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Abstract: Reference Evapotranspiration (ET0) is a complex hydrological variable defined by various 
climatic variables affecting water and energy balances and critical factors for crop water 
requirements and irrigation scheduling. Conventionally ET0 is calculated by various empirical 
methods based on rigorous climatic data. However, there are many places where various climatic 
data may not available for ET0 estimation. The objective of this study is to evaluate different 
machine learning (ML) techniques to estimate ET0 with minimal climatic inputs. In this study, FAO-
56 Penman-Monteith model was considered as the standard model and different ML models based on 
A Long short-term memory neural networks (LSTM), Gradient Boosting Regressor (GBR), Random 
Forest (RF) and Support Vector Regression (SVR) were developed to estimate ET0 with climatic 
variables as input parameters. These models were evaluated in two different climatic regions, 
Hyderabad in India and Waipara in New Zealand. The results indicated that 99 % accuracy could be 
achieved with all climatic input, whereas accuracy drops to 86% with fewer data. LSTM model 
performed better than other ML models with all input combinations at both the stations, followed by 
SVR and RF. Both LSTM and SVR models have been noted as the most robust ML models for 
estimating ET0 with minimal climate data. Even though the excellent performance can be achievable 
when all input variables are used, the study, however, found that even a three-parameter combination 
(Temperature, Wind Speed and Relative Humidity values) or two-parameter combination 
(Temperature and Relative Humidity, Temperature and Wind Speed) can also be promising in ET0 
estimation. The presented study will help to estimate ET0 for data scare regions, which is vital for 
agricultural water management in semi-arid climates.  
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1. Introduction 

Evapotranspiration (ET0) is the process wherein water starting from an expansive scope of 
sources is moved from the soil and vegetation layer to the atmosphere. Water loss from a vegetative 
surface through the consolidated cycles of plant transpiration and soil and atmospheric evaporation. 
It is proportional to and frequently alluded to as consumptive use. The best possible assessment of 
ET0 is an essential issue in food security research, land management frameworks, contamination 
recognition, irrigation planning and scheduling, hydrological balance studies, and watershed 
hydrology. Knowledge of ET0 is essential while managing water resources and management 
problems, such as the stipulation of the water for irrigation, agriculture, drinking and industrial use, 
or water reserve management [1]. ET0 also offers potential advantages for irrigation management. 
Hence, the exact calculation of ET0 is fundamental in improving irrigation efficiency, water reuse 
and seepage control [2–3] 

The laws of mass or energy preservation or both were always associated with the evaluation of 
ET0. In recent years, various ET0 estimating procedures and modelling methods are available in the 
literature. ET0 assessments can be performed utilizing distinctive exploratory methods, for example, the 
leaf (porometer), an individual plant (for example, lysimeter), at the field scale (for example, field 
water balance, Bowen proportion, scintillometer) and landscape scale (for instance eddy correlation 
and catchment water balance) [4]. However, some of these techniques are not practical for long haul 
estimation over a vast region because of regular maintenance and significant expense [4,5] referenced 
that the main factor influencing ET0 is climatic variables so that ET0 can be surveyed by 
experimental and semi-experimental equations from meteorological data. Numerous strategies 
dependent on climatic data have already been proposed. However, the Food and Agriculture 
Organization of the United Nations (FAO) suggested that the (FAO56-PM) be utilized as the 
standard method to assess ET0 [6]. This equation has picked up the parcel of acknowledgment and 
utilized worldwide for benchmark evapotranspiration assessments [6]. 

The Penman-Monteith equation has two critical advantages. First, it can be used in a wide variety 
of environments and climate scenarios without the need for any local calibrations because of its 
physical basis. Second, it is a well-documented method that has been validated using lysimeters under 
a wide range of climate conditions [7]. The main drawback of this equation is that it requires loads of 
climatic factors, including Temperature, Wind Speed, Solar Radiation, and Relative Humidity, are 
required, that are unavailable in many regions. In some cases, these factors are incomplete or not 
accessible in a given meteorological station, particularly in developing nations [8]. Consequently, it is 
fundamental to build up a more precise methodology that could compute ET0 with high accuracy, 
particularly in data-scarce regions. Potential Evapotranspiration (PET), Reference Evapotranspiration 
(ET0), and Actual Evapotranspiration (AET) are the terms that are commonly utilized in the literature 
to characterize evapotranspiration. The PET was characterized by [9] as the maximal water amount 
moved to the climate, from a vegetation spread in a condition of full physiological activity and 
unlimited water and supplement accessibility [1]. The reference evapotranspiration idea was 
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presented by designers and specialists of hydrology in the last part of the 1970s and mid-80s to stay 
away from the ambiguity that existed in the definition of potential evapotranspiration [10]. Reference 
Evapotranspiration is the ET0 rate not highest from the extended area entirely covered by grasses of 
12–15 cm high completely covering the ground. It is an abundant soil moisture substance [11]. PET is 
the ET from a vegetated surface with an infinite supply of water. However, because PET is still 
dependent on vegetation-specific characteristics (as previously mentioned) rather than solely 
meteorological variables, there was a determined need for a reference surface that was independent of 
vegetation and soil characteristics [5,11] This reference surface would allow for the analysis of the 
“atmospheric evaporative demand”, leaving only meteorological factors to be considered [6,12]. 

This simplifies ET calculation by generating a single surface against which other surfaces (e.g., 
different vegetation types) can be compared. Furthermore, the use of such an ET term would 
eliminate the need to vary the ET equation at various stages of vegetative growth [6]. This new type 
of ET, referred to as reference 14 evapotranspiration (ET0), simply “expresses the evaporating power 
of the atmosphere at a specific location and time of year” [6]. ET0 can also be viewed as a subset of 
PET in which the transpiring vegetation has been specifically defined. Explicit standardized 
equations and procedures are being suggested for reference evapotranspiration estimates and are 
typically modeled utilizing climate data and algorithms that depict surface vitality and aerodynamic 
qualities of the vegetation. 

Several empirical models for assessing ET0 with limited data can also be categorized as mass 
exchange-based, temperature-based, radiation-based, pan-evaporation based, and combination type [8], 
inferred a model for measuring evaporation from open surfaces by the mix of vitality offset with 
mass exchange techniques. [13] proposed the radiation-based Priestley-Taylor model, a 
rearrangement of the Penman model. [14] proposed the temperature-based Hargreaves model, which 
was perhaps the least complicated strategy. Eleven temperature-based ET0 techniques were evaluated 
for assessing ET0, and were discovered that the Hargreaves method gave an excellent performance in 
arid, semi-arid, temperate, cold, and polar atmospheres [10]. 

Because of the reliance on different climatic components, several researchers considered the 
calculation of ET0 as a complicated non-direct regression process and have progressed the 
assessment of ET0 models using computing procedures, for example, prepared Artificial Intelligence 
(AI), Machine learning models, and statistical regression approaches. [15] detailed gene expression 
programming (GEP), with its capacity to represent algebraic equations, to be a reliable procedure for 
modelling the decadal ET0 of six districts in Burkina Faso. [16] found a versatile neuro-fuzzy 
inference system (ANFIS) that outperformed Artificial neural networks (ANN) in modelling the 
monthly mean ET0. Additionally, [17] evaluated the ANN, GEP, and ANFIS-grid partitioning 
(ANFIS-GP) models to display monthly ET0, discovered that the ANFIS-GP model performed well 
compared to other models. [18] discovered ANN models to give more superior accuracy than GEP 
models in comparing GEP and ANN for modelling daily ET0. Moreover, [19], assessing week by 
week ET at Pali and Jodhpur, India, related the performance of ANN, least-square SVM, and 
extreme learning machine (ELM) approaches. The ELM gave preferable ET0 estimates over the other 
two models. [20] found that the ANN model gives preferred outcomes over the experimental 
conditions in assessing ANN’s performance and four empirical methods for demonstrating every day 
ET0 at the Amineto climate station in Greece. [21] assessed the ET0 in Florida, USA, utilizing M5P 
regression tree, SVR, and RF procedures and announced that these techniques were all prepared to 
model ET0 in the study area. [22] used ANFIS, feed-forward neural networks (FFNN), and SVR 
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ensemble-based models to model ET0 at 14 stations in Iran, Iraq, Libya, Turkey, and Cyprus. They 
found the ensemble techniques improved the performance of traditional ML models. ET0 

demonstrating methods that likewise incorporate SVR and RF were applied by [15,23–26]. 
Assessment of the precision of regression and machine learning approaches recommends that such 
methodologies estimate better ET0 over empirical models, such as the [1] and [14], which utilized 
limited meteorological factors. [27,28] compared the performance of four atmosphere-based methods 
and ANNs to assess ET0 when input climatic parameters were insufficient to apply the FAO Penman-
Monteith method. They inferred that ANN models performed superior to climatic techniques. In the 
1st case, they have used 4 meteorological variables (T, RH, Rs and u2) as input variables. In the 2nd 
case, 3 variables (T, RH, and Rs), were used and in the 3rd case, 2 variables (T and RH or T and Rs), 
were used. [29] inspected the temperature and potential evapotranspiration pattern over the Betwa 
bowl, India. [30] examined the pattern of minimum and maximum temperature of yearly, monthly, 
winter, pre-monsoon, monsoon, and post-monsoon. Assessment of the ET0 of Punjab was done by [31] 
was done dependent on different machine learning models including Deep Learning-Multilayer 
Perceptrons (DL), Generalized Linear Model (GLM), Random Forest (RF), and Gradient-Boosting 
Machine (GBM) models. It was compared in predicting daily ET0 with the deep learning model’s 
performance and was compared with the Penman-Monteith model and found that deep learning 
models performed superior to the considered models for training, validation and testing sets. [32] 
examined the unique data-driven based regression approaches to deal with daily ET0 modelling 
utilizing four data-inputs, including average air temperature, average wind speed, average relative 
humidity, and solar radiation. Results from their examination proposed that the unique data-driven 
and AI models could effectively be utilized in modelling the ET0. [33] investigated Support vector 
regression model for large scale regression problems and investigated the performance of Support 
vector regression model. [34] investigated the viability of the deep learning neural network (DLNN) 
for estimating the ET0. The LSTM model was developed by [35] to predict the dynamic of the 
water table depth in five sub-areas in arid north-western China. The results showed that the LSTM 
model achieved the best performance among the considered feed-forward neural network and 
double LSTM models.  

With the upcoming technology, there has been a drastic change in many industries over the 
globe [36], however agribusiness, being the least digitized, has also seen the development and 
commercialization of rural advances. Machine learning models and Deep learning models have also 
started to assume a significant function in everyday lives, stretching out our recognitions and 
capacity to adjust the earth around us, With this rising innovations the workforce which were 
confined to just a negligible mechanical areas are currently adding to various segments. 
Implementation of automation in agriculture, the weeding systems were studied using machine 
learning models by [37]. Correlations of direct profundities or ET0 rates with estimates from other 
timeframes or different areas aren't a viable method for evaluating ET0 data.ET0 profundities are 
firmly affected by climate and atmosphere and consequently change with time or area, therefore. 
Direct correlations ought to be made in the wake of normalizing the ET0 estimate or estimation 
utilizing reference ET0 to represent climate impacts by expressing it as a fraction of reference ET0. 
The current study gives a comparison of four ML based models to discover the best model for 
assessing daily ET0 under the state of minimal input variables in the semi-arid atmospheres in two 
unique areas, for example, Hyderabad, India and Waipara, New Zealand. The objectives of the 
current study are as per the following: (1) to develop different ML models, SVR, LSTM, RF and 
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GBR for modelling ET0 in Hyderabad and Waipara Stations (2) to assess the performance and 
stability of these models with different input combinations over the two stations (3) to find an 
appropriate approach to boost the modelling performance under the limited input factors condition.  

2. Data and case study  

To demonstrate the concept of the paper, we selected two various weather stations. One of them 
was Hyderabad, which is the capital and biggest city of the southern Indian province of Telangana. 
The city lies between latitude 17.366 N and longitude 78.746 E in the Deccan plateau with a normal 
stature of 536 m above mean sea level, possessing 650 square kilometers along the banks of Musi 
river with a populace of 9.75 million (Figure 1). Hyderabad has a distinct tropical wet and dry 
climate that borders on hot semi-arid (Köppen climate classification BSh). 
(https://en.wikipedia.org/wiki/Geography_of_Hyderabad). Everyday meteorological data were 
acquired from January 1965 through December 2015 (51 years) (612 months) from the weather 
station at Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, 
India. The annual average weather data of the meteorological station is introduced in Table 1. Five 
meteorological variables were recorded at a daily time scale, including (1) Maximum Air 
Temperature (Tx °C); (2) minimum Air Temperature (Tn °C); (3) minimum Relative Humidity 
(RH, %); (4) Wind Speed (U2, m s−1) and (5) Solar Radiation (Rs, MJ m−2 d−1). Measurements were 
carried out at 2 m (Air Temperature and Relative Humidity) and 10 m (Wind Speed) above the soil’s 
surface. Data on Wind Speeds at 2 m (U2) were obtained from those taken at 10 m using the log-
wind profile equation.  

Table 1. Statistical values of available meteorological variables and ET0 at Hyderabad station. 

Parameters Tx (oC) Tn (oC) RH (%) Rs (W/m2) U2 (m/s) ET0 (mm/day) 

Maximum 45.50 33.00 100.00 14.45 189.90 13.16 

Minimum 17.60 5.00 6.00 3.55 0.00 0.005 

Mean 32.37 19.88 78.43 9.32 6.27 3.76 

Standard deviation 4.10 4.79 14.48 2.44 6.18 1.72 

Table 2. Statistical values of available meteorological variables and ET0 at Waipara station. 

Parameters  Tx (oC) Tn (oC) RH (%) Rs (W/m2) U2 (m/s) ET0 (mm/day) 

Maximum 24.32 24.15 93.54 47.00 272.82 7.247 

Minimum −3.00 −3.00 0.00 0.00 0.00 0.00 

Mean 10.17 9.95 65.61 15.29 1.75 1.50 

Standard deviation 4.92 4.88 15.27 10.11 0.82 1.18 
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Figure 1. Study area [Hyderabad (Top) and Waipara (bottom)]. 

The next station was at the Waipara experimental catchment (WARVEX), situated in the South 
Island of New Zealand, in the Waipara River (Figure 1). The climate in the area is characterised by 
equable climates with few temperature extremes and abundant precipitation throughout the year. This 
climate’s Koppen Climate Classification subtype is “Cfb”. (West Coast Marine Climate). 
(https://www.weatherbase.com/weather/weathersummary.php3?s=596172&cityname=Waipara,+New+Z
ealand ). The annual average weather data of the meteorological station is introduced in Table 2. [37,38] 
provide a detailed overview of the basin and its monitoring network. Only a description of those elements 
of the basin important to the current study is given here. WARVEX is set up in Langs gully. 
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The catchment area of the Langs gully is 0.7 km2. The elevation varies between 500 m and 723 
m above sea level. The annual rainfall varies from 500 to 1100 mm/yr. It contains a surface slope of 
0.22–34 degrees with a mean slope of 17 degrees. Soils are gravelly sandy loam, depth ranges from 
0.25 to 1.5 m and averages 0.5 m. Grass and exotic forests are the primary vegetation. An ephemeral 
stream flows approximately from late March through early November. The catchment has fairly 
regular frosts and occasional snow in winter. Field data from Lang gully was collected from 2010 to 
2016. All data were stored in data loggers and had temporal resolutions of 10 minutes and have been 
aggregated to the hourly time series for this study to match the model time step. 

3. Methodology 

The FAO-56 Penman-Monteith model determined ET0 values are regarded as the ground truth 
benchmarking for training and testing the different machine learning models. 

3.1. Estimation of reference evapotranspiration by FAO-56 penman-monteith method 

The Penman-Monteith method on a daily time scale is calculated by  

ET0 = 
.ସ଼ሺோିீሻାቀ వబబ

శమళయ
ቁమሺೞିೌሻ

ାሺଵା.ଷସమሻ
                                               (1) 

Where, ET0 = reference evapotranspiration (mm d−1), D = slope vapor pressure curve [k pa°C−1], 
Rn = net radiation (MJ m−2 d−1), G = soil heat flux (MJ m−2 d−1), U2 = wind speed measured at 2 m 
height [m s−1], (es - ea) = vapor pressure deficit for measurement at 2 m height [k Pa], T = average 
temperature at 2 m height (°C), 900 = coefficient for the reference crop [l J-1 Kg K d-1], g = 
psychrometric constant [k pa°C-1], 0.34 = wind coefficient for the reference crop [s m-1]. 

4. Machine learning models 

In this study, four ML models were implemented for modelling the ET0 relationship of the 
Hyderabad and Waipara stations, namely, LSTM, GBR, SVR, and RF regressor, and a comparison 
was made between the models. For modelling the machine learning models 70% data was used for 
training and 30% data was used for testing. 

4.1. Long short-term memory (LSTM) 

Long short-term memory neural networks are similar to Recurrent neural networks (RNN), 
which has the capability to learn larger data compared to normal RNNs. This is done by 
controlling the hidden state in LSTM and solving the vanishing gradient problem. LSTM has 
feedback connections. An LSTM unit has an input gate, an output gate, and a forget gate (Figure 
2). LSTM calculates a gate’s values by using the previous cell value Ct-1, previously hidden 
values ht-1, and input xt. 
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Figure 2. Overview diagram of Long short-term memory (LSTM). Where 𝑓, 𝑖, and 𝑜 
denotes the forget gate, input gate, an output gate, ℎ௧ denotes hidden state, 𝑐௧ denotes cell 
state, 𝜎 is the sigmoid function, g is the activation function. 

𝑖௧ ൌ  𝐹ሺ𝑊௫𝑥௧  𝑊ℎ௧ିଵ  𝑊𝐶௧ିଵ  𝑏𝑖𝑎𝑠ሻ               (2) 

𝑜௧ ൌ  𝐹ሺ𝑊௫𝑥௧  𝑊ℎ௧ିଵ  𝑊𝐶௧ିଵ  𝑏𝑖𝑎𝑠ሻ               (3) 

𝑓௧ ൌ  𝐹ሺ𝑊௫𝑥௧  𝑊ℎ௧ିଵ  𝑊𝐶௧ିଵ  𝑏𝑖𝑎𝑠ሻ               (4) 

And the cell value is calculated using  

𝐶௧ ൌ  𝑓௧𝐶௧ିଵ  𝑖௧𝐹ሺ𝑊௫𝑥௧  𝑊ℎ௧ିଵ  𝑏𝑖𝑎𝑠ሻ                 (5) 

ℎ௧ ൌ 𝑜௧tanh ሺ𝐶௧ሻ                          (6) 

LSTM is like RNN, but by using the three gates, it can process longer lengths of data, and it is 
also able to solve the vanishing gradient problem. 

4.2. Gradient boosting regression (GBR)  

GBR was introduced by [39,40], also known as multiple additive regression trees (MART) or 
Gradient boosting decision tree (GBDT), is generally used ML algorithm to get robust performance 
in practical applications. As defined by [41], GBR comprises three elements: a loss function, a weak 
learner, and an additive model to optimize, make predictions, and add weak learners to minimize the 
loss function, respectively. Because GBR is fast, to avoid overfitting, good at handling missing 
values and outliers, and it is superior to conventional ML methods in many fields [41,42]. A detailed 
explanation of the GBR model can be found in [43]. 

It also allows for the optimization of arbitrary differentiable loss functions. In each stage a 
regression tree is fit on the negative gradient of the given loss function. Gradient boosting involves 
three elements: A loss function to be optimized, A weak learner to make predictions and an additive 
model to add weak learners to minimize the loss function.  

Gradient Boosting is a greedy algorithm and can over fit a training dataset quickly. It can 
benefit from regularization methods that penalize various parts of the algorithm and generally 
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improve the performance of the algorithm by reducing over fitting. There are four improvements 
basic gradient boosting: Tree Constraints, Shrinkage, Sampling, Penalized learning 

Gradient Boosting trains many models in a gradual, additive and sequential manner. The major 
difference between AdaBoost and Gradient Boosting Algorithm is how the two algorithms identify 
the shortcomings of weak learners (e.g., decision trees). While the AdaBoost model identifies the 
shortcomings by using high weight data points, gradient boosting performs the same by using 
gradients in the loss function (y = ax + b + e, e needs a special mention as it is the error term).  

The loss function is a measure indicating how good are model’s coefficients are at fitting 
the underlying data. A logical understanding of loss function would depend on what we are 
trying to optimise.  

For example, if we are trying to predict the sales prices by using a regression, then the loss 
function would be based off the error between true and predicted house prices. Similarly, if our goal 
is to classify credit defaults, then the loss function would be a measure of how good our predictive 
model is at classifying bad loans.  

One of the biggest motivations of using gradient boosting is that it allows one to optimise a user 
specified cost function, instead of a loss function that usually offers less control and does not 
essentially correspond with real world applications. 

4.3. Random forest regression (RF) 

RF is an ensemble technique, which is capable of both classification and regression, known as 
bagging. It is one of the practical algorithms for predictive analysis. In determining the final output, the 
principle of RF is to combine the various decision trees rather than depending on individual decision 
trees. RF is used for classification by majority vote and regression by an average of the single-tree 
method in the output generation process [40]. RF models have supervised ML approaches, which are 
popular in ML [43–47] and frequently used in hydrology [42,48–50]. The Sum of Squared Error (SSE) 
has been calculated between the observed values and the predicted values. This procedure will 
recursively continue until the entire data is being covered. The model can be written as: 

  𝑓ሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ  𝑓ଵሺ𝑥ሻ  𝑓ଶሺ𝑥ሻ  ⋯                                        (7) 

Where the ultimate model f is the sum of simple base models fi. Where each base regressor portion is 
the simple decision tree.  

The basic idea behind this is to combine multiple decision trees in determining the final output 
rather than relying on individual decision trees. 

Approach: 1. Pick at random K data points from the training set; 2. Build the decision tree 
associated with those K data points; 3. Choose the number Ntree of trees you want to build and 
repeat step 1 & 2; 4. For a new data point, make each one of your Ntree trees predict the value of Y 
for the data point, and assign the new data point the average across all of the predicted Y values. 

Random forests or random decision forests are an ensemble learning method for classification, 
regression and other tasks that operate by constructing a multitude of decision trees at training time 
and outputting the class that is the mode of the classes (classification) or mean prediction 
(regression) of the individual trees. Random decision forests correct for decision trees habit of over 
fitting to their training set. 
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Each Decision Tree in the Extra Trees Forest is constructed from the original training sample. 
Then, at each test node, each tree is provided with a random sample of k features from the feature-set 
from which each decision tree must select the best feature to split the data based on some 
mathematical criteria (typically the Gini Index). This random sample of features leads to the creation 
of multiple de-correlated decision trees. 

4.4. Support vector regression (SVR) 

In several research studies, SVR, which is focused on systemic risk minimization to prevent 
overfitting [51], was adopted over ANN due to the solution’s uniqueness and globalization [52]. The 
SVR has been commonly used in engineering [53–55]. Its evapotranspiration applications are also quite 
impressive [56–58] firstly applied the SVR approach for rainfall-runoff modelling in hydrology. SVRs 
are today known as efficient and robust ML algorithms for predictions. When the training data of 
ሼሺ𝑥ଵ, 𝑦ଵሻ, … … . . ሺ𝑥, 𝑦ሻሽ with n patterns, a function 𝑓ሺ𝑥ሻ will be identified with the consideration of the 
deviation from the actually observed target variables 𝑦 for all the training data [60]. Using a non-linear 
mapping function φ, X will be map the input variables to a higher dimensional feature space.  

 

Figure 3. Structure of SVR. 

In simple regression we try to minimise the error rate. While in SVR we try to fit the error 
within a certain threshold.  

Our objective when we are moving on with SVR is to basically consider the points that are 
within the boundary line. Our best fit line is the line hyperplane that has maximum number of points. 

In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM 
which would have already requested from the problem. But besides this fact, there is also a more 
complicated reason, the algorithm is more complicated therefore to be taken in consideration. 
However, the main idea is always the same: to minimize error, individualizing the hyper plane which 
maximizes the margin, keeping in mind that part of the error is tolerated. The goal in linear 
regression is to minimize the error between the prediction and data. In SVR, the goal is to make sure 
that the errors do not exceed the threshold. 

SVRs are today known as efficient and robust ML algorithms for predictions. When the training 
data of ሼሺ𝑥ଵ, 𝑦ଵሻ, … … . . ሺ𝑥, 𝑦ሻሽ  with n patterns, a function 𝑓ሺ𝑥ሻ  will be identified with the 
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consideration of the deviation from the actually observed target variables 𝑦 for all the training data [60]. 
Using a non-linear mapping function φ, X will be mapping the input variables to a higher dimensional 
feature space.  

                   𝑓ሺ𝑥; 𝑤ሻ ൌ൏ 𝑊, 𝜑ሺ𝑥ሻ  𝑏                                            (8) 

where W and b are the regression coefficients and < , > denotes the inner product. SVR uses the ∈ 
insensitive error to measure the error between 𝑓ሺ𝑥ሻ and the observed values of 𝑦.  

|𝑓ሺ𝑥; 𝑤ሻ െ 𝑦|∈ ൌ ൜
0,        𝑖𝑓|𝑓ሺ𝑥; 𝑤ሻ െ 𝑦| ൏ ∈

|𝑓ሺ𝑥; 𝑤ሻ െ 𝑦|െ ∈,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                     (9) 

Using the training data of ሺ𝑥, 𝑦ሻ the values of w and b are calculated by minimizing the 
objective function: 

              𝐹 ൌ 

ே
 |𝑓ሺ𝑥



ୀଵ
, 𝑤ሻ െ 𝑦|∈  ଵ

ଶ
||𝑤||ଶ                  (10) 

Where ∈ and C are the hyper-parameters. The minimization of the objective function, F, uses the 
Lagrange multiplier method. The ultimate regression equation with kernel function 𝐾ሺ𝑋, 𝑋 ′ሻ can be 
in the form:  

                              𝑓ሺ𝑋ሻ ൌ  ∑ 𝐾ሺ𝑋, 𝑋ሻ  𝑏               (11) 

Based on earlier studies [59], the kernel function RBF was chosen to measure the performance 
of the model for the ET0. A complete overview of the SVR method may be found in [59]. 

5. Model evaluation 

The accuracy of the ML models was calculated using the coefficient of determination (R2) (Eq. 
12), the root mean squared error (RMSE) (Eq. 13), and the mean absolute error (MAE) (Eq. 14). The 
equations are as follows:            

𝑅ଶ ൌ  1 െ  
∑ሺா்ೞିா்್ೞሻమ

∑ሺா்್ೞିா ்ೌሻమ                    (12) 

𝑅𝑀𝑆𝐸 ൌ √𝑀𝑆𝐸 ൌ ට∑ ሺா்ೞିா்್ೞሻమ
సభ


                    (13) 

𝑀𝐴𝐸 ൌ  ଵ

ே
∑ ሺ

ୀଵ 𝐸𝑇௦ െ 𝐸𝑇௦ሻ                       (14) 

                𝑁𝑆𝐸 ൌ 1 െ 
∑ ሺா்್ೞିா்ೞሻమ

సభ

∑ ሺா்್ೞିா ்ೌሻమ
సభ

൨            (15) 

where 𝐸𝑇௦ is the simulated ET0 at time step i in mm/day; 𝐸𝑇௦ is the observed ET0 at time step i 
in mm/day; 𝐸𝑇 is the average ET0 at time step i in mm/day;  n is the number of data pairs, 
respectively.  
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6. Results 

The current study analyzed the performance of LSTM, SVR, GBR, and RF models in estimating 
daily ET0. The ET0 was calculated using the FAO-56 Pen Monteith Equation (Eq. 1) for Hyderabad 
and Waipara stations. For the study of data emerging from non-linear phenomena, the determination of 
ideal model inputs is a critical problem. The four pre-processing data methods, i.e., Pearson correlation, 
Principle component analysis (PCA), Lasso model, and Random forest pre-processing methods, are 
evaluated to select the best set of input variables. The climate variables considered for estimating daily 
ET0 using four different ML models and the Penman-Monteith method were the daily maximum 
temperature, Minimum Temperature, Relative Humidity, and Solar Radiation. The four various 
optimal input combinations for daily ET0 modelling at two different stations for the Hyderabad and 
Waipara stations used were all available meteorological parameters; Temperature, Wind Speed, 
Relative Humidity; Temperature, and Wind Speed; and Temperature and Relative Humidity. While 
fitting a model on a dataset, the GridSearchCV python library module used to optimize SVM 
parameters, and the best combination is taken to make the model performant. The optimal input 
combinations and each empirical model’s performance corresponding with the four ML models in 
terms of R2, RMSE, NSE and MAE were listed in Table 3 for the Hyderabad and Waipara Stations. 

6.1. ML models performance with various input combinations 

The performance of the LSTM, SVR, GBR, and RF models from the two stations was provided 
in Table 3. Tables demonstrated that the tested models generally had comparable performance over 
the two stations. Figure 3 shows the comparisons between observed ET0 and model estimated values 
in the form of a box plot. Figure 4 shows the scatter plots of the FAO-56 ET0 and those estimated by 
the ML models with all input parameters during the testing periods. It is clear from the figure that all 
the scatter plots of different ML models showed various distributions. The model’s LSTM and SVR 
estimated values showed closer agreement with those of observed ET0 (based on FAO-56), and the 
LSTM model performed marginally better than the GBR, with estimated R2 values of the two 
stations being 0.99 (LSTM), 0.99 (SVR) and 0.99 (GBR), 0.99 (RF). From Table 3, the LSTM model, 
for the most part, accomplished the excellent performance (RMSE: 0.02 mm d-1, MAE: 0.01 mm d-1, 
and R2: 0.99) among the evaluated models with all input combinations at Hyderabad station, trailed 
by SVR (RMSE: 0.155 mm d-1, MAE: 0.11 mm d-1 and R2: 0.99). The GBR model could likewise 
accomplish sufficient exactness (RMSE: 0.183 mm d-1, MAE: 0.13 and R2: 0.98), while the RF 
model had also shown excellent performance (RMSE: 0.123 mm d-1, MAE: 0.08 mm d-1 and R2: 
0.99). We also compare the model results with ET0 calculated using Hargreaves-Samani equation. 
The model results (not shown in paper) were very similar to FA)-56 ET0 based comparison, which 
show our model results are not modelistic exaggeration.  
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Table 3. Performance of Random Forest (RF), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), and Long Short-
Term Memory (LSTM). 

Parameters Model Hyderabad Waipara 

Calibration Validation Calibration Validation 

R2 RMSE 

(mm/d) 

MAE  

(mm/d)

NSE 

 

R2 RMSE 

(mm/d)

MAE  

(mm/d)

NSE R2 RMSE 

(mm/d)

MAE  

(mm/d)

NSE 

 

R2 RMSE 

(mm/d)

MAE  

(mm/d) 

NSE 

All 

parameters 

RF 0.99 0.06 0.03 0.998 0.99 0.12 0.08 0.993 0.99 0.07 0.04 0.996 0.96 0.24 0.16 0.957 

SVR 0.99 0.16 0.11 0.99 0.99 0.15 0.11 0.989 0.99 0.08 0.06 0.994 0.99 0.11 0.08 0.969 

GBR 0.99 0.16 0.12 0.991 0.98 0.18 0.13 0.985 0.98 0.12 0.09 0.984 0.96 0.22 0.16 0.962 

LSTM 0.99 0.04 0.07 0.997 0.99 0.11 0.07 0.998 0.99 0.06 0.03 0.983 0.99 0.07 0.05 0.989 

Temperature, 

Wind Speed, 

Relative 

Humidity 

RF 0.98 0.18 0.10 0.988 0.91 0.43 0.26 0.916 0.95 0.26 0.18 0.95 0.54 0.79 0.57 0.548 

SVR 0.92 0.46 0.27 0.929 0.92 0.42 0.26 0.921 0.74 0.59 0.41 0.74 0.59 0.74 0.54 0.596 

GBR 0.93 0.45 0.28 0.932 0.90 0.45 0.29 0.908 0.78 0.54 0.41 0.785 0.61 0.73 0.56 0.614 

LSTM 0.93 0.47 0.29 0.93 0.93 0.44 0.28 0.924 0.73 0.42 0.31 0.764 0.64 0.49 0.37 0.65 

Temperature 

and Wind 

Speed 

RF 0.88 0.60 0.39 0.88 0.50 1.06 0.68 0.503 0.77 0.56 0.38 0.77 0.31 0.97 0.77 0.311 

SVR 0.71 0.93 0.62 0.717 0.55 1.00 0.64 0.554 0.45 0.86 0.60 0.459 0.35 0.94 0.74 0.358 

GBR 0.73 0.90 0.61 0.734 0.57 0.98 0.63 0.572 0.57 0.76 0.57 0.579 0.41 0.90 0.73 0.413 

LSTM 0.72 0.91 0.60 0.719 0.60 0.85 0.60 0.588 0.48 0.59 0.46 0.531 0.37 0.66 0.54 0.378 

Temperature 

and Relative 

Humidity 

RF 0.73 0.92 0.67 0.727 0.19 1.36 1.03 0.188 0.86 0.42 0.29 0.867 0.49 0.83 0.59 0.49 

SVR 0.53 1.21 0.90 0.545 0.39 1.18 0.91 0.392 0.71 0.63 0.45 0.71 0.62 0.73 0.54 0.618 

GBR 0.55 1.19 0.89 0.529 0.37 1.20 0.94 0.367 0.77 0.56 0.42 0.769 0.58 0.76 0.57 0.582 

LSTM 0.50 1.45 0.98 0.533 0.46 1.09 0.85 0.359 0.47 0.58 0.45 0.731 0.36 0.65 0.54 0.621 
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Figure 4. Comparison of observed and estimated ET referred as ET0 by different models 
(GBR, LSTM, RF, and SVR) with varying parameters of input for the validation period 
at Hyderabad (Top) and Waipara Stations (Bottom). 
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Figure 5. Scatter plots of the FAO 56 ET referred as ET0 and those estimated by the ML 
models (a) SVR (b) RF (c) GBR (d) LSTM with all parameters of input for during the 
testing period at Hyderabad (Top) and Waipara Stations (Bottom). 
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During the validation stage at Hyderabad station, for the primary situation where the models 
with different input combinations like Temperature, Relative humidity, and Wind Speed (MAE: 
0.07–0.13 mm d−1, RMSE: 0.11–0.18 mm d−1, R2: 0.98–0.99) played out the best. Models 
accomplished the generally low performance with Temperature and Wind Speed data as input 
(RMSE: 0.85–1.06 mm d−1, MAE: 0.28–0.60 mm d−1, and R2: 0.55–0.60), trailed by models 
dependent on Temperature and Relative humidity input (RMSE: 1.09–1.36 mm d−1, MAE: 0.85–
1.035 mm d−1, R2: 0.19–0.46). It is worth to see that models which are blends of Temperature data 
with Relative humidity and Wind Speed, individually, could accomplish preferred performance over 
models dependent on Temperature and Relative Humidity input. Also, models dependent on 
Temperature, Relative Humidity, Wind Speed and Solar Radiation could acquire slightly preferred 
performance over models dependent on three input combinations. The outcomes demonstrated that 
LSTM performed superior to RF, SVR, and GBR, where Temperature and Wind Speed as input. 
Furthermore, the LSTM model showed the most remarkable performance when Temperature, Wind 
Speed, and Relative Humidity data were accessible; SVR came second, RF and GBR were not as 
proficient as LSTM and SVR models. Hence, LSTM and SVR models performed better than the 
GBR and RF models. LSTM outcome the best among any combination, whereas other models 
performed low when the input combinations were reduced.      

Table 3 showed the summary of the LSTM, SVR, GBR, and RF model performances at 
Waipara station. The performance ranking of different ML models was equivalent to Hyderabad 
station, LSTM, SVR, GBR, and RF. Models obtained the best performance based on all input 
combination parameters (RMSE: 0.11–0.242 mm d−1, MAE: 0.07–0.163 mm d−1, R2: 0.98–0.990) 
compared to other input combinations. During the validation stage at Waipara station, for the 
primary situation where the models with different input combinations like Temperature, Relative 
humidity, and Wind Speed (RMSE: 0.49–0.79 mm d−1, MAE: 0.37–0.574 mm d−1, R2: 0.548–0.64) 
played out the best.   

Taking everything into account, the LSTM model is the most robust among the four ML models 
regardless of under which station or input combination, trailed by SVR and GBR models, which 
could generally accomplish agreeable accuracy. LSTM and SVR models depend on just Temperature, 
Relative Humidity, and Wind Speed data to accomplish acceptable accuracy with the least 
meteorological variables, which can be considered more financially savvy and more helpful for 
advancement and application. The LSTM and SVR models built up in this study can accomplish 
higher performance than the other two models, and LSTM played out a little better than the SVR 
model under all inputs and much better under fewer inputs. They are both able to simulate ET0 where 
meteorological information is inadequate.  

In the present study, the stability comparison employed primarily focuses on LSTM, SVR, RF, 
GBR models. Among the models studied, the LSTM model achieved the lowest RMSE value and the 
most concentrated distribution of RMSE values independent of the input combinations. It showed 
that the LSTM model had the best precision stability with an accuracy of 99.10%, trailed by SVR 
with 92.70% accuracy. The stability of the other two models is almost the same; therefore, when 
selecting one model for estimating ET0 between these two models, modelling accuracy should be the 
primary consideration, whereas the accuracy of the models varies according to the number of inputs 
as well as the prediction of the time step. In terms of the input combinations effect, taking LSTM 
models as an example, the RMSE values of the LSTM model based on all input combination 
parameters gained the lowest fluctuation (RMSE: 0.02–1.36) across two stations, followed by models 
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based on Temperature, Wind Speed, Relative Humidity; Temperature, Relative Humidity; 
Temperature, Wind Speed. It’s also worth noticing that although the accuracy of models with all 
parameters input combination was the highest in each station. Even if all parameter information is 
not available in a particular station, we can use the above three combination parameters or the two 
combinations: Temperature and Relative Humidity or Temperature and Wind Speed values.  

As shown in Figure 5, taking LSTM models as examples for Hyderabad station, the average 
RMSE values of Temperature, Wind Speed, Relative Humidity, and Temperature, Wind Speed 
ranged from 0.11–1.36 mm day−1 and 0.07–1.065 mm day−1 respectively. Using RH could make the 
average RMSE value decrease by less percentage compared to all parameters, while using U2 could 
decrease by more percentage. It is evident that (T, U2) performed even better than (T, RH). So, it can 
be reasoned that wind speed and relative humidity can improve the temperature-based accuracy for 
different models. This result is generally relatively stable from the stations’ meteorological 
conditions in this study field, and ET0 results from the coupling effect of other meteorological 
variables. Hence, temperature includes more comprehensive data and an ET0 pattern of the variance 
than the single determined RH. 
 
 

 

 

 

 

 

 

 

Figure 6. Comparison of RMSE values for Hyderabad (Top) and Waipara station 
(Bottom) for different input combinations. 
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7. Discussion 

This paper investigated the four ML models in estimating daily reference evapotranspiration, 
including LSTM, GBR, RF, and SVR with Penman-Monteith as a standard reference model with 
four various input combinations at semi-arid climate conditions of Hyderabad and Waipara Stations. 
We have reportingly found that LSTM performed the best at two stations. Three other models like 
SVR, GBR and RF were also used to estimate ET0. We have seen that they have also produced lower 
RMSE values and accurate R2 values for these stations. Various studies in literature by [30,61–64], 
which used ANN, LSTM, RF, SVR for ET0 estimation, reportingly found ANN, LSTM, and SVR 
performed best. The present study also acts as proof for the performance of these. In the present 
study, we have also seen that LSTM outperformed, followed by SVR and GBR. But our studies have 
also used different input combinations and concluded that even when two input combinations like 
temperature and Wind Speed are used, LSTM works well in comparison with two input 
combinations like Temperature and relative humidity. 

From table 3, we have observed that, while some of the ML models performed well in terms of 
both accuracy and computational demand, which can be seen clearly in the case of LSTM and SVR. 
The LSTM model is appealing due to its efficiency and low test RMSE and irrespective of input 
combination. Notably, the multi-layer neural networks tested in this study performed better than the 
other machine learning models. The multi neural networks and deep learning models showed more 
evidence of overfitting than other mentioned machine learning models, and it is worth noticing the 
performance metrics for LSTM and SVR ranging R2 values to 0.99. Comparison of different machine 
learning and deep learning models and their performance when inputs were reduced showed the 
lowest performance in the case of RF and GBR models. The two input combinations, Temperature 
and Relative Humidity did not work well with other models, but they worked comparatively well 
with LSTM. So, LSTM can be used even if there are two input combinations followed by the SVR 
model. It has also shown that this study resembles the assessment of reference evapotranspiration 
found by [63] where SVR, was found to be used as an alternative ET0 estimation model to the 
subsistence of conventional methods. Whereas other two models RF and GBR, performed best when 
more inputs were used, and their performance gradually reduced when inputs combinations were 
brought down. [65] and [66] both reported that machine learning methods developed with regional 
data outperformed empirical equations. strategy showed in the current investigation can be embraced 
in different domains and regions as done in this paper, namely Hyderabad (India) and Waipara (New 
Zealand). The results obtained in this study can be compared with other empirical methods and 
computational models in future studies. The analysis of this presented work contributes essential 
guidance to use these models to estimate ET0, where partial meteorological variables and 
topographical data are absent and, in turn, providing ease for agriculturists, water resources 
management and hydrological engineers. In the future, proposed models can be applied for irrigation 
scheduling, evaluating the crop coefficients for crop water modelling and in estimating Actual 
Evapotranspiration. 

To summarize, in the present study, the result of using RH with only Temperature data for 
assessing ET0 was also the same as previous studies done by [63] , where As a parameter for 
calculating RH, with limited inputs, U2 could increase modelling accuracy and be even better than 
RH. Hence, models based on U2 as input and LSTM model can be suggested for calculating ET0 in 
the light of data availability. 
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8. Conclusions 

In this study comparison of four machine learning models, namely LSTM, SVR, GBR, RF, was 
made to know their potential in the estimation of ET0 with four different input combinations at two 
different stations. 

The study investigated that the best performance was when all input variables were used, the 
study, however, finds that even three input variable combination (Temperature, Wind Speed and 
Relative Humidity values) or two combination input variables (Temperature and Relative Humidity, 
Temperature and Wind Speed) also can provide practically identical results as using all data. 

The study proved that first priority can be given to model where all parameters are used as 
inputs, followed by three and two input combinations . 

The results showed that the LSTM model could offer the most remarkable performance among 
four tested models regardless of station or input combination, trailed by SVR and GBR models, 
which could likewise accomplish moderately good performance.  

Among five ML models LSTM and SVR models depend on just temperature, relative humidity, 
and wind speed data to achieve good performance with the fewest meteorological variables, which 
can be viewed as more practicality and more helpful for advancement and application. Then comes 
the combination of Temperature and wind speed, followed by temperature and Relative Humidity. 
Other models did not show remarkable results as LSTM and SVR when the above input 
combinations were used. 

So, we concluded that even if not all parameter information is available in a particular station, 
we can use the above three combination parameters or the two combinations, which are temperature 
and wind speed or temperature and relative humidity values, to estimate reference ET0. 

At spatiotemporal scales, LSTM and SVR models demonstrated extraordinary pertinence in 
displaying ET0 and can be strongly suggested for assessing ET0 when meteorological information is 
fragmented or restricted.  
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