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A Switching Control Perspective on the Offshore Construction
Scenario of Heavy-Lift Vessels

Jun Ye, Spandan Roy , Milinko Godjevac, and Simone Baldi

Abstract— Position control for heavy-lift construction vessels is
crucial for safe operation during offshore construction. During
the various phases of a typical offshore construction assignment,
considerable changes in the dynamics of the crane-vessel system
occur. Operational hazard was reported if such interchanging
dynamics are not properly handled. However, to date and the
best of our knowledge, no systematic control solution is reported
considering multiphase offshore construction scenarios. This
article proposes a switched dynamical framework to model the
interchanging phases and to formulate a comprehensive position
control solution for heavy-lift vessels. Stability and robustness
against modeling imperfections and environmental disturbances
are analytically assessed. The effectiveness of the solution is
verified on a realistic heavy-lift vessel simulation platform; it is
shown that the proposed switched framework sensibly improves
accuracy and reduces hazard compared with a nonswitched
solution designed for only one phase of the construction scenario.

Index Terms— Dynamic positioning (DP) system, heavy-lift
construction vessel, observer-based control, switched systems.

I. INTRODUCTION

W ITH the development of the offshore energy industry,
construction works such as installation and removal of

offshore structures in the deep ocean have been increasing [1].
During such construction works, a heavy-lift construction ves-
sel must operate close to some offshore platform; the position
of the vessel should be controlled via dynamic position-
ing (DP) acting on the propulsion system [2], [3], in such
a way to avoid any operational hazard, i.e., to avoid the
vessel to come too close to the platform or hit it. A few
reports have appeared showing that DP systems for heavy-
lift vessels can go unstable in certain phases of the offshore
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Fig. 1. Schematics of various phases during a typical offshore removal
assignment (in installation assignment Phases 3 and 1 occur in opposite order).

construction due to the time-varying vessel-load dynamics and
the large uncertainties in the system [4]–[7]. Although details
are often confidential and DP design are rarely disclosed, it is
known that special DP functions (heavy-lift mode and external
force compensation mode) are devised by DP providers to
handle such critical scenarios [8], [9]. A motivating example
is illustrated in the following.

A. Motivational Example: Construction Assignment

Typical offshore construction assignments include offshore
installation and removal [5], [6]. If we consider offshore
removal as an example, it consists of three phases, as shown
in Fig. 1.

1) In the first phase, the vessel sails to the desired position
without load (free-floating).

2) In the second phase, the vessel lifts a load from a
platform, where it encounters the so-called “mooring
force” (external stiffness on the crane wires).

3) The third phase is the ‘free-hanging’ condition, where
the load is hanging from the crane.

It is clear that the overall mass of the vessel changes during
the interchange of these phases. Moreover, the mooring force
is only active during Phase 2. Currently, no DP solution
can tackle the interchanging dynamics during a complete
offshore construction assignment [4]–[7]. Let us discuss
research attempts in this direction, together with the contri-
bution brought by this research.

B. Related Works and Contribution

The research on control solutions for DP systems can
be broadly classified into three categories: 1) approaches
that consider environmental disturbances (wind/waves) as the
only source of uncertainty but ignore modeling uncertainty
[2], [10], [11]; 2) approaches that tackle modeling uncertainty
via robust [12]–[17] or adaptive [18]–[22] control theory
but ignore that high-frequency environmental disturbances
and measurement noises hit the limits of marine thrusters
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(such thrusters are slow due to the large size of the ship and
cannot deliver high-frequency commands); and 3) approaches
that filter high-frequency disturbance via observers but ignore
modeling uncertainty [23], [24].

Based on the above-mentioned discussion, a novel switching
control perspective is proposed in this article, which over-
comes the stability, robustness, and filtering limitations of the
state of the art. The main contributions are as follows.

1) A switched dynamics is formulated, which suitably cap-
tures the interchanging dynamics during various opera-
tional phases of an offshore vessel in a compact manner.

2) Based on the switched dynamics, an observer-based
switched control solution is proposed, which can effec-
tively tackle the interchanging dynamics even in the
presence of model imperfections and high-frequency
disturbances. Stability and robustness are analytically
assessed.

3) The effectiveness of the framework is verified via a
heavy-lift vessel simulation platform that, to the best
of our knowledge, is the first one capable of simulating
the interchanging dynamics in six degrees of freedom.

This article is organized as follows. In Section II,
the switched dynamics and DP control problems are formu-
lated. Section III presents the proposed control scheme along
with its stability analysis. Section IV presents the simulations,
and Section V concludes this article.

Following notations are used: λmin(•) and ||•|| represent the
minimum eigenvalue and Euclidean norm of (•), respectively,
I denotes identity matrix with appropriate dimension, � > 0
denotes a positive definite matrix �, and diag{·, . . . , ·} denote
a diagonal matrix with diagonal elements {·, . . . , ·}. Let us also
denote the integration variable with the symbol � .

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Usually, a DP system can only control the movement of ves-
sels in the surge, sway, and yaw. Therefore, DP literature com-
monly adopts the following three degrees of freedom (DoFs)
crane-vessel model [25], [26]:

η̇(t) = J(ψ(t))ν(t), (1)

Mν̇(t) = −Dν(t)+ τc(t)+ τ (t)+ τl(t)+ d̄(t) (2)

where

J(ψ(t)) =
⎡
⎣cos(ψ(t)) − sin(ψ(t)) 0

sin(ψ(t)) cos(ψ(t)) 0
0 0 1

⎤
⎦

the state η = [x, y, ψ]T comprises of north position, east
position, and heading angle of the ship in Earth-fixed coor-
dinate system, respectively, ν = [u, v, r ]T is the vessel
velocity/angular velocity in the body-fixed coordinate system,
M ∈ R

3×3 is the mass/inertia matrix, D ∈ R
3×3 denotes the

damping matrix, d̄ ∈ R
3 denotes the bounded environmen-

tal disturbances representing the effects of wind, wave, and
current forces, τ ∈ R

3 is the generalized control input to be
designed, τc ∈ R

3 denotes the force from the crane winch
controlling the crane wires, and τl ∈ R

3 denotes the bounded
force from the hanging of the load.

TABLE I

THREE PHASES IN THE OFFSHORE HEAVY-LIFT OPERATION

Based on the construction work scenario depicted in Fig. 1,
the crane-vessel systems (1) and (2) undergo at least three
main structural changes summarized in Table I and denoted
with the terms Phase 1 “No load,” Phase 2 “Mooring mode,”
and Phase 3 “Free-hanging mode.” During Phase 2, the crane
wires are attached to the load, resulting in a spring-type force
(mooring force). During Phase 3, the load acts as an external
disturbance. The load will also affect the mass matrix in
Phases 2 and 3.

A. Switching-Based Modeling

The structural changes of (1) and (2) summarized in Table I
can be compactly captured by a switched dynamical
framework

η̇(t) = J(ψ(t))ν(t) (3)

Mσ(t)ν̇(t) = −Dν(t)− Fσ(t)η(t)

+ τσ(t)(t)+ d̄(t)+ τlσ(t)(t)

⇒ ν̇(t) = −A1σ(t)η(t)− A2σ(t)ν(t)

+ M−1
σ(t)τσ(t)(t)+ dσ(t)(t) (4)

where σ(·) is a piecewise constant switching signal taking
values in {1, 2, 3} = �, i.e., selecting which phase is active.
In particular, F1 = F3 = 0, τ11 = τl2 = 0 (see Table I), and

A1σ(t) � M−1
σ(t)Fσ(t) (5)

A2σ(t) � M−1
σ(t)D (6)

dσ(t)(t) � M−1
σ(t)(d̄(t)+ τlσ(t)(t)). (7)

To describe the duration of the different phases following one
another, the following class of switching signals is considered.

Definition 1 (Average Dwell Time [27]): For a switching
signal σ(·) and each t2 ≥ t1 ≥ 0, let Nσ (t1, t2) denote the
number of discontinuities in the interval [t1, t2). Then, σ(·)
has an average dwell time (ADT) ϑ if, for a given scalar
N0 > 0

Nσ (t1, t2) ≤ N0 + (t2 − t1)/ϑ ∀t2 ≥ t1 ≥ 0 (8)

where N0 is termed as chatter bound, indicating the number
of switching instants over intervals shorter than ϑ .

Remark 1 (Rationale for ADT): The ADT concept is well
known in the switching control literature [27]–[30]. In offshore
DP setting, this concept can be used to define the average
duration of the different phases, which might depend on
application requirements. Consider, for example, Phase 1 =
10 min, Phase 2 = 20 min, and Phase 3 = 5 min [1], [6].
This can be described by (8) with ϑ ≈ 12 min and N0 ≈ 2,
indicating that, on average, there is one phase change every
12 min and at most 2 phase changes over intervals shorter
than 12 min.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 12,2020 at 19:05:11 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YE et al.: SWITCHING CONTROL PERSPECTIVE ON THE OFFSHORE CONSTRUCTION SCENARIO OF HEAVY-LIFT VESSELS 3

B. Uncertainty Description

The external disturbance is upper bounded as ||dσ (t)|| ≤
||�dσ || ∀t , where ||�dσ || is available for control design. For
each phase, the mass matrix Mσ is assumed to be known
for control design, under the standard assumption that added
mass terms are negligible during DP operation.1 However, Fσ
and D cannot be assumed to be known, as, in practice, they
might even be time-varying; this leads to the matrices A1σ and
A2σ (positive definite for heavy-lift vessels [25]) being time-
varying and uncertain. The following assumption highlights
the nature of uncertainties considered in this article.

Assumption 1 (Uncertainty): Let Aiσ ’s be decomposable
into two positive definite matrices Âiσ (known nominal part)
and Ãiσ (unknown perturbation) such that Aiσ (t) = Âiσ +
Ãiσ (t). Let �Aiσ be the maximum possible perturbation
ranges such that ||Ãiσ (t)|| ≤ ||�Aiσ || ∀t . The knowledge of
Âiσ and �Aiσ is available for control design.

Control Objective: Without loss of generality, we consider
the desired position to be zero, i.e., the DP should keep η

close to 0. The objective is to develop a switched control τσ
for the switched heavy-lift vessel dynamics (4) that can handle
the complete offshore construction scenario of Fig. 1 while
coping with the uncertainty outlined in Assumption 1.

III. CONTROLLER DESIGN AND ANALYSIS

The observer-based control is very common in DP as a
way to filter high-frequency environmental disturbances and
measurement noises [24], [31]. Motivated by this common
practice, an observer-based switched robust controller2 is
designed as

˙̂η = Jν̂ − Kσ η̂ + K1σ η̃ (9)
˙̂ν = −Â1σ η̂ − Â2σ ν̂ + M−1

σ τσ + K2σ η̂ (10)

τσ = Mσ

{(
Â1σ − K2σ − P−1

4σ JT P3σ
)
η̂

+ (
Â2σ − (ρσ + ρ1σ )

)
ν̂
}

(11)

where J(ψ) is written as J for compactness, η̂ and ν̂ are
the observations of η and ν, respectively, and η̃ � η − η̂ and
ν̃ � ν − ν̂ are the corresponding observer errors. The various
dynamics parameters and variables are given in Table II.

The observer dynamics (9) and (10) are constructed based
on (3) and (4) with available system knowledge from
Assumption 1. The observer and control gains Hσ , Kσ , K1σ ,
K2σ , ρ1σ , ρσ , and Piσ in (9)–(11) are used for system stability
and robustness against uncertainties and are designed as

λmin(P1σK1σ ) > ||(1/2β)(�A1σ − K2σ )
T P2σH−1

σ P2σ

× (�A1σ − K2σ )|| (12)

λmin(P3σKσ ) > ||(1/2β)(�A1σ + K2σ )
T P2σH−1

σ P2σ

× (�A1σ + K2σ )|| (13)

λmin(P4σ )ρσ > ||(1/2β)�AT
2σP2σH−1

σ P2σ�A2σ ||
+ ||�dσ || (14)

1As offshore heavy-lift vessels are quite large in size including the payload,
variation in mass and inertia parameters are usually negligible [25].

2From now on, the time index t will be omitted whenever unambiguous.

TABLE II

SYSTEM PARAMETERS AND VARIABLES

ρ1σ = α

∫ t

0
||(K1σ + Kσ )||||η̂(�)||||η̃(�)||d�

(15)

K2σ (t) = −Â1σ + JT (t) (16)

λmin(P2σ Â2σ ) > ||(3β/2)Hσ || (17)

where α > 1 and β > 0 are design scalars.
Remark 2 (Selection of Gains): According to Assump-

tion 1, Â2σ is the nominal knowledge of A2σ . Therefore,
(17) provides a selection criterion for β,Hσ , and P2σ , which,
in turn, guides the section of P1σ ,P3σ ,P4σ ,K1σ ,Kσ , ρσ ,
and ρ1σ via (12)–(15).

Let us define

Pσ � diag{P1σ ,P2σ ,P3σ ,P4σ } (18)

�M � max
σ∈� λmax(Pσ ), �m � min

σ∈�λmin(Pσ ) (19)

κ � 2 min
σ∈� min

i=1,...,4
(λmin(Qiσ ))/�M (20)

where Qiσ are positive definite matrices, defined as

Q1σ � {P1σK1σ − (1/2β)(�A1σ − K2σ )
T P2σH−1

σ P2σ

× (�A1σ − K2σ )}
Q2σ � {P2σ Â2σ − ((3β/2)Hσ )}
Q3σ � {P3σKσ − (1/2β)(�A1σ + K2σ )

T P2σH−1
σ P2σ

× (�A1σ + K2σ )}
Q4σ � {ρσP4σ − (1/2β)�AT

2σP2σH−1
σ P2σ�A2σ }.

Following Definition 1, let us consider the switching signal
σ(·) with an ADT ϑ satisfying

ϑ > ϑ∗ = lnμ/ζ (21)

where μ � �M/�m and 0 < ζ < κ .
Remark 3 (Continuity of the States): At switching instants,

the control/observer gains Hσ ,Kσ ,K1σ ,K2σ , ρ1σ , ρσ , and
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Algorithm 1 Design Steps of the Proposed Switched
Controller

Piσ are designed to switch accordingly, i.e., to change dis-
continuously to handle the new phase; however, it must be
noticed that the states η and ν in (3) and (4) and their
observed values η̂ and ν̂ in (9) and (10) remain continuous
despite switching. Therefore, issues of chattering as in state-
dependent switching (sliding mode) will be absent in ADT
time-driven switching [27].

Remark 4 (Codesign of Switching and Control Law):
In the switching control literature, it is well known that
stability cannot be achieved for arbitrarily switching signals
[28], [30], [32]. This implies that one should not only design
a stabilizing control law but also a stabilizing family of
switching laws. In the proposed DP setting, the switched
controller is given by (9)–(11), whereas the switching signal
is given by (21) in the ADT framework of Definition 1.
The parameter in (21) should be properly tuned so that ϑ∗
represents the typical duration of the different construction
phases (see Remark 1).

The closed-loop system stability is analyzed using the
following Lyapunov function:

V (ξ ) = V1(η̃, ν̃)+ V2(η̂, ν̂) = 1
2 ξT Pσ ξ (22)

where ξ � [η̃T ν̃T η̂T ν̂T ]T and

V1 � 1

2
(η̃T P1σ η̃ + ν̃T P2σ ν̃)

V2 � 1

2
(η̂T P3σ η̂ + ν̂T P4σ ν̂).

The following theorem states the closed-loop system stability.
Theorem 1: Under Assumption 1, the switched systems (3)

and (4) employing the switched control input law (9)–(11)
and satisfying the gain selection criteria (12)–(17) are globally
uniformly ultimately bounded (GUUB) for any ADT switching
signal satisfying (21). This implies

V (t) ≤ max {bV (t0), bμB} ∀t ≥ t0. (23)

where b � exp(N0 lnμ), B � maxσ ((2||�dσ ||2/�m

(κ − ζ )2), (�m/2α)).
Proof: See the Appendix. �

Overall Control Structure: Summarizing, the proposed con-
trol law and switching law comprise of the design steps,
as enumerated in Algorithm 1.

Key Performance Indicators: From (23), upper bounds on
the position error η and control input τ can be computed.
These bounds can serve the purpose of key performance
indicators (KPIs).

Utilizing the relations V ≥ (�m/2)||ξ ||2 ≥ (�m/2)||η̂||2 and
V ≥ (�m/2)||ξ ||2 ≥ (�m/2)||η̃||2, the upper bound on η can
be computed as follows:

||η|| = ||η̃ + η̂|| ≤ 2
√

2V/�m

≤ 2
√
(2/�m)max {bV (t0), bμB} � 2B̄. (24)

Similarly, an upper bound on τσ can be derived from (11) as

||τσ || = ∣∣∣∣Mσ

{(
Â1σ − K2σ − P−1

4σ JT P3σ
)
η̂

+ (Â2σ − (ρσ + ρ1σ ))ν̂
}∣∣∣∣

≤ B̄||Mσ ||{∣∣∣∣(Â1σ − K2σ − P−1
4σ JT P3σ

)∣∣∣∣
+ ||(Â2σ − (ρσ + ρ1σ ))

∣∣∣∣}. (25)

Remark 5 (Phase-Dependent Tuning): The control bounds
in (25) are different for each phase, i.e., one can tune the
gains in (12)–(17) independently for each phase. On the other
hand, a single nonswitched controller tuned only for one of
the three phases might result in a too shallow/too aggressive
control in the other phases (see simulations in Section IV).

IV. SIMULATION RESULTS AND ANALYSIS

Though DP controllers are conventionally designed for
three-DoF dynamics, their performance should be properly
verified on realistic six-DoF dynamics [24], [26]. Therefore,
in this section, we verify the proposed controller on a six-DoF
simulation platform, based on the S-175 model from MSS
toolbox [33] with vessel dynamics generated by WAMIT.

A. Simulation Model

Extending the approach in [25] to a switched framework,
the six-DoF heavy-lift vessel’s dynamics can be expressed as

η̇ = J(φ, θ, ψ)ν (26)

Mσ ν̇+Dν+C(ν)ν(t)+G(η)+gσ = τth +τe+τcσ+τlσ (27)

where ν = [u, v, w, p, q , r ]T is the vessel’s velocity in
body-fixed coordinates, η = [x, y, z, φ, θ, ψ]T is the vessel
position in north–east–down (NED) coordinates, J(φ, θ, ψ) ∈
R

6×6 is the transformation matrix from body-fixed to NED
coordinates, τth ∈ R

6 comprises forces and moments by the
propulsion system, τe ∈ R

6 denotes forces and moments
induced by currents, wind, and waves, Mσ ∈ R

6×6 is the
mass matrix of the vessel, D ∈ R

6×6 is the damping matrix,
C ∈ R

6×6 is the Coriolis matrix, gσ = [0, 0,−Mvσ g, 0, 0, 0]T

is the gravity vector on the vessel, Mvσ being the vessel
mass and g the gravity acceleration, and G(η) represents the
hydrostatic force on the vessel. We assume that the force in the
crane wires is controlled by a crane winch during the mooring
mode, and the initial length of the elastic crane wires is fixed
when the load is fully lifted (i.e., when the system is in free-
hanging mode), and then, the crane force can be expressed as
a combination of τcσ and τlσ , where τcσ = [Fcσ ,Tcσ ]T and
τlσ = [Flσ ,Tlσ ]T contain forces and moments from the crane
and load.
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Fig. 2. Heavy-lift vessel during construction. In Phase 1, there is no
crane/load force; in Phase 2, the crane force is determined by the hydraulic
winch; and in Phase 3, the load force is modeled as a spring/damper system.

TABLE III

FORCES AND MOMENTS DURING THE THREE CONSTRUCTION PHASES

Similar to the three-DoF case, the six-DoF dynamics are
modeled in a switched framework (see Fig. 2 and Table III):

Phase 1 (No Load): Load and crane do not act on the vessel;
the environmental forces/moments are the only external action.

Phase 2 (Mooring Mode): The load does not contribute any
force/moment, but the lifting (or dropping) of the crane causes
a force and a moment by hydraulic winch modeled as

Fcσ = Fh
δl

||δl || , Tcσ = rct × Fcσ (28)

where Fh is the tension in the crane wires; δl = pct −
JT

3 (φ, θ, ψ)ηl , with pct being the time-independent position of
the crane-tip, J3 the rotation matrix from body-fixed frame to
NED in three DoFs, and ηl the load position in NED (constant
during mooring); and rct ∈ R

3 is the vector from vessel’s
center of rotation to the crane tip.

Phase 3 (Free-Hanging Mode): No external contribution
from the crane occurs, while the force and moment induced
by the load can be expressed as

Flσ =
⎧⎨
⎩
(Kwδ̃′ + Dw

˙̃δ′) δl

||δl || , if δ̃′ > 0

0, if δ̃′ ≤ 0.
Tlσ = rct × Flσ

(29)

where δ̃′(t) is the elastic elongation of the crane wires and δl

is similar to Phase 2, but the load position ηl is not constant,

TABLE IV

PARAMETERS FOR ENVIRONMENTAL FORCES/MOMENTS

but with its own three-DoF dynamics

Ml η̈l + Dl η̇l + gl + Fb = Fe − J3(φ, θ, ψ)Flσ (30)

where Ml ∈ R
3×3 is the mass matrix of the load, Dl ∈ R

3×3

is the damping matrix of the load, Fb is the buoyancy force,
and Fe is the environmental force on the load.

Details of other subsystems on board of the heavy-lift
vessel, i.e., thrust allocator, and propulsion systems are not
reported for lack of space but can be found in [26].

B. Design Parameters

The following design parameters have been used:

Â11 =
⎡
⎣2.7 · 10−5 0 0

0 2.1 · 10−5 − 4.2 · 10−9

0 − 4.2 · 10−9 1.1 · 10−8

⎤
⎦

Â12 =
⎡
⎣1.6 · 10−3 0 0

0 1.2 · 10−3 − 2.5 · 10−7

0 − 2.5 · 10−7 6.3 · 10−7

⎤
⎦

Â13 =
⎡
⎣2.7 · 10−4 0 0

0 2.1 · 10−4 − 4.2 · 10−8

0 − 4.2 · 10−8 1.1 · 10−7

⎤
⎦

�A11 = 0.4Â11, �A12 = 0.9Â12, �A13 = Â13

Â21 = Â22 = Â23

=
⎡
⎣1.8 · 10−2 0 0

0 1.2 · 10−1 − 6.3 · 10−2

0 2.7 · 10−5 1.4 · 10−1

⎤
⎦

�A21 = �A22 = �A23 = 0.2Â21

P21 = I, P11 = P31 = P41 = 10P21

P22 = 2I, P12 = P32 = P42 = 10P22

P23 = 1.5I, P13 = P33 = P43 = 10P23,

H1 = 1.1 · 10−3I, H2 = 2.2 · 10−3I, H3 = 1.7 · 10−3I

K1 = 4.57I, K2 = 4.57I, K3 = 4.57I

K11 = 4.57I, K12 = 4.61I, K13 = 4.58I

ρ1 = 1.53, ρ2 = 1.55, ρ3 = 1.54, α = 2, β = 1

where the nominal values of A1σ and A2σ have been chosen
based on the nominal knowledge of load, vessel’s mass, and
damping matrix. The above-mentioned gains and ζ = 0.9κ
yield the ADT ϑ∗ = 9.24 s according to (21).

C. Simulation Results

Simulations are carried out under the “smooth-to-slight” sea
state with environmental conditions shown in Table IV. The
following simulation scenario is considered.

1) Phase 1 (σ = 1): 0–150 s.
2) Phase 2 (σ = 2): 150–750 s.
3) Phase 3 (σ = 3): 750–900 s.
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Fig. 3. Vessel position under switched control.

Fig. 4. Crane force under switched control.

Fig. 5. Vessel position under nonswitched control.

The performance of the proposed controller is shown
in Figs. 3 and 4. To further demonstrate the effectiveness and
importance of the proposed switched design, we formulate
a nonswitched controller by applying the control gains in
(9)–(11) for σ = 2 to all three phases. Performances of this
nonswitched design are shown in Figs. 5 and 6 and are col-
lected in Table V in terms of root-mean-squared error (RMSE)
and maximum offset of the vessel from the desired set point.

Fig. 6. Crane force under nonswitched control.

TABLE V

PERFORMANCE COMPARISON OF THE PROPOSED SWITCHED

CONTROLLER AND NONSWITCHED CONTROLLER

It is crucial to notice that the nonswitched controller causes
significant position offset and large oscillations (especially
in the surge direction), which could cause collision between
the platform and the vessel. Such oscillations confirm some
reported real-life hazardous scenarios (see [6, Fig. 1.2]) and
the necessity for switching control.

V. CONCLUSION

In this article, a switched controller was proposed for the
first time to tackle the interchanging dynamics arising during a
complete construction operation of a heavy-lift offshore vessel.
The proposed control framework was studied analytically, and
its effectiveness was verified in simulation via a realistic model
of the heavy-lift vessel. The simulations show that the pro-
posed solution can effectively avert an otherwise operational
hazard.

In this article, the switching time is determined using human
input. Further work could focus on autonomously switching
the controller by identifying the different construction phases
from real-time measurements.

APPENDIX

In view of the disturbances, the stability notion used in this
article is the so-called GUUB stability, as formalized by the
following definition.

Definition 2 (GUUB [34]): Systems (3) and (4) are GUUB
if there exists a convex and compact set ϒ such that for every
initial condition (η(0), ν(0)), there exists a finite T (η(0), ν(0))
such that (η(t), ν(t)) ∈ ϒ for all t ≥ T (η(0), ν(0)).
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Proof of Theorem 1: Using (3), (4), (9), and (10),
the observer error dynamics can be formulated as

˙̃η = η̇ − ˙̂η = Jν̃ + Kσ η̂ − K1σ η̃ (31)
˙̃ν = ν̇ − ˙̂ν = −Â1σ η̃ − Ã1σ (η̃ + η̂)− K2σ η̂

− Â2σ ν̃ − Ã2σ (ν̃ + ν̂)+ dσ . (32)

The Lyapunov function V (·) is continuous in between switch-
ing instants, but due to switching to a different value of Pσ ,
it might be discontinuous at switching instants. The behavior
of the Lyapunov function is studied at tl+1, l ∈ N

+. Let the
active subsystem be σ(t−l+1) when t ∈ [tl tl+1) and σ(tl+1)
when t ∈ [tl+1 tl+2). We have before and after switching

V (t−l+1) = (1/2)ξT (t−l+1)Pσ(t−l+1)
ξ (t−l+1)

V (tl+1) = (1/2)ξT (tl+1)Pσ(tl+1)ξ (tl+1)

respectively. Due to the continuity of η̂, ν̂ in (9) and (10)
and of η̃, ν̃ in (31) and (32) (see Remark 3), we have
η̂(t−l+1) = η̂(tl+1), ν̂(t−l+1) = ν̂(tl+1), η̃(t−l+1) = η̃(tl+1), and
ν̃(t−l+1) = ν̃(tl+1). This leads to ξ (t−l+1) = ξ (tl+1). Further-
more, due to the fact that ξT (t)Pσ(t)ξ (t) ≤ �M ξT (t)ξ (t) and
ξT (t)Pσ(t)ξ (t) ≥ �mξT (t)ξ (t), one has

V (tl+1)− V (t−l+1)

= 1

2
ξT (tl+1)(Pσ(tl+1) − Pσ(t−l+1)

)ξ (tl+1)

≤ �M − �m

2�m
ξT (tl+1)Pσ(t−l+1)

ξ (tl+1) ≤ �M − �m

�m
V

(
t−l+1

)

⇒ V (tl+1) ≤ μV
(
t−l+1

)
(33)

with μ = �M/�m ≥ 1. At this point, the behavior of
V (·) between two consecutive switching instants, i.e., when
t ∈ [tl tl+1), can be studied.

Utilizing (31) and (32), the following can be achieved:
V̇1 = η̃T P1σ (−K1σ η̃ + Kσ η̂ + Jν̃)

− ν̃T P2σ (Â2σ + Ã2σ )ν̃ − ν̃T P2σ (Â1σ + Ã1σ )η̃

− ν̃T P2σ (Ã1σ + K2σ )η̂ − ν̃T P2σ Ã2σ ν̂ + ν̃T P2σdσ

≤ −η̃T P1σK1σ η̃ − ν̃T P2σ Â2σ ν̃ + η̃T P1σKσ η̂

+ ν̃T P2σdσ − ν̃T P2σ (Ã1σ + K2σ )η̂

− ν̃T P2σ (Ã1σ − K2σ )η̃ − ν̃T P2σ Ã2σ ν̂. (34)

Furthermore, using (9)–(11), the following can be deduced:
V̇2 = η̂T P3σ (−Kσ η̂ + K1σ η̃ + Jν̂)

+ ν̂T P4σ (−(ρσ + ρ1σ )ν̂ − P−1
4σ JT P3σ η̂)

= −η̂T P3σKσ η̂−(ρσ+ρ1σ )ν̂
T P4σ ν̂+η̃T K1σP3σ η̂. (35)

Given any scalar β > 0 and a positive definite matrix Hσ ,
the following holds for any two nonzero vectors z and z1:

±2zT z1 ≤ βzT Hσ z + (1/β)zT
1 H−1

σ z1. (36)

Applying (36) to the last three terms of (34) and utilizing
the maximum perturbations from Assumption 1 result in

V̇ ≤ −η̃T {
P1σK1σ − (1/2β)(�A1σ − K2σ )

T P2σH−1
σ P2σ

× (�A1σ−K2σ )
}
η̃ − ν̃T {P2σ Â2σ − (3β/2)Hσ }ν̃

− η̂T {
P3σKσ − (1/2β)(�A1σ + K2σ )

T P2σH−1
σ P2σ

× (�A1σ + K2σ )
}
η̂

− ν̂T {
ρσP4σ − (1/2β)�AT

2σP2σH−1
σ P2σ�A2σ

}
ν̂

− ρ1σλmin(P4σ )||ν̂||2 + η̃T (Kσ + K1σ )η̂ + ν̃T�dσ .

(37)

Observe that ||ξ || ≥ ||ν̂|| and ||ξ || ≥ ||ν̃||. Moreover

α

∫ t

0
||(K1σ + Kσ )||||η̂(�))||||η̃(�)||d�

≥ α||(K1σ + Kσ )||||η̂(t)||||η̃(t)|| ∀t ≥ t0

where α > 1 by design. Using the design conditions (12)–(14),
the fact P4σ > 0, and the definitions of Qiσ in (20), we have

V̇ ≤ −λmin(Q1σ )||η̃||2 − λmin(Q2σ )||ν̃|| − λmin(Q3σ )||η̂||2
− λmin(Q4σ )||ν̂||2 + ||(Kσ + K1σ )||||η̃||||η̂||
+ ||ν̃||||dσ || − ρ1σ ||ν̂||2

≤ − min
i
(λmin(Qiσ ))||ξ ||2 + ||�dσ ||||ξ ||

− ||(Kσ + K1σ )||||η̃||||η̂||(α||ν̂||2 − 1). (38)

The form of V in (22) gives �m/2||ξ ||2 ≤ V ≤ �M/2||ξ ||2.
Then, for a scalar ζ such that 0 < ζ < κ , (38) becomes

V̇ ≤ −ζV − (κ − ζ )V + ||�dσ ||
√

2V/�m

−||(Kσ + K1σ )||||η̃||||η̂||(α||ν̂||2 − 1). (39)

Furthermore, utilizing the fact ||ξ || ≥ ||ν̂||, one has V ≥
(�m/2)||ξ ||2 ≥ (�m/2)||ν̂||2. Then, noting B from (23), one
can verify that V̇ ≤ −ζV is guaranteed when V ≥ B.

In light of this, further analysis is needed to observe the
behavior of V (t) between the two consecutive switching
instants, i.e., t ∈ [tl tl+1), for two possible scenarios.

1) When V (t) ≥ B, we have V̇ (t) ≤ −ζV (t) implying
exponential decrease of the Lyapunov function.

2) When V (t) < B, no exponential decrease can be
derived.

Behavior of V (t) is discussed individually for the two cases.
Case 1: There exists a time, call it T1, when V (t) enters into

the bound B, and Nσ (t) denotes the number of all switching
intervals for t ∈ [t0 t0 + T1), where t0 denotes initial time.
Accordingly, for t ∈ [t0 t0 + T1), using (33) and Nσ (t0, t)
from Definition 1, we have

V (t) ≤ μ exp
(−ζ(t − tNσ (t)−1)

)
V (t−Nσ (t)−1)

≤ μ exp
(−ζ(t − tNσ (t)−1)

)
·μ exp

(−ζ(tNσ (t)−1 − tNσ (t)−2)
)

V (t−Nσ (t)−2)

...

≤ μ exp(−ζ(t − tNσ (t)−1))μ exp(−ζ(tNσ (t)−1−tNσ (t)−2))

· · · μ exp (−ζ(t1 − t0)) V (t0)

= μNσ (t0,t) exp (−ζ(t − t0)) V (t0)

= b (exp (−ζ + (lnμ/ϑ)) (t − t0)) V (t0) (40)

where b � exp (N0 lnμ) is a constant. Substituting the ADT
condition ϑ > lnμ/ζ in (40) yields V (t) < bV (t0) for
t ∈ [t0 t0 + T1). Moreover, as V (t0 + T1) < B, one has
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V (tNσ (t)+1) < μB from (33) at the next switching instant
tNσ (t)+1 after t0 + T1. This implies that V (t) may be larger
than B from the instant tNσ (t)+1: however, using a recursive
argument as in [28], we can come to the conclusion that
V (t) < bμB for t ∈ [t0 + T1 ∞).

Case 2: It can be easily verified that the same argument
below (40) also holds for Scenario 2.

Thus, observing the stability arguments of the Cases 1 and 2,
the GUUB result (23) can be concluded, which further implies
that η̃, ν̃, η̂, ν̂ ∈ L∞ ⇒ η, and ν ∈ L∞.

REFERENCES

[1] O. Levander, “Autonomous ships on the high seas,” IEEE Spectr., vol. 54,
no. 2, pp. 26–31, Feb. 2017.

[2] A. Veksler, T. A. Johansen, F. Borrelli, and B. Realfsen, “Dynamic
positioning with model predictive control,” IEEE Trans. Control Syst.
Technol., vol. 24, no. 4, pp. 1340–1353, Jul. 2016.

[3] C. Paliotta, E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa, and
J. T. de Figueiredo Borges de Sousa, “Trajectory tracking and path
following for underactuated marine vehicles,” IEEE Trans. Control Syst.
Technol., vol. 27, no. 4, pp. 1423–1437, Jul. 2019.

[4] J. Flint and R. Stephens, “Dynamic positioning for heavy lift appli-
cations,” in Proc. Dyn. Positioning Conf., Houston, TX, USA, 2008,
pp. 1–10.

[5] H. Chen, T. Moan, and H. Verhoeven, “Safety of dynamic positioning
operations on mobile offshore drilling units,” Rel. Eng. Syst. Saf., vol. 93,
no. 7, pp. 1072–1090, Jul. 2008.

[6] F. Bakker, “A conceptual solution to instable dynamic positioning during
offshore heavy lift operations using computer simulation techniques,”
M.S. thesis, TU Delft, Delft, The Netherlands, 2015.

[7] B. Rokseth, I. B. Utne, and J. E. Vinnem, “A systems approach to risk
analysis of maritime operations,” Proc. Inst. Mech. Eng., O, J. Risk Rel.,
vol. 231, no. 1, pp. 53–68, Feb. 2017.

[8] S. Minsaas, Stuart, V. Joshi, and G. Haldipur. (2014). Careful Planning
Precedes Successful Platform Installation at Ekofisk. [Online]. Available:
https://www.offshore-mag.com/home/article/16804666/careful-
planning-pre cedes-successful-platform-installation-at-ekofisk

[9] Heerema Marine Contractors. (2019). Thialf. [Online]. Available:
https://hmc.heerema.com/fleet/thialf/

[10] D. A. Smallwood and L. L. Whitcomb, “Model-based dynamic posi-
tioning of underwater robotic vehicles: Theory and experiment,” IEEE
J. Ocean. Eng., vol. 29, no. 1, pp. 169–186, Jan. 2004.

[11] S. Heshmati-alamdari, G. C. Karras, P. Marantos, and
K. J. Kyriakopoulos, “A robust model predictive control approach for
autonomous underwater vehicles operating in a constrained workspace,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–5.

[12] S. Küchler, T. Mahl, J. Neupert, K. Schneider, and O. Sawodny,
“Active control for an offshore crane using prediction of the vessel’s
motion,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 2, pp. 297–309,
Apr. 2011.

[13] X. Hu and J. Du, “Robust nonlinear control design for dynamic
positioning of marine vessels with thruster system dynamics,” Nonlinear
Dyn., vol. 94, no. 1, pp. 365–376, Oct. 2018.

[14] Y. Wang, Y. Tuo, S. X. Yang, M. Biglarbegian, and M. Fu, “Reliability-
based robust dynamic positioning for a turret-moored floating production
storage and offloading vessel with unknown time-varying disturbances
and input saturation,” ISA Trans., vol. 78, pp. 66–79, Jul. 2018.

[15] Z. Sun, G. Zhang, L. Qiao, and W. Zhang, “Robust adaptive trajectory
tracking control of underactuated surface vessel in fields of marine
practice,” J. Mar. Sci. Technol., vol. 23, no. 4, pp. 950–957, Dec. 2018.

[16] W.-Z. Yu, H.-X. Xu, and H. Feng, “Robust adaptive fault-tolerant control
of dynamic positioning vessel with position reference system faults using
backstepping design,” Int. J. Robust Nonlinear Control, vol. 28, no. 2,
pp. 403–415, Jan. 2018.

[17] X. He, W. He, J. Shi, and C. Sun, “Boundary vibration control of
variable length crane systems in two-dimensional space with out-
put constraints,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 5,
pp. 1952–1962, Oct. 2017.

[18] X. Lin, J. Nie, Y. Jiao, K. Liang, and H. Li, “Nonlinear adaptive fuzzy
output-feedback controller design for dynamic positioning system of
ships,” Ocean Eng., vol. 158, pp. 186–195, Jun. 2018.
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