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Abstract
Load identification is an essential step in Non-Intrusive Load Monitoring (NILM), a
process of estimating the power consumption of individual appliances using only
whole-house aggregate consumption. Such estimates can help consumers and utility
companies improve load management and save power. Current state-of-the-art
methods for load identification generally use either steady state or transient features
for load identification. We hypothesize that these are complementary features and so a
hybrid combination of them will result in an improved appliance signature. We
propose a novel hybrid combination that has the advantage of being low-dimensional
and can thus be easily integrated with existing classification models to improve load
identification. Our improved hybrid features are then used for building appliance
identification models using Naive Bayes, KNN, Decision Tree and Random Forest
classifiers. The proposed NILM methodology is evaluated for robustness in changing
environments. An automated data collection setup is established to capture 7 home
appliances aggregate data under varying voltages. Experimental results show that our
proposed feature fusion based algorithms are more robust and outperform steady
state and transient feature-based algorithms by at least +9% and +15% respectively.

Keywords: Non-intrusive load monitoring, Feature learning, Appliance identification

Introduction
The global energy demand is rising and is a major cause for global warming and climate
change. The U.S. Energy Information Administration (EIA) projects that world energy
consumption will grow by nearly 50% and the energy consumed in the buildings sec-
tor will increase by 65% by 2050 (EIA 2019). Improving energy efficiency and reducing
energy consumption are two important sustainability measures. Detailed appliance spe-
cific energy usage feedback would enable consumers to reduce consumption by 5-15%
(Darby and et al 2006). Load monitoring is a method of determining energy consumption
and operating states of individual appliances. Intrusive Load Monitoring (ILM) monitors
appliance consumption using a low-end energy sensor connected to an appliance. ILM
can precisely monitor and control appliances but are not cost effective. NILM or load dis-
aggregation is an approach to estimate individual appliance energy consumption using
aggregate load measurement obtained from a single energy meter. NILM is economical
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as it uses single energy meter for load monitoring. Hart (1992) in 1980 first introduced
the research on NILM. NILM research is gaining importance due to advancements in the
area of AI, IoT, Smart meters and Smart grids (Ruano et al. 2019).
The general process of load dis-aggregation involves four stages, namely data acquisi-

tion, event detection, feature extraction, and appliance identification (Ruano et al. 2019).
In data acquisition stage, the aggregate power consumption data is acquired for load iden-
tification. In event detection stage, the state transitions of appliances are detected. The
NILM approaches are either event-based or non-event-based depending on whether they
rely on detecting events in the aggregate power signal. The accuracy of the event detection
influences the performance of appliance classification. In feature extraction stage, features
are extracted from the region around the neighborhood of an event. Load signature or fea-
tures can be used for appliance identification. The performance of the NILM depends on
the feature extraction step. The features used in NILM aremainly classified as steady state
and transient features. Steady state features are extracted from the stable states of appli-
ance operation. Transient state features are extracted from the short-term fluctuations in
power or current during appliance state transitions. In appliance identification stage, the
goal of load identification is to determine the operating state of an appliance. Load identi-
fication can be done using optimization or pattern recognition-based approaches. Pattern
recognition-based approaches are classified as supervised, semi-supervised and unsu-
pervised. Supervised approach requires training data to learn appliance identification
models. Unsupervised approach does not require training but require one-time labelling
of appliances. Unsupervised approach can build model with less training data. Some of
the state of art load identification approaches are discussed below.

Optimization based load identification

NILM problem can be formulated as an optimization problem which finds an optimal
combination of appliance consumption that minimises the residual sum between esti-
mated consumption and actual aggregate consumption. There are different combinatorial
search methods such as genetic algorithm, segmented integer quadratic constrained pro-
gramming and mixed integer linear programming (Klemenjak and Goldsborough 2016).
The optimization-based techniques are computationally intensive and are practically
infeasible on large number of devices (Klemenjak and Goldsborough 2016).

Pattern recognition based load identification

Supervised and unsupervised techniques have been widely applied for load identifica-
tion. Supervised approach employs machine learning, deep learning and some forms of
Hidden Markov Model (HMM) techniques. Machine learning based load identification
algorithms such as K. nearest neighbour (KNN), Support Vector Machine (SVM), Artifi-
cial Neural Network (ANN), Random Forest (RF), Naïve Bayes model and Decision Trees
have been utilized for the load identification task (Zoha et al. 2012). In recent times, deep
learning algorithms are preferred for load classification tasks. In Zhang et al. (2018), the
authors propose sequence-to-point convolutional neural networks to train the model.
The performance improvements in standard error measures were 84% and 92%. A con-
volutional neural network sequence to sequence model is proposed in Chen et al. (2018)
and load dis-aggregation is performed on the Reference Energy Disaggregation Data Set
(REDD) dataset. In De Baets et al. (2018) a convolutional neural network is used for



Reddy et al. Energy Informatics             (2020) 3:9 Page 3 of 15

load identification task, here a V-I trajectory image is used as input to CNN and the
output is the type of appliance. The authors in Kelly and Knottenbelt (2015), use three
deep neural network architectures for energy dis-aggregation namely a long short-term
memory (LSTM), denoising autoencoders, and a network which regresses the start time,
end time and average power demand of each appliance activation. Deep learning meth-
ods are highly accurate compared to other methods but they require large amounts of
data to build generic models (Liu et al. 2019). Unsupervised approach makes use of clus-
tering techniques, HMM and several of its variants. HMM-based techniques have been
widely studied for load dis-aggregation (Faustine et al. 2017). HMM are non-event based
or state based NILM methods. State-based approaches are limited by the need for expert
knowledge to set a-prior values for each appliance state. The key problem of HMM-based
approaches is their high computational complexity. As the number of appliances to dis-
aggregate increase, the time complexity increases exponentially (Kim et al. 2017). There
are several NILM works in literature which are not covered here due to space limitation.
A comprehensive qualitative and quantitative evaluation of some of recent algorithms can
be found in Nalmpantis and Vrakas (2019).

Contributions

We propose a supervised NILM algorithm using low frequency (10Hz) active power,
reactive power, apparent power and impedance steady state and transient features. The
main contribution of this paper is to develop a hybrid signature using a novel feature
fusion technique that utilizes steady state and macroscopic transient features. Individu-
ally, steady state features or transient state feature represent partial appliance signature.
Steady state features are helpful in identifying appliances with non-overlapping power
values. Macroscopic transient features are helpful for differentiating appliances with over-
lapping power values. Therefore, a combination of numeric steady state features and time
series transient state features will result in an improved appliance signature. We fuse fea-
tures by converting transient features into numeric features and then merging with steady
state features. Different distance measures such as dynamic time warping, Euclidean and
Mahalanobis metric are used for transformation of transient features. Improved features
are then used for building appliance identification models using Naïve Bayes, KNN, deci-
sion tree and random forest classifiers. An automated data collection setup is established
to capture 7 home appliances aggregate data under varying voltages to validate the robust-
ness of NILM algorithms in changing environments. Experimental results showed that
the proposed feature fusion based algorithms are robust and outperforms active power
steady state and transient feature-based algorithms. There are two existing works on sim-
ilar lines to that of our approach. The authors in Chang et al. (2010) have shown that
combined steady and transient features would improve load identification. The study by
(Chang 2012) uses the wavelet transform (WT) to improve load transients. Our approach
is different from these existing works as we develop a new hybrid signature from steady
and transient features before training the model. We show that our approach is better
than these existing works.
This paper is organized as follows: Next Section explains our proposed feature fusion

based NILM methodology. Next “Experimental results” section discusses the details
of experiments and analysis of results. Finally, we summarize the findings in the
“Conclusion” section.
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Methodology
In this section, we explain our proposedNILMmethodology. The objective of this study is
to improve accuracy and generalization of standard machine learning NILM algorithms.
The basic idea is to develop a novel feature by the fusion of steady state and transient state
features. The sampling frequency is chosen in such a way that it captures both steady state
and transient features. A very high frequency would usually acquire lot of data before
reaching steady state. Very low frequency would miss transient information in the data.
Therefore, we have chosen a sampling rate of 10 Hz in this study. The block diagram of
our approach is as shown in Fig. 1. High frequency energy meters capture high resolu-
tion data at a frequency of more than 50 Hz. High frequency energy meters are expensive.
The low frequency energy meter or ordinary energy meters capture low resolution data
at a frequency of less than 1Hz (Basu et al. 2017). In India, supply voltages fluctuate and
due to this the data distributions of appliance signatures will change affecting the perfor-
mance of appliance identification techniques. Therefore, we test the robustness of NILM
techniques on varying supply voltages.

Data acquisition

The typical manner in which data is collected is cumbersome and time consuming as it
requires manual intervention to generate appliance combinations. To overcome this, we

Fig. 1 Feature Fusion based NILM approach
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implement an automated setup to acquire NILM data. Figure 2 shows the block diagram
of our setup. The Arduino micro-controller sends signals to the relays to power ON/OFF
appliances. AC supply is regulated through a voltage regulator (dimmer) to vary the input
source voltages. Yokogawa WT 310 digital power meter measures the aggregate NILM
data. Appliances are connected to the power source through the energy meter. The aggre-
gated data from energy meter is logged to a laptop. The setup provides aggregate NILM
data of various appliance combinations in different appliance states. A seven-bit gray code
sequence is fed to the micro-controller to restrict only a single device change state at a
given time, usually referred as switch continuity principle (Hart 1992). This timely data
generation makes it easier to label training data. The samples in a particular combination
are collected for half a minute. This time duration is sufficient for home appliances to
become steady after the transition.
The data of 7 Home Appliances namely Fan, Vacuum Cleaner, Geyser, Oven, Mixer,

Air purifier, and Kettle was collected on 6 different source voltages 190, 200, 210, 220,
230 and 240. The data are collected at these voltages to analyze the effects of voltage
variations on NILM techniques. We considered only some home appliances in the study
so that it was feasible for us to generate events for different appliance combinations. We
have excluded fridge and washing machine as they have long operating cycles whichmake
it difficult to capture transient and steady state by our automated system. The features
captured in the data are Voltage (V), Current (I), Active Power (P), Reactive Power (Q),
and Apparent power (S). The total number of samples collected is 14,428. The number of
events in the data is 702. The 127 all combinations for 6 different voltage variations result
in 702 events. The data can be accessed from the following link https://doi.org/10.6084/
m9.figshare.11944932.

Event detection

Commonly used event-detection models are namely expert heuristic models, probabilis-
tic models and matched-filters models. Heuristic models are based on change of standard

Fig. 2 Block diagram of NILM data collection setup

https://doi.org/10.6084/m9.figshare.11944932
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deviation, amplitude or cumulative sum of active power. Probabilistic models use gener-
alized likelihood ratio or goodness of fit function for event detection. Template matching
methods use Euclidean or dynamic time warping similarity measures to detect events
(Anderson et al. 2012) Recently machine learning approaches are also been used for event
detection (Kahl et al. 2019).
In our approach event detection is done manually by referring the control sequence of

appliance ON/OFF used in the automated data setup. Such manually labelled event data
do not miss any event and is suitable for studying the performance of appliance identi-
fication algorithms. This manual labeling cuts the dependency of learning algorithm on
the event identification algorithms. Fourteen class labels are assigned to On/Off events
of seven appliances. We improve the quality of data by data cleaning, feature selection
and normalization. Resistance feature tends to be more stable even under fluctuations of
voltage. A derived feature Resistance (R) is computed as a ratio of voltage and current.
Normalization using reference voltage (Vref ) minimizes the effect of voltage fluctuations
(Hart 1992). We normalize the active power (P) , apparent power (S) and reactive power
(Q) using the equations given below.

Pnorm(t) = (Vref /V (t))2 ∗ P(t)

Snorm(t) = (Vref /V (t))2 ∗ S(t)

Qnorm(t) = (Vref /V (t))2 ∗ Q(t

Feature extraction

Some of the commonly used low frequency steady state and transient features used in
load identification are P-Q plane (Barsim et al. 2014), macroscopic transients, real power
(Dinesh et al. 2016), current and voltage-based features. High frequency steady state
and transient features used in load identification are spectral envelope, wavelets (Chang
2012; Su et al. 2011), shape features, raw wave-forms (Cole and Albicki 2000), VI trajec-
tory (Hassan et al. 2013) etc. A comprehensive review of state of art feature extraction
for NILM is discussed in Sadeghianpourhamami et al. (2017). Choosing an appropriate
discriminating set of features is necessary for accurate appliance identification.
In our approach appliance features are extracted from the labelled event data. Steady

state features are extracted by computing the difference between the feature values before
and after events. Figure 3 shows the Power changes due to the ON event of the Vacuum
Cleaner appliance. The difference diff, between A1, B1, and A2, B2 denote changes in
power value after the Vacuum Cleaner ON transition. The transient of an appliance is of
length transientsize begins at the event and ends up when the device stabilizes.
Algorithm 1 describes the process of extracting steady state and transient state features.

Separate files containing appliance event data at different voltages are stored in an all-
voltsdata folder. The transientsize is defined to specify the length of transient signature
to be captured. Each data file is read one instance at a time and steady state features are
extracted as shown in (lines 4 to 12 of Algorithm 1). The steady state difference in fea-
tures is taken at different intervals before and after the event, shown as (prefeatures and
postfeatures) in Fig. 3 so as to capture variations due to internal state transitions in appli-
ances. The after event instances (postfeatures) are selected after the appliance becomes
stable. The extracted features are written along with the appliance event label to an output
Steadystate file corresponding to each input file. The (lines 13 to 22 of Algorithm 1) show
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Fig. 3 Power changes due to ON event of Vacuum Cleaner

how transient features are extracted. For every event, the transient features are the tem-
poral first order difference of P, S, Q and R features in the region marked as transientsize.
These transient features along with event label are written to a Transientstate file.

Feature fusion algorithm

Our feature fusion algorithm is explained in Algorithm 2. Figure 4 shows the process of
feature fusion. The time-series transient data and steady state data obtained after fea-
ture extraction, A1, A2, —, An is given as input to the feature fusion algorithm. The
high dimensional time series data is transformed to equivalent low dimensional numeric
features and is finally merged with steady state features. We capture the discriminatory
features of the appliances from the transient data. We find discriminatory features by
measuring the intra-class and inter-class distance of every instance in the transient data.
We first compute representative sample or centroid of time series transient feature vec-
tors of every appliance category C1, C2, — , Cn. We then compute the distance of every
instance of transient data to these centroids, for example: dA11C1 in Fig. 4 refers to the
distance of transient instance 1 of appliance A1 to centroid C1, (line 6 of Algorithm 2).
The time series transient features data of active power is of 702 X 46 dimensions, repre-
senting 702 ON/OFF events of 7 appliances. There are 14 classes and so 14 centroids are
computed. There will be 14 distances of an instance to each of the centroids. These dis-
tances form the equivalent numeric feature vector of the transient data. Thus the 702 X
46 dimension transient feature data gets transformed into 702 X 14 dimension data. This
transformed data is then merged with 702 X 1 steady state active power data to get the
final 702 X 15 dimension feature fusion data representing an improved hybrid signature.
(line 9 of Algorithm 2).

Time-series distance computations for transient features

The distance between two time series, sequences X = x1, x2, . . . xn, and Y =
y1, y2, . . . , xm, is computed using three different distance measures namely Euclidean,
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Algorithm 1 steady state and transient state feature extraction
1: Input: Appliance Event data allvoltsdata, transientsize
2: Output: Steadystate and Transientstate files
3: for file ∈ allvoltsdata do
4: while not EOF file do // Extract steady state features
5: Read an instance from file
6: if is Event instance then
7: prefeatures = P, S, Q and R features of some before event instances
8: postfeatures = P, S, Q and R features of some after event steady state

instances
9: diff = prefeatures − postfeatures

10: Write the diff along with the appliance event to steadystate file
11: end if
12: end while
13: while not EOF file do // Extract transient features
14: Read an instance from file
15: if is Event instance then
16: while transientsize > 0 do
17: Write the temporal first order difference of P, S, Q and R features to

Transientstate file
18: transientsize = transientsize − 1
19: end while
20: Finally append the event label to the time series data
21: end if
22: end while
23: end for

Fig. 4 Feature Fusion Technique
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Algorithm 2 Feature Fusion Algorithm
1: Input: Steadystate and Transientstate files
2: Output: Features fusion Euclid, DTW andMaha files
3: Compute the centroid of each appliance category from the Transientstate file to

represent the most representative sample of each appliance category
4: while not EOF Transientstate file do
5: Read an instance from file
6: Compute distances of the read instance to each of the centroid
7: Corresponding to the distance metric used, write the transformed numeric

features to the Euclid, DTW orMaha files respectively
8: end while
9: Merge the transformed transient features from Euclid, DTW and Maha files class-

wise with features of Steadystate file

Dynamic time warping and Mahalanobis. These distance metrics are analyzed for their
suitability in appliance identification data. The Euclidean distance is computed as given
below

dist(X,Y ) =
√
√
√
√

n
∑

i=1
(Xi − Yi)2 (1)

Dynamic Time Warping (DTW) is another widely used distance metric for comparing
two time series. It has been used for analyzing temporal sequences of video, audio, graph-
ics and also in load dis-aggregation (Liu et al. 2017). DTW tries to align two sequences
in order to get the most representative distance measure. The recursive formulation for
computing DTW is given by

dist(X,Y ) = D(n,m)

D(i, j) = dist(xi, yi) + min{(D(i − 1, j), (D(i − 1, j − 1), (D(i, j − 1)}
dist(0, 0) = 0, dist(0, j) = dist(i, 0) = infinity

(2)

TheMahalanobis distance is based on the co-variance among variables in the feature vec-
tors which are compared. TheMahalanobis distance groups means and variances for each
variable and is scale invariant and takes into consideration correlation between features.
Mahalanobis distance metric performs better than other distance metrics (Walters-
Williams and Li 2010). The Mahalanobis distance between two sequences is defined as

dist(X,Y ) =
√

(X − Y )TS−1(X − Y ) (3)

where S is the Inverse co-variance matrix of two sequences.

Appliance identification

The features constructed from the feature fusion algorithm are used for appliance iden-
tification. Here we use standard classification algorithms such as Naive Bayesian (NB),
K-Nearest Neighbor (KNN), Decision Tree (J48) and Random Forests (RF) classifiers with
10-fold cross-validation.
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Experimental results
Experiments are designed to evaluate the effectiveness of our proposed feature fusion
based NILM classifiers. We verify whether the performances improve due to feature
fusion. We apply data pre-processing techniques such as normalization and data clean-
ing as explained in the earlier section and evaluate the effectiveness of normalization.
We carry out experiments to see how feature fusion based classifiers performs compared
to steady state or transient features based classifiers, using only P features and using
P,S,Q and R features. In later experiments we evaluate which feature fusion signature
works better with RF classifier using only P features and then with P,S,Q and R features.
The transient signatures which are transformed using distance metrics such as Eucli-
den, DWT, Mahalanobis or discrete wavelets are used to obtain different feature fusion
signatures.

Evaluation metrics and implementation

The evaluation is done using the accuracy measure of a classifier (Hossin and Sulaiman
2015). The accuracy metric measures the sum of correct predictions divided by the total
number of predictions. WEKA (Hall et al. 2009) experimenter tool is used for com-
paring the performance of the classifiers on the prepared data. The steady state and
transient state feature extraction algorithm and feature fusion algorithm are implemented
in python.

Normalization results

We have normalized the data and the effect of normalization on steady state data and
transient state data with P, S, Q and R features is shown in Fig. 5. There is good improve-
ment in accuracy due to normalization on steady state data. The transient state data is not
much affected by normalization.

Fusion based NILM using only active power feature

In this experiment we have taken only active power (P) as the feature for training NILM
classifiers. Most low end meters measure only active power. The performance results of
using steady state based classifier, transient state based classifier and feature fusion based
classifier using only active power (P) for NILM are compared in Fig. 6. The performance of
feature fusion based classifier that uses Mahalanobis distance measures for transforming
transient data, performs better as compared to separate steady state and transient state

Fig. 5 Effect of Normalization on Performance of NILM
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Fig. 6 Comparing Performance of fusion based NILM approach using only Active Power feature data

based classifiers. There is more than 8 percent improvement in the accuracy of appliance
identification using fusion features in all classifiers. Notice that even when using only
active power, our feature fusion technique is able to provide remarkable accuracy reaching
up-to 98 percent using RF classifier.

Fusion based NILM using P, S, Q and R features

In this experiment we have included active power (P), Apparent Power (S), Reactive Power
(Q) and Resistance (R) as the features for training NILM classifiers. The performance
results of steady state features based classifiers, transient features based classifiers and
feature fusion based classifiers using P, S, Q and R features is compared in Figure 7. The
performance of feature fusion based classifiers that uses Mahalanobis distance measures
for transforming transient data, performs quite effectively as compared to separate steady
state features based classifiers and transient features based classifiers. There is 4 percent
improvement in accuracy of appliance identification using fusion feature approach in J48
and RF classifier. The overall improvement in accuracy with P, S, Q and R features is
slightly more (1 to 2 percent) as compared to earlier experiment using only Active Power
(P) feature.

Comparing the performances of different feature fusion based classifiers with transient

feature based classifiers

In this experiment we compare different feature fusion based RF classifier and transient
feature based RF classifier. The transient signatures which are transformed using distance
metrics such as Eucliden, DWT,Mahalanobis or using discrete wavelets are used to obtain
different feature fusion signatures. The data used in experiment are as listed below.

1. The raw data is the extracted transient data and steady state data, one of the
existing work (Chang et al. 2010) have proposed such features.

2. The dtw data uses the dynamic time warping distance metric for transforming
transient features
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Fig. 7 Comparing Performance of fusion based NILM approach using P, S, Q and R feature data

3. The euclid data uses the Euclidean distance metric for transforming transient
features

4. The Mahalanobis data uses the Mahalanobis distance metric for transforming
transient features

5. The dwt data uses single level discrete wavelet transform using Daubechies (db2)
family wavelet followed by application of Principal Component Analysis (PCA).
Existing work by Chang (2012) use this kind of feature extraction technique on
transient signatures.

In Fig. 8, the first bar represents transient feature based RF classifier whereas the second
represent feature fusion (steady+transient) based RF classifier. The feature fusion based
RF classifier always performs better than the transient feature based RF classifier. With
only active power (P) as the feature for training RF classifier the Fig. 8 shows the increasing
order of accuracy on different signatures. The performance on Mahalanobis data is the
best followed by dwt data. There is about 8 percent improvement in accuracy of appliance
identification when compared with raw, Clearly indicating that our approach is better as
compared to the existing approaches that use either raw features or dwt features. Using
P,S,Q and R features for training, Fig. 9 shows the increasing order of accuracy of Random
Forest classifier on different signatures. The performance onMahalanobis data is the best
followed by dwt data. There is 8 percent improvement in accuracy of appliance identifi-
cation when compared with raw. Using all features slightly improve the accuracy about 1
to 2 percents as compared to earlier active power alone.
In all the above experiments the random forest (RF) and K-NN algorithms perform

equally better and have higher accuracy. The Naive Bayesian classifier tends to perform
poorly. Also the performance of NILM on only active power is sufficiently close to that
using all features P, S, Q, and R data. Normalization helps in improving the accuracy. The
performance on Mahalanobis data is the best followed by dwt data. The Mahalanobis
distance performs best as it captures the co-relation among the features. There is almost
8 percent improvement in accuracy of appliance identification when compared with raw
transients. The experimental results clearly establish feature fusion technique are better
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Fig. 8 Performance of steady+transient feature fusion based RF classifier with transient feature based RF
classifier with only Active Power feature

than ordinary steady state or transient features in improving the performance of load
identification.

Conclusion
There is a need for improved NILM algorithms which can accurately identify loads for
effective energymanagement. Supervised NILM techniques are either using a steady state
or transient state features. A novel fusion based Non-Intrusive load monitoring algorithm
is proposed that combines the goodness of steady state feature and transient state fea-
tures. Feature extraction and feature fusion algorithms are described. The data collection
setup is established to automatically capture 7 home appliance aggregate data under vary-
ing voltages. This data helps in testing the robustness of NILM algorithms in changing

Fig. 9 Performance of steady+transient feature fusion based RF classifier with transient feature based RF
classifier with P,S,Q and R features



Reddy et al. Energy Informatics             (2020) 3:9 Page 14 of 15

voltage environments. We provide the experimental results comparing the fusion based
NILM with steady state feature NILM and transient state feature NILM. The experimen-
tal results validate that the novel fusion based algorithms outperforms the separate steady
state and transient algorithms. It is also observed that the Mahalanobis distance used for
transforming transient data is most effective for feature construction.We have shown that
our approach performs better than two of the existing approaches that were some what
similar to our work. Feature fusion technique can be applied to other supervised algo-
rithms for improving NILM systems. There is a scope for comparing our algorithm on
different data-sets and algorithms.
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