On the other hand, the chemical graph-based
representations appropriately capture the molecular structures
and can more readily model the pharmacophores associated
with chemical properties.39,40

As discussed above, machine learning methods are capable of
performing prediction tasks accurately and have started to
contribute to the area of molecular science significantly.13,38

However, there is a strong need to develop methods that also
offer explainability in addition to accurate predictions. In the
current study, a novel method, namely, chemically interpretable
graph interaction network (CIGIN), for the prediction of
solvation free energy of small organic molecules with respect to
any commonly used organic solvents is proposed. A preliminary
version of this method was presented at a conference recently.41

The method proposed works on molecular graphs, using a
message passing neural network (MPNN)42 and an interaction
layer to accurately model the free energy of solvation. This

method predicts solvation free energies accurately, and the
interaction map calculated as part of the prediction task captures
chemical insights that explain themagnitude of the solvation free
energies. Extensive analysis has been performed to assess the
predictive capability and robustness of the model, and several
examples have been used to demonstrate the chemical
interpretability of the interaction map. Further, the potential
use case of this model is illustrated by taking prodrug
development as an example.

■ METHODS

Data Set. In this work, we use a combination of Solv@TUM
database43 and FreeSolv data set.35 Solv@TUM database has
5952 experimental values for the free energy of solvation. The
molecules in this database contain chemically diverse organic
and inorganic molecules in nonaqueous solvents.43 For our
purpose, molecules consisting of elements C, H,N, O, F, P, Cl, S,
Br, and I were used and the rest were filtered out, which results in
a total of 5597 unique solute−solvent pairs. As this data set only
contains solvation free energies in nonaqueous solvents, the
FreeSolv data set, which contains 642 hydration free energies of
organic molecules, was combined with this set. This results in a
total of 6239 unique combinations of solute−solvent pairs with
935 unique solutes and 146 unique solvents. The final data set is
processed using RDKit44 to construct molecular graphs.

Molecular Graph. Molecules, due to their inherent
structure can naturally be represented as graphs, where nodes
correspond to atoms and edges correspond to bonds. More
formally, for a molecule M, we construct an undirected graph
G(V, E), where the set of atoms correspond to V and the set of
edges correspond to E. xv and evw are the node and edge features
corresponding to node v and the edge e between nodes v and w,
respectively. The choice of these feature vectors depends upon
the problem at hand. The feature vectors are chosen to
appropriately model the solute−solvent features and their
intermolecular pharmacophore, and hence the atomic features
are selected to capture the electronic and structural features of
the atom. Similarly, the bond features are selected to determine
the type of bond, the kind of topology (ring or aliphatic) it is
present in, and whether it shows stereochemistry. The node
features and bond features are given in Tables 1 and 2,
respectively. RDKit44 was used to extract the given node and
edge features, and the deep graph library (DGL)45 was used to
prepare the molecular graph.

Model. As mentioned above, the proposed model consists of
three different phases: message passing phase, interaction phase,

Table 1. Atom (Node) Features Used for Molecular
Representation

atom Features description

atom type H, C, N, O, F... (one-hot)
implicit valence has implicit valence (binary)
radical electrons has radical electrons (binary)
chirality R,S or none (one-hot)
number of hydrogens number of neighboring hydrogen atoms (one-hot)
hybridization sp, sp2, sp3, sp3d (one-hot)
acidic acidic in nature (binary)
basic basic in nature (binary)
aromatic part of aromatic group (binary)
donor donates electron (binary)
acceptor accepts electron (binary)
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and prediction phase. The three phases are explained in
subsequent sections. Figure 1 illustrates the proposed model.
Message Passing Phase. In this phase, the message passing

neural network (MPNN), a general framework for supervised
learning of graph-structured data proposed by Gilmer et al., is
used.42 Consider a molecular graph G(V, E) having node
features xv and edge features evw. The state of each node is
represented as hv

t , which is initialized to xv at t = 0 and are
updated for T time steps using messages mv

t+1 and vertex update
function Ut according to the following equations

∑=+

ϵ

m M h h e( , , )v
t

w N v
t v

t
w
t

vw
1

( ) (1)

=+ +h U h m( , )v
t

t v
t

v
t1 1

(2)

N(v) represents the set of neighboring nodes of v. In this work,
both Mt and Ut are fully connected layers. After T time steps, a
residual connection46 from xv to hv

t is added nodewise according
to the following equation

= + ∀ ∈F x h v V,v v v
t

(3)

Fv represents the final atomic feature for each atom v∈ G(V, E).
Each row describes the atomic property and the local
environment of the corresponding atom. T was taken as 6 for
all of the experiments performed in this work.
Molecular graphs corresponding to both solute and solvents

are fed through separate MPNNs. The outputs F of this phase
are tensors A (solute) and B (solvent) of sizes J * L and K * L,

Table 2. Bond (Edge) Features Used for Molecular
Representation

bond features description

bond type single, double, triple, or aromatic (one-hot)
bond is in conjugation part of conjugation (binary)
bond is in ring part of ring (binary)
bond stereochemistry E or Z (one-hot)

Figure 1. (a) Architecture based on the graph neural network for the prediction of solvation free energies of any generic organic solvent. The three
main constituents of the architecture, namely, (b) message passing, (c) interaction, and (d) prediction phases, are also given. For more details, see the
Methods section.
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respectively, for a solute of J nonhydrogen atoms, a solvent of K
nonhydrogen atoms, and L atomic features.
Interaction Phase. As discussed earlier, the interactions

between the atoms of solute and solvent molecules play a key
role in determining the solubility of a solute in a given solvent.
These interactions are due to the electronic and steric factors of
the atoms of the solute and solvent molecules. We capture the
pairwise interactions between solute and solvent atoms in an
interaction map.
For the solute features, A, and solvent features, B, computed

from the message passing phase, the solute−solvent interaction
map is computed according to the following equation

= ∀ = ∀ =I f A B n J m K( , ), 1, 2, 3 .. , 1, 2, 3 ,..nm n m
(4)

In the above equation, I denotes the computed interaction map
using solute features (A) and solvent features (B). The function f
models the interatomic interaction between every solute−
solvent atom pair from their feature vectors. The function f
needs to precisely measure the negative/positive contribution of
a specific solute−solvent pair independently. For example,
hydrophilic−hydrophobic interactions would decrease the
solubility whereas hydrophilic−hydrophilic/hydrophobic−hy-
drophobic interactions would increase the solubility. To model
these, different choices of function f are used (see Table 3).

Further, the influence of solvent on solute and that of solute on
solvent is calculated as

′ = ·A I B (5)

′ = ·B I AT (6)

A′ and B′ are the solute and solvent features weighted by their
contribution to the free energy of solvation.
Prediction Phase. The outputs A and B of the message

passing phase represent the intramolecular context of both
solute and solvent molecules, whereas the outputs A′ and B′ of
the interaction layer represent the effect of solvent on solute and
vice-versa, respectively. The free energy of solvation is governed
by both these factors, i.e., the intramolecular and the
intermolecular effects.
Hence, the outputs of both the message passing and the

interaction phases are concatenated atomwise for both solute
(A″) and solvent (B″) molecules. These are then transformed
into a one-dimensional vector by combining the feature vectors
across all atoms using a readout layer R according to equations
given below

″ = ′A R A A( , )solute (7)

″ = ′B R B B( , )solvent (8)

A key thing to note is that the transformation function R should
be invariant to graph isomorphism, and hence, a set2set layer,47

which is invariant to permutation, is used. A″′ and B″′ represent

the final feature vectors of both solute and solvent molecules,
respectively. These are then concatenated and passed through
three fully connected layers with dimensions 360:256:128 to
predict the free energy of solvation.

Training. The molecular graphs were constructed using
RDkit44 and Deep Graph Library (DGL).45 All of the training,
validation, and analysis were performed using the PyTorch
framework. A 10-fold cross-validation strategy was used for
training the models. For this, the data set was split into 10
subsets; one of them was used as the test set and the remaining 9
became the training set. Hence, the train−test split was in the
ratio of 9:1, and 10 independent train−test runs were
performed. Further, to ensure minimum variance on the test
set, five independent 10-fold cross-validation runs were
performed. Mean squared error was used as the objective
function, and along with this, an L2 regularization was also
added on the interaction map. The ADAM optimizer48 with its
default parameter as suggested by Kingma and Ba were used,48

and the learning rate was decreased on plateau by a factor of 10−1

from 10−3 to 10−5. DGL was used to batch molecular graphs and
train them together in batches of size 16. The rectified linear unit
was used as the activation function in all of the layers except the
last layer, where no activation function was used. The maximum
epoch was set to 100, and early stopping was employed, so as to
terminate the training when the model started to overfit. The
architecture of the model is given in the Model Architecture
section in the Supporting Information. All of the codes
associated with the proposed method are made available at
https://github.com/devalab/CIGIN/tree/master/CIGIN_V2

■ RESULTS AND DISCUSSION

In this section, the statistical fitness and the robustness of the
CIGIN model are demonstrated by carrying out different
experiments. Following this, the capability of the model to adapt
to solvents unseen by the model during training is shown. In the
subsequent subsections, several examples are discussed to
illustrate the ability of the model to learn the underlying
chemistry that affects the free energy of solvation. The potential
use case of the model in prodrug development is demonstrated
in the last subsection.
The CIGIN model presented in this work consists of three

different phases, namely, the message passing phase, the
interaction phase, and the prediction phase (see Figure 1). In
the message passing, the node embedding of each atom in the
solute and solvent molecules is computed; these are then used to
measure the interatomic interactions between solute and solvent
atoms in the interaction phase. Finally, the features from
message passing and interaction phases are combined in the
prediction phase to estimate the free energy of solvation for a
given solute−solvent pair. The model is trained end-to-end so
that the interatomic interactions are jointly learned while
predicting the free energies of solvation.

CIGIN toward Chemical Accuracy. Figure 2 depicts the
correlation between the experimental and predicted solvation
free energies with respect to different solvent−solute pairs. A
near-perfect linear relationship was observed between the two
with an R2 value of 0.98. More than 98% of the predictions are
well within 1 kcal/mol of the experimental solvation free energy
values. Table 3 lists the MAEs corresponding to the different
variants of the CIGIN model. The table shows that the CIGIN
model achieves a high accuracy of predicting solvation free
energy with a mean absolute error of 0.16± 0.01 averaged upon

Table 3. Accuracy of the CIGIN Model as Assessed by the
Mean Absolute Error (MAE, kcal/mol) with Respect to Its
Different Variants

model interaction function message passing MAE (kcal/mol)

CIGIN tan h(A.B) √ 0.16 ± 0.002
CIGIN tan h(W(A, B)) √ 0.16 ± 0.003
CIGIN tan h(A.B) × 0.20 ± 0.002
CIGIN × √ 0.23 ± 0.006
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five independent 10-fold cross-validation runs, indicating a very
high accuracy of the model.
A comprehensive comparison of solvation free energies

calculated with different methods and measured using experi-
ments for a set of solutes and for a set of solvent molecules would
be ideal. In the absence of such extensive data, we compare with
previously published work. Several studies have attempted to
reliably calculate/predict solvation free energies of small organic
molecules.21,23,31,32,34,36,49−51 These studies used quantum
mechanical methods, molecular dynamics free energy calcu-
lations, andmachine learningmethods. So far, compared to all of
the methods including high-level theoretical calculations, the
proposedmodel significantly outperforms others on a diverse set
of solute and solvent combinations.21,23,36,50−52 The perform-
ance on another commonly used data set MNSOL Database53

along with available results from QM methods is given in Table
S1. Additionally, this model offers chemical interpretability that
is not the case with most of the machine learning-based methods
that have been proposed so far.34,52

Robustness of the Model. It is important to evaluate the
model to test its robustness and to understand the different
components (phases) of the architecture toward high accuracy.
Hence, different experiments were performed to examine these
factors. First, the message passing phase for both solute and
solvent molecules was removed to examine the importance of
learning graph embedding in an end-to-end fashion. Second, the
message passing phase was retained and the interaction phase
was removed so that the need to learn the interatomic
interactions can be examined. FromTable 3, it can be concluded
that the learning of molecular embedding through the message
passing layer helps the model to better capture the features that
affect solubility. Further, we see that the role of the interaction
phase helps the model in better capturing the interatomic
contributions responsible for solubility or in other words to
identify the favorable/unfavorable interacting atom pairs of both
solute and solvent molecules.
FreeSolv is one of the widely used data sets, which comprises

the hydration free energies of small organic molecules. To
further study the importance of jointly learning the interatomic
interactions via the interaction map along with the prediction of
the solvation free energies, the CIGIN model was trained only
on the FreeSolv data set.35 The model was trained using the 80-
10-10 train−test−validation split as given in MoleculeNet.34

Table 4 compares the performance of CIGIN, Delfos,36 and
MPNN benchmarks provided in MoleculeNet.34 Table 4

conclusively shows that CIGIN outperforms the other two
baselines and obtains a high accuracy of 0.76 ± 0.11 on the test
set. This also demonstrates that the joint learning of interaction
between atoms aids the model in better performance.

Accuracy upon Solvent Holdout. The current model is
trained for a diverse range of organic solvents with varying
polarities. To assess the ability of this model to predict the
solvation free energy involving solvents unseen by the model,
the solvent holdout test was performed. Briefly, 146 different
experiments were conducted, where each experiment involves
holding out solvation free energies involving a given solvent
from the training set and using the data of that particular solvent
as the test set. This would enable us to test if the model is able to
accurately predict the free energies of solvation of the solvent
that is not used in the training. The mean absolute error
obtained over three independent complete holdout tests over all
of the solvents was 0.18 kcal/mol; the distribution of MAE is
shown in Figure 3, and the corresponding MAEs are given in

Table S2 in the Supporting Information. The low MAE value of
0.18 kcal/mol indicates that the accuracy of the CIGINmodel is
not significantly affected upon solvent holdout. It is also evident
from the distribution that solvation free energies corresponding
to all solvents (except water) unseen by the model are predicted
with very high accuracy. The model does not seem to adequately
learn to predict the free energy of solvation for water when it is
held out during the training. This can be explained due to the
fact that water has only one heavy atom and hence message
passing is not possible. Therefore, the model does not seem to
learn from the other solvents, which have at least two heavy
atoms.

Chemistry Learned by the Model. One of the major
criticisms of machine learning applications, especially in natural
sciences, is the lack of explainability. For the CIGINmodel to be
useful, it should not be a mere black box model but should also
provide meaningful insights. These meaningful insights can help
a chemist determine the cause of solubility (insolubility) of a
solute in a solvent. In the following subsections, through a series
of experiments, we show the meaningful insights that can be
obtained from the proposed model.

Figure 2. Plot of predicted (averaged over five independent 10-fold
cross-validation runs) versus experimental solvation free energies.

Table 4. Comparison of the Performances of the CIGIN
(Current Study), Delfos, and MPNN Models on FreeSolv
Data Set Using the Mean Absolute Errors (kcal/mol)

model validation set test set

CIGIN 0.67 ± 0.04 0.76 ± 0.11
Delfos 1.16 ± 0.03 1.19 ± 0.08
MPNN 1.20 ± 0.02 1.15 ± 0.12

Figure 3. Probability distribution of mean absolute errors of the free
energies of solvation corresponding to each solvent in the data set by
excluding the given solvent during training (solvent holdout test).
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Estimation of Intermolecular Interactions. The interaction
phase in the CIGIN model is designed to quantify the
interatomic interactions among all of the solute−solvent atom
pairs. The interaction map calculated in the interaction phase
(see Figure 1) is a J × K matrix (J and K being the number of
nonhydrogen atoms of solute and solvent, respectively). These
interactions play a key role in determining the solubility of a
molecule and are governed by electronic and steric factors. The
interaction map calculated for the t-butanol and ethanol solute−
solvent pair is given in Figure 4. The 5× 3matrix corresponds to

the interaction between all nonhydrogen atoms of the solute and
the solvent molecules. Min-max normalized values of the
calculated interaction map are depicted as a heat map. The most
favorable interaction is observed between the two oxygen atoms,
which would mean a hydrogen-bonded interaction in the
chemical sense. The least interaction is observed between the
oxygen of ethanol and the central carbon of the t-butanol.
According to conventional wisdom, such an interaction is not
favorable due to the inaccessibility of the central carbon atom
and its hydrophobic nature. Intermediate values are observed
between the terminal carbons, which can be thought of as
hydrophobic contributions. Further examples of how the
interaction map is able to capture the electronic factors and
how the model is able to explain common chemical wisdom is
demonstrated below.
Steric and Hydrophobic Factors. The ability of the model to

capture the steric factors was tested by predicting the solvation
free energies of a series of secondary amines. Starting from
diethyl amine, the steric factor around the amine group was
changed by introducing additional methyl groups on the α
carbon atoms. The solvation free energies calculated for a polar
and nonpolar solvent (water and n-hexane) are depicted in
Figure 5a. In the polar solvent (water), the solubility of
secondary amines is primarily governed by the interaction of the
nitrogen atom of the solute and the oxygen atom of the solvent
via formation of H-bonds, leading to favorable hydration free
energy (−4.15 kcal/mol) for diethyl amine. Such an interaction
would be more dominant when the participating atoms, i.e.,

nitrogen atom, in solute can readily be accessible by the oxygen
atom in the solvent. This would mean that as the steric
hindrance is increased around the nitrogen atom, it becomes less
accessible to the solvent atoms and also that the hydrophobicity
of the molecule increases with respect to addition of more
methyl groups. This is expected to lead to the lower solubility of
the secondary amine in water with respect to the increase in
crowding around the nitrogen atom. Figure 5a confirms that the
model is able to learn such a steric factor that as the branching is
increased on the adjacent or α carbon atoms connected to the
nitrogen atom, the solubility decreases. On the other hand, in n-
hexane solvent, an increase in solubility with increasing
crowding around the nitrogen is expected. This is due to the
fact that the hydrophobicity increases and at the same time, the
polar NH group becomes less accessible. Figure 5a shows that
the solubility of secondary amines increases with an increase in
the number of carbon atoms and hence confirms that the
proposed model follows the intuition of a chemist.

Intramolecular Interactions. The hydration free energies of
1,2, 1,3, and 1,4 isomers of dimethyl, dihydroxy, and
diaminobenzenes along with the heat maps corresponding to
the interaction maps are given in Figure 5b. The lack of
hydrophilic substituents and major differences in the intra-
molecular interactions among dimethyl benzene isomers results
in hydration free energies close to each other and with values
around −1 kcal/mol. The isomers of dihydroxy benzene and
diamino benzene are more readily soluble in water than the
dimethyl benzenes, and this can be explained due to the
possibilities of H-bonding between solute and solvent atoms,
which is absent in dimethyl benzene. In addition to the nature of
the electronic factors between the solute and solvent atoms,
intramolecular interactions affect the solvation free energies. For
example, among the three isomers of dihydroxy benzene (1,2,
1,3, 1,4), 1,2-dihydroxy benzene was found to have the least
boiling and melting points.54 This is possibly due to the
intramolecular H-bonding in the 1,2-isomer and more
stabilizing intermolecular interactions in the other two isomers.
This interpretation is demonstrated by the CIGIN model as
well. In Figure 5b, the oxygen and nitrogen atoms present in the
1,2-isomer of dihydroxy and diamino benzene, respectively,
show less interaction w.r.t the oxygen atom of water when
compared to the other two isomers. This ultimately results in
higher hydration free energy for 1,2-isomer compared to those
for the other two. However, one would expect this intra-
molecular effect to be less pronounced in diamino benzene than
dihydroxy benzene possibly due to the fact that only one of the
four hydrogen atoms is involved in intramolecular H-bonding as
against one of two in the case of dihydroxy benzene. The same is
predicted by the CIGIN model via the interaction map, where
the δ contribution of the oxygen atoms between the ortho and
para isomers of dihydroxy benzene is higher than that of diamino
benzene. Such subtle differences in solubilities influenced by
intramolecular molecular interactions are appropriately cap-
tured by the CIGINmodel, and the interaction maps explain the
electronic factors behind the change.

Transfer Free Energies. The examples discussed above
demonstrated the ability of the model to learn the electronic
and steric factors of the solute molecules that influence the
solvation free energies and the ability of the model to capture
these effects via the interaction maps. The proposed model due
to its design can be used to predict the solvation free energy in
any generic solvent. Here, we examine the effect of solvation free
energy with respect to different solvents both in terms of

Figure 4. Interaction map between the atoms of tert-butanol (solute)
and ethanol (solvent) along with the predicted free energy of solvation.
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predicting free energy of solvation and estimating the
interatomic interactions. Figure 5c compares the experimental
observations55 and the relative solvation free energies of t-butyl
chloride in various solvents obtained using the CIGIN model.
The figure also depicts the interaction maps for all of the
solvents. The figure shows that the CIGIN model is able to
follow the trend of the experimental values. As expected, t-butyl
chloride is more soluble in nonpolar solvents compared to polar
solvents. In addition to capturing the relative solvation free
energies reasonably well, the interaction maps capture the
possible hydrogen bond interactions with respect to polar
groups (e.g., high value for interaction between the O of water
and the Cl of t-butyl chloride) and hydrophobic interactions
(e.g., high values for terminal methyl carbon of the solute and
the methyl/aromatic carbons of the solvent). For nonpolar
solvents, the interactions between chlorine and oxygen atoms

are less dominating than those between carbon and carbon or
chlorine and sulfur atoms; this can be explained due to the
presence of stronger van der Waals forces between the atoms of
the same period. This analysis further demonstrates that the
CIGIN model is able to distinguish different types of chemical
interactions that determine solubilities of small druglike organic
molecules in diverse solvents.

Applications in Molecular Design. Understanding the
structure−activity/property relationships is an important
exercise for designing new material/molecules with desired
properties. The concept of the interactionmap introduced in the
CIGIN model can be helpful in understanding the atomic-level
details, especially when molecular designs involve two entities
(e.g., designing molecules by maximizing the interactions with a
certain protein). Here, we demonstrate this by taking prodrugs
as an example. Designing prodrugs involves chemical

Figure 5. (a) Solvation free energies of secondary amines in water and n-hexane. (b) Variation in aqueous solubility w.r.t ortho, meta, and para
substitution in benzene. (c) Plot of transfer solvation free energy of tBuCl between methanol and different solvents with respect to that in benzene
(solvent in which tBuCl is most readily soluble) along with the individual interaction map between atoms of solute and solvent molecules. * and #
denote the C connected to hetereoatoms in solute and solvent, respectively.
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modification of high-value drug candidates to improve their
pharmacokinetic properties and to decrease their toxicities.56−58

For example, chemical modifications to a drug can effectively be
used to alter its solubility profiles such that its bioavailability can
be increased, or if the molecule is too hydrophilic, certain
substitutions can be used to increase the lipophilicity so that
permeation across cell membranes is improved.56,58 Two such
examples are provided in Figure 6. Penciclovir is a nucleoside

analog that is an effective antiviral drug. However, the oral
bioavailability of this drug is 4%, which improves to more than
75% upon chemical modification.59−61 The prodrug, famciclo-
vir, undergoes conversion to the original drug by esterases and
upon oxidation. Another example is diclofenac and the glycerol
ester of diclofenac. The glycerol adduct has been shown to
improve the transdermal delivery of diclofenac when applied
topically.62,63 TheΔΔGhyd between penciclovir and its prodrug,
where the goal is to make the former more lipophilic, is 8.60
kcal/mol and that for diclofenac and its prodrug, where the goal
is to increase aqueous solubility, is -5.68 kcal/mol. These
predictionsmade by the CIGINmodel confirm the experimental
observation very well, and the change in the interaction map
while going from the drug to the prodrug molecule explains the
atomistic effects. Hence, when a molecule needs to be
chemically modified to optimize its solubility profiles, a
prediction model along with an interaction map as proposed
here may aid in efficient optimization not only based on accurate

predictions but also by directed modifications guided by the
interaction maps.

■ CONCLUSIONS
In summary, estimation of solvation free energy is an important
task and has diverse use cases. In this work, a novel method
based on graph neural networks to predict the solubility of a
molecule in any generic organic solvent has been proposed. The
proposed framework consists of three phases, namely, message
passing, interaction, and prediction phases. The interatomic
interactions between the solute and solvent atoms are jointly
learned in the end-to-end process via the interaction map.
Several examples are used to demonstrate different chemical
interactions that are captured in the interaction map. Further,
different phases of models are ablated to understand their
contribution to the high predictive capability of the CIGIN
model. As a practical use case of this model, its potential
application in prodrug development is demonstrated. The
model proposed here can be used to study the interaction
between any two molecular systems, such as drug−target
interaction, and the interaction map introduced can be used to
assign credit at the atom level along with that at a molecular level
when optimizing for a property. Future work in this direction is
in progress.
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