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A B S T R A C T   

Univariate meteorological drought indices are inadequate to represent the complexity of hydrological conditions 
under the intensification of hydrological cycle due to climate change at catchment scale. In this study, Stand
ardised Precipitation Actual Evapotranspiration Index (SPAEI) was proposed, which can combine both meteo
rological and hydrological drought characteristics at catchment scale. The proposed new drought index considers 
the hydrologically calibrated AET to account for the water use in addition to meteorological effect. The proposed 
hydrometeorological drought index was potential in identifying meteorological and hydrological drought events 
accounting for the time-lag effects and comparable with Global Land Evaporation Amsterdam Model (GLEAM) 
remote sensing AET data-based drought index. The PET based drought index of SPEI, which is based on energy 
demand, has shown intensified drought characteristics compared to SPAEI, which is based on both energy de
mand and available moisture supply and can be a promising variable in the drought estimation. The climate 
change projections of precipitation and temperatures downscaled using statistical downscaling model based on 
K-means clustering, Classification and Regression Trees and Support Vector Regression were used using three 
General Circulation Model outputs. Intensified drought characteristics under climate change has been predicted 
over Krishna River basin, India, in terms of increase of drought areal extent of about 25%-31%, with increase of 
drought frequency as 5 years per 20 years and durations as 4–5 months based on the proposed hydrometeoro
logical drought index of SPAEI.   

1. Introduction 

Drought is one of the most widespread and slowly developing natural 
hazard due to the lack of water availability in terms of precipitation and 
consequent shortage of streamflow and soil moisture affecting socio
economics (Aadhar and Mishra, 2017; AghaKouchak et al., 2015; Dai, 
2011). It corresponds to the failure of spatial and temporal precipitation 
(meteorological drought), inadequate streamflows (hydrological 
drought), decrease in soil moisture and crop yields (agricultural 
drought), therefore consequent impact on ecosystem and socioeconomic 
activities of the human being (socio-economic drought) (Wilhite and 
Glantz, 1985). Among these, the most widely used drought indices at 
regional scale water resources management are meteorological and 
hydrological to characterise and compare drought severity, frequency 
and duration (Marcos-Garcia et al., 2017). A meteorological drought 
index accounts for the deviation of climatological variables (precipita
tion and Potential Evapotranspiration (PET)) in a given year from the 
normal conditions [e.g. Standardized Precipitation Index (SPI)] by 

(McKee et al., 1993); Standardized Precipitation Evapotranspiration 
(SPEI) developed by (Vicente Serrano et al., 2010). Nevertheless, none 
of these meteorological indices can consider the effect of evapotrans
piration flux based on actual water availabilities in the drought esti
mation. Furthermore, such meteorological droughts are independent of 
actual water availabilities, land use and vegetation in the drought esti
mation at catchment scale. A drought assessment solely based on 
meteorological aspects without considering deficits in hydrological 
cycle will not be sufficient for the regional water resources management 
decision under climate change (Oloruntade et al., 2017). Whereas, hy
drological drought assessment is based on the fall of streamflow and 
water storages below long-term mean levels [e.g. Standardized Runoff 
Index (SRI), Shukla and Woods (2008)]. Implementation of such hy
drological drought assessments are limited for ungauged basins (Loon 
et al., 2019). Furthermore, hydrological drought assessment entirely 
based on below normal streamflow may mislead due to the human 
influenced regulated flows due to diversions, water transfers and 
instream abstractions (Lanen et al., 2013). Traditionally, drought 
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assessment studies were exclusively based on either meteorological or 
hydrological aspects without considering the combined effect of clima
tological deviations and acute water shortages at river basin scales. To 
this end, drought assessment studies have evolved by integrating various 
meteorological (e.g. SPI) and hydrological drought indicators (e.g. SRI) 
in a unique manner of aggregation to develop composite drought indices 
(Shah and Mishra, 2020; Wang et al., 2020). These composite drought 
indices can combine the individual drought indicators either statistically 
(e.g. copula based composite drought index, (Shah and Mishra, 2020; 
Wang et al., 2020) or simple weighting (entropy weighted drought 
index, Waseem et al., 2015). However, to understand the complexity 
and time lags (Yang et al., 2017b) between meteorological and hydro
logical drought indices, it is very important to structure the drought 
indices with an integration of most prominent hydro-meteorological 
variables to retain the dependence between these variables. Given the 
limitations of meteorological and hydrological drought indices as indi
vidual, a drought index which will synthesize the hydro-meteorological 
information can be more reliable in the context of operational drought 
management at river basin scale under climate change. A comprehen
sive hydro-meteorological drought index combining major hydrological 
variables such as precipitation, PET, AET and runoff (R) simultaneously 
to characterise the meteorological and hydrological drought will be 
more promising for efficient drought management at catchment scale.. 

The Standardized Precipitation Evapotranspiration Index (SPEI) has 
become popular meteorological drought index due to the inclusion of 
atmospheric climate demand as the difference (P-PET) between Pre
cipitation (P) and Potential Evapotranspiration (PET) (Vicente Serrano 
et al., 2010). Even though, SPEI has proven to be more reliable measure 
than Standardized Precipitation Index (SPI) (e.g. Tirivarombo et al., 
2018), as it includes PET in addition to P, it cannot account for the actual 
water availability of a region. Moreover, (P-PET) is energy based at
mospheric water demand and do not account for the effects of regional 
land surface changes and actual moisture availability, which is the dif
ference (P-AET) between P and Actual Evapotranspiration (AET). Also, 
PET is the maximum possible moisture loss limited only by the energy 
endowment or it is the energy-driven ET (Shelton, 2008). Whereas, AET 
represents the transfer of moisture from the surface to the atmosphere in 
response to both the energy demand and available moisture supply and 
can be a promising variable in the drought estimation (Liu et al., 2017). 
Inclusion of AET in meteorological drought indices, such as SPEI, which 
is a prominent hydrological variable, can represent hydro- 
meteorological drought indicator. The present study aimed at inclu
sion of most prominent hydrological variables of P, PET, AET and R in 
the drought formulation to develop a hydro-meteorological drought 
indicator which can work accurately to define both meteorological and 
hydrological aspects together at catchment scale. 

The conventional approaches to estimate AET at river basin scales is 
based on data intensive macro scale distributed hydrological simulation 
models and water balance methods expressed as AET = P-R, at annual 
time scale (Hamel and Guswa, 2015). Alternatively, several parametric 
models have been developed for estimating AET, with operational 
meteorological variables of precipitation and temperatures as inputs (e. 
g. Zhang et al., 2004). Such parametric models are based on the 
assumption that AET is limited by precipitation under very dry condi
tions and limited by PET under very wet conditions (e.g. Budyko, 1974). 
However, these parametric models of AET are purely based on region- 
specific climate considering P and PET and limited to represent vari
ability of evapotranspiration under water uses (Asokan et al., 2010). In 
this context, time-invariant model parameters were estimated at 
catchment scale with consideration of closure of water-balance by 
(Asokan et al., 2010; Jarsjö et al., 2008). However, time-invariant 
catchment scale parameters are limited to capture temporal variability 
of water-energy balance variables, instead, dynamic model parameters 
accounting for the variations of P, PET and R under climate signals with 
the closure of water balance can be more promising (e.g. Rehana et al., 
2020c). Application of such hydrological calibration models on the AET 

estimates can account for the variability of P, PET and R at catchment 
scale. Inclusion of such hydrological induced AET in the drought esti
mation can account for the catchment-scale hydro-meteorological as
pects. The present study proposed a modelling framework to include 
hydrologically calibrated AET estimates in the formulation of SPEI to 
develop a new hydro-meteorological drought monitoring index, Stan
dardized Precipitation Actual Evapotranspiration Index (SPAEI). It can 
be noted that, the parametric AET model adopted in the present study is 
based on Budyko formulation, which is suitable for long-term basin 
average scale and large catchments (Gunkel and Lange, 2017). There
fore, the study mainly focused on 12-month time scale (annual drought) 
characterization to avoid the use of short-term soil moisture storages 
(Donohue et al., 2007). The proposed drought index of SPAEI consider 
the joint effect of meteorological and actual water budget, and has a 
potential to evaluate the effects of climate and hydrological changes. In 
order to study the impacts of climate variability on drought character
istics the study adopted statistical downscaling model-based projections 
of precipitation and temperature based on General Circulation Model 
(GCM) outputs. The study compared the newly proposed hydro- 
meteorological drought index of SPAEI with meteorological drought 
index of SPEI and hydrological drought index of Standardized Runoff 
Index (SRI) for current and projected scenarios. The proposed drought 
index was tested on a semi-arid river basin of peninsular India, Krishna 
River Basin (KRB). 

2. Methodology 

2.1. Case study and data 

Krishna River Basin (KRB) is the fifth largest river basin in India 
occupying an area of 2, 58, 948 km2 which is 8% of the total 
geographical area of the country within the range 73o17′–81o9′E and 
13o10′-19o22′ N (Fig. 1). Most of the basin is covered by semi-arid 
climate with annual average precipitation as 784 mm, of which 
approximately 90% occurs during the South West Monsoon from June to 
October (http://indiawris.nrsc.gov.in/wrpinfo/?title=Krishna). The 
KRB is with semi-arid climate with aridity index (P/PET) as 0.44, esti
mated with basin annual average precipitation (778 mm) and PET 
(1773 mm) for the period from 1951 to 2015. Precipitation is unevenly 
distributed over the basin, with heavy precipitation over the western 
Ghats of about 2500 mm of annual average and moderate to less rainfall 
of about 500 mm of annual average over the districts of Maharashtra and 
Telangana. Most of the districts covering the basin are drought prone 
(Source: http://india-wris.nrsc.gov.in/wrpinfo/index.php?title=Krishn 
a). Rhe river basin water of about 61.9 Billion Cubic Meters (BCM)/ 
year is utilised for irrigation purpose (Rooijen et al., 2009). Severe 
drought events have been experienced in the basin in recent years 
during the period of 2001 to 2004, where most of the river basin water 
was committed to human consumptive uses, affected the irrigation 
water supplies severely. Moreover, the surface water resources were 
almost entirely committed to human consumptive uses, groundwater 
was over-abstracted and the discharge to the ocean almost nil (Venot 
et al., 2008). 

Daily precipitation data from India Meteorological Department 
(IMD) available for the period of 1901–2015 at 0.25◦ × 0.25◦ resolution 
was considered as observed dataset (Pai et al., 2014). The gridded daily 
mean temperature data from IMD available for the period of 1951–2014 
at 1◦X1◦ resolution was used as temperature observational dataset 
(Srivastava et al., 2009). The temperature was interpolated to 0.25◦ ×

0.25◦ resolution using the inverse distance weighting method. The daily 
precipitation and temperature data sets at 0.25◦ × 0.25◦ resolution were 
cropped for Krishna River Basin covering 348 grids. The daily precipi
tation and temperatures data sets obtained from IMD were aggregated 
over monthly time scale to serve as primary inputs to calculate SPEI and 
SPAEI at each grid at 0.25◦ × 0.25◦ resolution. The average monthly air 
temperature data sets were used in the estimation of PET using 
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Thornthwaite model. Further, the estimated monthly PET and P were 
forced into the proposed hydrological induced AET modelling frame
work to estimate the SPAEI drought index. 

The Digital Elevation Model (DEM) data with a resolution of 30-arc 
second (approximately 1 km) was collected from Global 30 Arc-Second 
Elevation (GTOPO30) dataset provided by USGS (U.S Geological Sur
vey). Using raster extraction in Quantum Geographic Information Sys
tem (QGIS) the KRB basin was delineated using the DEM data. The 
discharge data was obtained from Krishna & Godavari Basin Organisa
tion (KGBO), Central Water Commission (CWC), Hyderabad, Govern
ment of India (http://www.kgbo-cwc.ap.nic.in) for the basin outlet at 
gauging station Vijayawada, discharge location for the period of 1966 to 
2015. 

Further, to study and validate the strength of the proposed hydro
meteorological drought index, the present study used satellite-based 
land surface AET estimates in the drought index formulation. The 
study adopted Global Land Evaporation Amsterdam Model (GLEAM) 
satellite-based AET data which provides the land evaporation data 
considering the evaporation from land, soil, plant surfaces, open-water 
and transpiration from vegetation along with dynamic land cover in
formation (https://www.gleam.eu/) (Martens et al., 2017; Miralles 
et al., 2011). Also, GLEAM based AET estimates has showed high skill 
scores for most of the land-cover types and widely used in the hydro
logical assessment (Yang et al., 2017a). The AET data encompassing the 
KRB was extracted from the original dataset at 0.25◦ spatial resolution 
and aggregated to a monthly scale for analysis. A common data period of 
1980 to 2014 was considered to study the historical drought charac
terizations including AET. 

The National Center for Environmental Prediction/National Center 
for Atmospheric (NCEP/NCAR) reanalysis data (Kalnay et al., 1996) 
with a resolution of 2.5◦ X 2.5◦ are extracted for a region of 12.5-20◦ N to 
72.5–82.5◦ E for the period of January 1951 to December 2005. Twenty 
NCEP grid points fall over the region considered i.e., 12.5-20◦ N to 
72.5–82.5◦ E. The NCEP data sets of the monthly sea level pressure, air 
temperature data and predictor set for a period of 39 years (1951–1989) 
are used for calibrating the statistical downscaling model and the data 
from 1990 to 2005 are used for validation. 

Three GCM experiments were considered to assess the climate 
change impacts on hydrometeorological droughts over KRB: (1) Can
ESM2 (The Second-Generation Earth Model) derived from the Canadian 
Centre for Climate Modelling and Analysis, Canada, with resolution of 

2.8 deg × 2.8 deg; (2) MIROC-ESM derived from the Atmosphere and 
Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine-Earth Science 
and Technology Japan, with resolution of 2.8 deg × 2.8 deg; (3) BCC- 
CSM1-1(m) (The First Generation fully coupled Climate System Model 
including atmosphere, ocean, land, and sea-ice components and incor
porating global carbon cycle and dynamic vegetation cover) derived 
from the Beijing Climate Centre, China, with resolution of 2.8 deg × 2.8 
deg. The Intergovernmental Panel on Climate Change (IPCC) Assess
ment Report 5 (IPCC, 2007) has defined Representative Concentration 
Pathways (RCPs) RCP8.5, RCP6, RCP4.5 and RCP2.6, representing the 
radiative forcing, expressed as Watts/m2. The present study employed 
RCP 4.5 as a stabilization pathway, representing atmospheric radiation 
at 4.5 Watts/m2 at the end of 2100 (https://www.ipcc-data.org/guid 
elines/pages/glossary/glossary_r.html). 

2.2. Methods 

2.2.1. Meteorological drought Index: standardised precipitation 
Evapotranspiration index (SPEI) 

The SPEI was considered as meteorological drought index, which 
works based on the climatic water balance, the accumulated monthly 
difference (in mm) between precipitation and PET as follows: 

D = P − PET (1) 

where P is the monthly precipitation (mm) and PET is the monthly 
potential evapotranspiration (mm). The structure of SPEI works with 
three-parameter log-logistic distribution by fitting the D (Eq. (1)) series 
following to Vicente-Serrano et al. (2010). The probability density 
function (pdf) (f(x)) and cumulative distribution function (CDF) (F(x)) of 
the three-parameter log-logistic distribution is given as follows: 

f (x) =
β
α

(
X − γ
α

)β− 1[

1 +

(
X − γ
α

)β ]− 2

(2) 

where α, β and γ are the scale, shape and origin parameters respec
tively. The parameters of the log-logistic distribution are obtained by 
following the L-moment procedure as follows: 

β =
2w1 − w0

6w1 − w0 − 6w2
(3)  

Fig. 1. Map for the Krishna River Basin (KRB), location of the KRB in India and elevation map of the basin showing the discharge location.  
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α =
(w0 − 2w1)β

Γ(1 + 1/β)Γ(1 − 1/β)
(4)  

γ = w0 − αΓ(1 + 1/β)Γ(1 − 1/β) (5) 

where w0,w1 and w2 are the probability weighted moments calcu
lated based on Yue and Hashino (2007) as follows: 

Wr =
1
n

(
n − 1
r

)− 1 ∑n− r

j=1

(
n − 1
r

)

xjr = 0, 1, 2 (6) 

where n is the sample size and xj is the ordered vector of observations 
in descending order. Next, the cumulative distribution function of log- 
logistic distribution can be calculated with the estimated parameters 
of Pearson-III distribution. 

F(x) =
[

1 +

(
X − γ
α

)− β ]− 1

(7) 

The three-parameter log-logistic distribution was applied to model 
the time series of (P-PET) for various time scales. Furthermore, the fitted 
three parameter log-logistic distribution is validated with the 
Kolmogorov-Smirnov (K-S) (Chakravarti, 1967) goodness of fit test for 
the climatic water balance time series of D. 

With the values of F(x) (Eq. (7)), the SPEI values were calculated as 
follows: 

SPEI = W −
C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (8)  

whereW =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ln(P)

√
for P⩽0.5 (9) 

where P is the probability of exceeding a determined D value, P = 1 – 
F(x). If P > 0.5, then P is replaced by 1- P and the sign of the resultant 
SPEI is reversed. The constants are Co = 2.5515517, C1 = 0.802853, C2 

= 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308, ob
tained based on Abramowitz (1974), which serve as constants in the 
conversion of inverse normal distribution function for a given proba
bility value, P. The drought severity of SPEI can be categorization as 
follows: moderate if SPEI were in between − 1.0 to − 1.49, severe if SPEI 
were in between − 1.50 to − 1.99, and extreme if SPEI were less than 
− 2.0 based on (Vicente-Serrano et al., 2010). 

2.2.2. Development of hydro-meteorological drought Index: standardised 
precipitation actual evapotranspiration index (SPAEI) 

The proposed hydro-meteorological drought index, SPAEI, was 
aimed to integrate most important operational meteorological drought 
defining variable (P), hydrological drought defining variable (R) at 
catchment scale. The most complex hydrological variable which define 
both meteorological and hydrological drought characteristics at catch
ment scale in terms of water availability (P, R) and evaporative demand 
(PET) is Actual Evapotranspiration (AET). The present study aimed to 
include hydrologically induced AET in the structure of SPEI to formulate 
hydro-meteorological drought indices as shown in Fig. 2. The Fig. 2 
shows the overview of the proposed methodology to estimate the hydro- 
meteorological drought index, SPAEI. The SPAEI considered hydrolog
ically induced AET at catchment scale including meteorological vari
ables of precipitation and temperatures along with hydrological variable 
of runoff (Fig. 2). First, the PET was estimated with Thornthwaite model 
(Thornthwaite, 1948) with monthly average air temperature and 
geographical location of the region of interest as input variables. It can 
be noted that PET can be estimated using any other standard model, 
such as Penman-Monteith model, which may require various meteoro
logical variables, such as temperature, wind speed, relative humidity, 
radiation (Hargreaves and Allen, 2003). Due to the unavailability of 
observed gridded data sets for the case study, the study limited to use 
Thornwaite model for the estimation of PET. The next step in the hydro- 

Fig. 2. Over view of the modelling approach to estimate hydro-climatological induced AET at catchment scale.  

S. Rehana and G. Sireesha Naidu                                                                                                                                                                                                           



Journal of Hydrology 594 (2021) 125973

5

meteorological drought formulation is the estimation of hydrological 
induced AET as a function of P, PET and R. One of the classical formu
lations to estimate AET is Budyko model, which is a function of P, PET 
and parameter ‘ω’, which accounts for the non-climatic catchment 
characteristics (Budyko, 1974) (Eq. (10)). 

AET
P

= 1+
PET
P

−

(

1 +

(
PET
P

)ω )(1/ω)

(10) 

Here, one of the widely used non-parametric formulation of Budyko 
equation is developed by (Zhang et al., 2004) for the estimation of AET, 
as follows: 

AETclimate =

[

P
(

1 − exp
(
− PET

P

))

PETtanh
(

P
PET

)]0.5

(11) 

It should be noted that the Budyko formulation was developed for 
large catchments (>10000 km2) at long-term average scale with sta
tionary hydrological conditions as assumptions with negligible soil 
water storage changes (Gunkel and Lange, 2017; Wu et al., 2017; Yang 
et al., 2007). In order to guarantee the relevance of AET based catch
ment scale drought index and to avoid the use of short-term soil mois
ture storages, the focus of the present study was made at 12-month 
accumulated annual drought characterization. 

The AET can be estimated with the P and PET estimated at monthly 
time scale using Eq. (11). As the workability of AET model applied in the 
present study, which is based on Budyko formulation, is more towards 
annual scales, the study worked to estimate the 12-month scale drought 
indices. The monthly P and PET are accumulated to 12-month scale as 
follows: 

Pk
i =

∑i

i− k+1
Piwherek = 12 (12)  

PETk
i =

∑i

i− k+1
PETiwherek = 12 (13) 

Where Pk
i and PETk

i are the accumulated precipitation and PET in 
month, i. The 12-month accumulated P and PET values will be used in 
Eq. (11) to estimate the accumulated AET values at 12-month scale. By 
applying accumulated values of P and PET directly in the Eq. (11), the 
conditions of P becoming zero for any given month can overcome in the 
calculation. With this, the study has focused on annual drought index of 
12-month accumulation time period. It can be noted that due to sea
sonality of rainfall, short-term droughts (e.g. 1-month accumulation) 
can be valuable to evaluate the effect of time lags of precipitation 
response on hydrological droughts at monthly scale. Such short-term 
drought duration assessment can be promising for the agricultural 
water management. 

The AET estimated based on Eq. (11) is completely based on mete
orological forcing and region-specific climatic conditions and therefore 
can be considered as climate induced AET (AETclim) (Asokan et al., 
2010). Such climate induced AET (with P and PET) cannot account for 
the variability in evapotranspiration flux under water use changes (with 
P, PET and R) in the drought estimation (Rehana et al., 2020a) There
fore, AETclim has to be hydrologically calibrated to account for the 
variability of P, PET and R at catchment scales, which can further serve 
as input for the hydro-meteorological drought index SPAEIHydro as 
shown in Fig. 2. The AETclim,i can be evaluated by integrating the basin 
runoff, R, to estimate hydrologically induced AET, AETHydro. For this 
purpose, single model parameter for the entire river basin at annual time 
scale has been introduced by Asokan et al. (2010) and Jarsjö et al. 
(2008), where the observed (RObs,outlet) and uncalibrated (RCalculated,outlet) 
runoff estimated from the hydrological model at the basin outlet were 
compared as follows: 

RCalculated,outlet

RObs,outlet
=

P − AETclim

P − (XCal*AETclim)
(14)  

XCal =
RObs,outlet

RCalculated,outlet
+

(

1 −
RObs,outlet

RCalculated,outlet

) ∑
P

∑
AETclim

(15) 

Where,RObs,outlet and RCalculated,outlet are the long-term annual average 
observed and simulated runoff at the basin outlet in m3/s respectively 
and 

∑
P and 

∑
AETclim are the long-term accumulated annual average 

observed precipitation and AET estimated based on Eq. (11). over the 
basin in mm/year. The simulated runoff, RCalculated,outlet, will be calculated 
by dividing the entire river basin into uniform grids. At each grid, i, the 
Residual Available Water, RAWcalculated,i will be estimated using annual 
total Precipitation (Pi) and climate induced AET (AETclim,i) (from Eq. 
(11)) as follows: 

RAWcalculated,i = Pi − AETclim,i (16) 

The discharge at the basin outlet (Rcalculated,outlet) was estimated by 
accumulating the flow at grid cell, i, (RAWcalculated,i) and from all up
stream grid cells (RAWcal,G) according to the flow direction of the river 
and corresponding to the area of each grid cell (ACell) as follows: 

Rcalculated,outlet =
(
RAWcalculated,i +RAWcalculated,G

)
*ACell (17) 

The annual scale basin averaged calibration factors estimated based 
on Eq. (15) can be applied on the AETclim (Eq. (11)) to study the changes 
of AET under hydro-meteorological or water-use over the river basin. 
However, such time-invariant single basin model parameters may not be 
valid to study the possible hydro-climatic variability under climate 
change (Rehana et al., 2020c). Furthermore, application of such model 
parameters developed based on historically observed data may limit to 
capture the temporal variability of hydro-climatic variables under 
climate signals (Sireesha Naidu et al., 2020). Given that hydrological 
variables such as P, PET and R have shown pronounced change under 
climate change due to the intensification of global hydrological cycle, 
therefore model parameters should also account for such changes. In this 
context, developing hydrological model parameters which can relate 
various hydro-climatic variables such as P, ET and observed R can 
improve the hydrological model performance (López López et al., 2017). 
Therefore, the study proposed to estimate the dynamic model parame
ters accounting for the variability of P, PET and observed R. Such 
developed models can be used further to estimate the model calibration 
factors for the future scenarios under climate change projections based 
on statistical downscaling models. One of the major challenge in 
implementing such framework are limited data and poor understanding 
of complex relation between the model parameters and hydrological 
variables. Thus, the study adopted machine learning models based on 
Ensemble Regression Model (ERM) to relate model parameters and P, 
PET and observed R. Therefore, a data driven modelling framework, 
which can relate the model parameter and other hydro-climatic vari
ables such as P, PET and R can be more appropriate following to the 
study of Rehana et al. (2020c). The present study also adopted dynamic 
model parameter hydrological induced model parameter (XCal) ac
counting for the temporal variability of P, PET, and R, based on 
Ensemble Regression Model (ER). 

2.2.3. Ensemble Regression (ER) model 
Ensemble Regression (ER) methods are machine learning paradigms 

in which multiple methods which are often referred to as weak learners 
are trained to solve a problem and are combined to get better results 
(Friedman, 2001). The ER model works on the hypothesis that diverse 
set of models can make better predictions in comparison with an indi
vidual model. The ER models has gained interest in the hydrological 
model assessments in recent years (Sajedi-Hosseini et al., 2018). 

The input training dataset of ‘N’ points {X, Y} = {(xi, yi)}
N
i=1, where xi 

is the set of predictors and yi as the observed predictand value at the ith 

timestep will be considered. Initially, all predictors are given equal 
weighting coefficients (equal importance - αi = 1

N) and an initial model 
(F0(x)) will developed to predict values of the form y = F0(x). 
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At every iteration, m, the residuals(rim) will be calculated between 
observed (yi) and modeled predictand value (Fm− 1(xi)) (Friedman, 
2001). 

rim = −

[
d(
∑N

i=1[yi − Fm− 1(xi)]2)
d(Fm− 1(xi))

]

fori = 1..N (18) 

A base-learner (hm) will be fitted to these residuals using a Loss 
function ‘L’ in the direction of steepest gradient i.e weight, αi of point ‘i’ 
is increased corresponding to a higher value of residual using the 
training set {(xi, rim)}

N
i=1. The model is then sequentially updated as 

follows: 

Fm(x) = Fm− 1(x)+ argminh
∑n

i=1
L(yi,Fm− 1(x) + hm(xi, rim)) (19) 

where the argminh refers to minimization of base-learner error (hm) 
(https://statweb.stanford.edu/~jhf/ftp/trebst.pdf). The least squares 
loss function L(y, F(x) ) = 1

2(y − F(x))2 is used to update the residuals 
(Friedman, 2001). 

The annual scale calibration factors (XCal) were estimated which can 
be considered as predictand variable (yi) and uncalibrated runoff (P- 
AET) resulting from hydrological (RAWcalculated,i) (Eq. (16)) model along 
with P and AET were considered as predictor variables (xi) in training 
and testing of ER model. Such dynamic model parameter can be applied 
on the AETclim (Eq. (11)) to study the changes of AET under hydro- 
meteorological or water-use over the river basin for current and future 
scenarios. 

AETHydro = XCal*AETclim (20) 

Where AEThydro represent the hydrological AET representing the 
evaporative demand of the atmosphere accounting for energy available 
in terms of PET and water supply in terms of R. The hydrologically 
calibrated AET estimates can serve as input to the hydro-meteorological 
drought index of SPAEI along with precipitation as follows: 

SPAEIHydro = P − AETHydro (21) 

The SPAEI also followed the original structure of SPEI in fitting the 
time series of (P − AETHydro) using three-parameter log-logistic distribu
tion to formulate annual hydro-meteorological drought index as 
explained in Section 2.2.1. 

2.2.4. Climate change projection Model: Statistical downscaling model 
(SDM) 

To study the climate change impacts on drought characteristics 
(frequency, severity and duration), the present study integrated the 
climate change projections of precipitation and temperatures derived 
based on General Circulation Model (GCM) outputs using a statistical 
downscaling model. The statistical downscaling models are the state-of- 
the-art climate change projections prediction models which relates 
large-scale climate variables (e.g. mean sea level pressure, wind speed) 
with surface hydrological variables (e.g. precipitation) using statistical 
methods (Eum et al., 2020). The present study developed a multisite 
statistical downscaling model to predict the climate change projections 
of precipitation and temperatures. The basic formulation of statistical 
downscaling model includes data preprocessing to remove systematic 
bias in the modeled and actual climate observations (Bias correction), 
data reduction method (Principal Component Analysis, PCA), pre
dictand variable states estimation (K-means clustering), fitting algo
rithm to relate predictors and predictand states (CART), transfer 
function (Support Vector Regression) based on Sireesha Naidu et al. 
(2020). National Center for Environmental Prediction/National Center 
for Atmospheric Research (NCEP/NCAR) climate data from 1948 to the 
present at a resolution of 2.5o × 2.5◦ was considered as large-scale 
observed climate variables. The potential predictor variables which 
have shown significant correlation coefficients with precipitation were 

identified as surface air temperature, wind speed, humidity, etc., which 
were also found as potential predictors in other studies over India 
(Rehana and Mujumdar, 2012; Salvi et al., 2013). Spatial resolution 
mismatch between NCEP and GCM predictor data has been resolved by 
applying an Inverse Distance Weighting interpolation. The GCM pre
dictor data undergoes bias correction based on Quantile Mapping 
method by comparing the Cumulative Distribution Functions (CDFs) of 
NCEP and GCM predictor data for the historical and future scenarios to 
remove the systematic bias associated with the climate outputs (Li et al., 
2010; Salvi et al., 2013). Both bias corrected GCM and reanalysis climate 
data undergoes with standardization, which involves subtraction of 
mean and division by standard deviation estimated with all the data 
points of the time series (Wilby and Dawson, 2013). After data pro
cessing, statistically significant climate variables (predictors) were 
considered to predict the precipitation over various grid points of the 
basin. To capture the cross-correlation between the grids, rainfall states 
are defined as dry, moderate and wet. To estimate the rainfall state of the 
basin, an unsupervised clustering algorithm, K-means clustering was 
used. K-means clustering is an unsupervised machine learning algorithm 
that partitions n observations into K clusters for which each observation 
belongs to the cluster with the nearest mean (Macqueen, 1967). K-means 
clustering has been widely used in the statistical downscaling models in 
the prediction of rainfall states (Kannan and Ghosh, 2011). In this study, 
we used the K-means algorithm to achieve cross correlation among the 
rain stations and group the months having similar rainfall. This tech
nique reads the observed rainfall values for all grids in the basin in a 
month, clusters them, and provides a single representative value that is 
referred to as the state of rainfall for that particular month. 

Classification and Regression Tree (CART), which is a decision tree 
learning technique has been used in categorizing the rainfall into states 
by building a statistical relation between the continuous principal 
components extracted from predictor data and the rainfall states esti
mated using K-means clustering. The established relationship is assumed 
to intact for the future predictors which are then taken as input for CART 
model and for which the future rainfall states are estimated. An 
advantage of CART over linear classification models is that they can 
capture non-parametric and non-linear relationships as well as yield 
simple models. Cross validation is carried in order to ensure there is no 
risk of overfitting the data. For every iteration calculate the Gini’s im
purity/ diversity Index(E) (Loh, 2011) of the data using the formula 
given in the equation 

E =
∑

i∕=j

P(wi)P(wj) = 1 −
∑

i∕=j

P(wi)
2 (22) 

where P(wj) represents the probability of data being in jth class for 
each value of the attribute. Choosing an attribute splitting that mini
mizes the decrease in this impurity (E) as much as possible. It is 0 when 
all the patterns at node have the same class label. Continue until im
purity (E) is less than a certain threshold(η) or on reaching the maximum 
number of iterations where E < η. 

Individual regression models are built on separating the predictor 
and observed data based on the weather state category into individual 
datasets. The SVR model tries to fit the error within a certain threshold 
(ε), identifying a single separating hyperplane which maximizes the 
margin rather than solely minimizing the error which helps to find the 
best model (Vapnik et al., 1997). Linear SVR was used as the regression 
technique to predict the precipitation and temperature without over
fitting. SVR tries to minimize the error of misclassification calculated in 
addition to maximizing the margin between the separating hyperplane 
and the support vectors. Application of SVR model in statistical down
scaling under climate change can be found in (Gaur et al., 2020; Goly 
and Teegavarapu, 2020; Rehana, 2019; Sireesha Naidu et al., 2020) 

3. Results 

The first part of the study tested the performance of the developed 
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hydro-meteorological drought index in capturing the meteorological 
and hydrological drought characteristics. The second part of the study 
has focused on quantification of climate change impacts on the proposed 
hydro-meteorological drought index under precipitation and tempera
ture projections based on statistical downscaling model. More specif
ically, the study compared the drought characteristics of areal extent, 
frequency, intensity and duration for the standard drought index of SPEI 
and proposed hydro-meteorological drought index of SPAEIHydro under 
climate change projections. 

3.1. Performance of constructed SPAEI 

The time series of P-PET and P-AET were fitted with three parameter 
log-logistic distribution and validated with the Kolmogorov-Smirnov (K- 
S) (Chakravarti, 1967) goodness of fit test. A rejection frequency for log- 
logistic distribution was defined as the ratio of number of grid points 
which did not fit the time series of (P-PET) and (P-AET) with log-logistic 
distribution, to the total number of grid points in the river basin at a 
given significance level (Monish and Rehana, 2019). The K-S rejection 
frequencies for the overall basin including all valid grid points were 
obtained as 6% and 8% for (P-PET) and (P-AET) respectively at a sig
nificance level of 0.05, which are in agreement with earlier studies over 
KRB (Rehana et al., 2020a). 

The Akaike Information Criterion (AIC) (Akaike, 1974) was used to 
obtain the relative distribution rankings to choose the best suitable 
probability distribution to fit runoff. The Akaike Information Criterion 
(AIC) was used to obtain the relative distribution rankings to choose the 
best suitable distribution to fit runoff. The AIC values for the Lognormal, 
Generalized Extreme Value (GEV), and Log-Logistic distributions were 
obtained as 583, 588 and 1783 respectively. Both lognormal and GEV 
distributions were ranked as the best distributions and the present study 
used GEV distribution to fit the discharge data in the formulation of SRI 
due to its better applicability over widely varying hydro-climatic re
gimes (Shukla and Wood, 2008). 

The study tested the superiority of hydro-meteorological drought 
index of SPAEIHydro in characterising drought by comparing with SPEI 
and SRI. The Pearson’s correlation coefficients of 12-month scale 
SPAEIHydro with SPEI and with SRI from 1966 to 2014 were obtained as 
0.73 and 0.76, respectively, which are significant at p = 0.05. The Fig. 3. 
shows the Kendall rank correlation coefficients between SPEI, SRI and 
SPAEIHydro at significance test of α = 0.01 over KRB at 12-month time 
scale. It was noted that SPEI and SRI have high correlation coefficients 
with SPAEIHydro capturing catchment scale meteorological and 

hydrological drought characteristics. 
The strength of the SPAEIHydro furthermore investigated based on 

historical drought events over KRB. Rehana et al. (2020a) pointed out 
that most severe drought events have occurred in the years of 1972, 
1985, 2002 and 2003 over KRB. The effect of SPAEIHydro was tested by 
analysing the 12-month scale SPEI, SRI and SPAEIHydro for the current 
climatology period of 1966–2014. Table 1 gives the drought intensity for 
major drought years of 1972, 1985, 2002, 2003 and 2012 estimated 
based on SPEI, SRI and SPAEIHydro. The 12-month moving time window 
ending in December can account for both active monsoon and the non- 
monsoon months over the study area (Mallya et al., 2016), therefore the 
intensity of major drought years of December months were compared. 
The drought intensities of hydro-meteorological drought index of 
SPAEIHydro were found to be comparable with both meteorological, 
SPEI, and hydrological, SRI, drought indices intensities. Specifically, for 
higher runoff value of 17.93 m3/s in 1985 the SPEI (-1.04) and SRI 
(-1.21) indices were noted as same with lower intensity of SPAEIHydro 
value as − 0.65. While, for lowest annual runoff value of 1.07 m3/s in 
2003 the SPEI (-1.16) and SRI (-1.68) indices again same intensities, 
with higher intensity of SPAEIHydro as –1.06. With this, SPAEIHydro can 
provide a more reasonable catchment scale drought assessment condi
tions compared to SPEI and SRI (Fig. 4). 

To compare the onset and termination of drought events, the study 
considered − 1.0 as threshold. Fig. 5 compares the basin averaged 
monthly 12-month time scale SPEI, SRI and SPAEIHydro time series for 
the period from 1965 to 2015. The years 1972 (a), 1985 (b), 2002 and 
2003 (c) and 2012 (d) were noted as major drought years as shown in 
Fig. 5, exceeding the threshold of − 1.0 which is in agreement with 
earlier research finding over the basin (Rehana et al., 2020a). These 
were also declared as major drought years all over India (Mallya et al., 
2016). The SPAEIHydro is in agreement with both SPEI and SRI in iden
tifying the major drought events over the basin. For the year 1972 the 
drought onset with SPEI has started from January-1972 which extended 

Fig. 3. The Kendall correlation coefficient between SPEI, SRI and SPAEIHydro estimated for a period of 1951 to 2014 over KRB.  

Table 1 
Comparison of drought intensity values and runoff for major drought years over 
KRB.  

Year SPEI SRI SPAEIHydro Runoff (m3/s) 

1972 − 1.24 − 1.17 − 0.82  15.67 
1985 − 1.04 − 1.21 − 0.65  17.93 
2002 − 1.06 − 1.69 − 1.26  3.23 
2003 − 1.16 − 1.68 − 1.06  1.07 
2012 − 0.41 − 1.48 − 1.20  6.53  
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till September-1973. Whereas, the hydrological drought index of SRI has 
persisted with a time-lag effect for the period of September-1972 to July- 
1973. The hydro-meteorological drought index, SPAEIHydro, has fol
lowed both meteorological and hydrological factors into account and 
noted drought period from September-1972 to July-1973 as drought 
onset period with − 0.5 as threshold. To illustrate such time-lag effect of 
meteorological and hydrological drought onsets, the year 1984 which 
was not a severe drought year, but the SPEI has noted the occurrence of 

drought from September 1984 with drought intensity as − 0.76. How
ever, the SRI has noted the hydrological drought occurrence from 
October onwards with a time-lag of one month with drought intensity as 
− 0.92. While, the hydro-meteorological drought, has also identified the 
occurrence of drought from November onwards with drought intensity 
as − 1.46. Overall, SPAEIHydro was noted to identify the meteorological 
droughts of SPEI as well as hydrological drought events of SRI for major 
drought years over the study area accounting for the time-lag effects. 

Fig. 4. Comparison of SPEI, SPAEIHydro and runoff for the period of 1965 to 2007.  

Fig. 5. Comparison between drought intensity of basin averaged SPEI, SPAEIHydro and SRI series for the period of 1965–2015 of KRB. Major drought years as 1972 
(a), 1985 (b), 2002 and 2003 (c) and 2012 (d). 

Fig. 6. Drought characterisation for the major drought year of 2002 with SPEI, SPAEIHydro and SPAEI-RS over KRB.  
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As SPEI is energy-based ET estimate, it is characterizing the drought 
events as severe compared to SPAEIHydro, which is based on both water 
availability and energy (Figs. 6 and 7). For example, we considered the 
most severe drought year of 2002, which was also one of the noted 
drought all over India (Mallya et al., 2016), for comparing the drought 
intensity characterization for both SPEI and SPAEIHydro as shown in 
Fig. 6. As SPEI was based on the atmospheric water demand without 
accounting for the terrestrial actual water availability, it has charac
terized the entire basin under extreme, while SPAEIHydro has identified 

as severe and moderate. This can also be noted by comparing the 
drought areal extents based on SPEI and SPAEIHydro for various cate
gories of moderate, severe and extreme estimated from 1951 to 2014 as 
shown in Fig. 7. The areal extent of drought was estimated as the ratio of 
grids affected with various categories (including moderate, severe and 
extreme) of drought to the total grid points covering the entire river 
basin. The SPEI (SPAEIHydro) has characterized 35.2% (29.6%) of area 
under moderate, 35.47% (17.1%) of area under severe and 49.07% 
(16.8%) of area under extreme for the drought year of 2002. Therefore, 

Fig. 7. Drought areal extent (ratio of number of grids affected with moderate, severe and extreme droughts to the total grids covering the entire river basin) with 
SPEI and SPAEIHydro estimated for the period of 1951 to 2014 over KRB. 
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SPAEIHydro can provide more insight in capturing the severe and extreme 
drought characteristics at catchment scales compared to SPEI due to the 
inclusion of AET in the drought characterizing instead of PET. 

Further, to validate the newly proposed hydro-meteorological 
drought index, we have used remote sensing AET estimates based on 
GLEAM in the drought formulation of SPEI to frame SPAEI-RS (Fig. 6). 
The SPAEIHydro was noted to be more comparable with SPAEI-RS in 
terms of drought characterization compared to SPEI. It should be noted 
that the difference between SPAEIHydro and SPAEI-RS is mainly due to 
the AET estimation method used in the drought indices formulation. A 
comparison of modeled AET based on Budyko formulation and remote 
sensing based AET can be more appropriate to verify the new proposed 
drought index formulation. The spatial average correlation coefficient 
between modeled (Budyko) and remote sensing AET data was estimated 
for a period of 1980 to 2014 and obtained as 0.88. These research 
findings are in agreement with earlier study by Rehana and Monish 
(2020), with about 99% of grid points having correlation coefficients 
>0.8 all over India when compared with the Budyko and GLEAM based 
AET data sets for period of 1980 to 2014. Overall, the newly proposed 
hydro-meteorological drought characterization has followed the remote 
sensing AET based drought index, which is most dependable and vali
dated global terrestrial AET data with many hydrological applications 
(Zhang et al., 2010). 

It can be noted that the SRI estimated is with the basin outlet 
discharge point, which is always affected by water abstractions. 
Therefore, the hydrological drought was experienced for almost for all 
months (Fig. 5). Ideally, the discharge locations for comparison should 
be considered at sub-basin scale, since, the hydrological model applied 
in the present study is with closure of water-balance and therefore, basin 
outlet discharge location was considered in the estimation and com
parison of SRI index with SPEI and SPAEIHydro. 

3.2. Hydro-meteorological variability: current and future climate signals 

3.2.1. Hydro-climatology over KRB for current and future scenarios 
The present study used the climate change projections of precipita

tion and temperatures based on three GCM outputs to study the climate 
change impacts on hydrometeorological droughts over KRB. The study 
considered the current climatology as 1951–1989 and 1990–2005, with 
future projections time slices as 2021–2040, 2041–2060 and 2061–2080 
to study the drought characteristics over KRB. Depending on the NCEP 
resolution, the predictor matrix has considered around 100 (20 gridsX5 
predictors) encompassing the entire basin. Considering that there will be 
a homogeneous pattern among these predictor variables as well as 

keeping the computational constraints in view, PCA was applied in order 
to reduce the problem of multidimensionality and multicollinearity. For 
capturing 98% of variability of predictor data about 15 principal com
ponents have been selected instead of 100 predictor dimensions 
covering the entire basin in the statistical downscaling model. The 
rainfall states for the current period were obtained for the observed 
historical data using K-means clustering which are then given as inputs 
to CART model to find the rainfall states for GCM future datasets. Then, 
individual regression model based on SVR were built for each grid for 
every state. Finally depending on the rainfall state of a month in the 
future, for every grid the corresponding regression model was identified 
and applied to get the amount of rainfall in that month. For temperature, 
a single regression model was built for each grid in contrast to multiple 
models for rainfall which was applied to get the future temperature 
predictions. The historical time period of 1951–1989 and 1990–2005 
were used as training and testing of the statistical downscaling model. 
The basin averaged mean values of estimated precipitation and tem
peratures for training, testing and for the future time periods of 
2021–2040, 2041–2060 and 2061–2080 were provided in Table 2 for 
the observed and for three GCM projections with RCP 4.5 scenario. 

The increase in precipitation and temperatures for the future sce
narios were predicted compared with the observed time periods 
(Table 2). The BCCCSM, CanESM and MIROC GCMs have shown lower 
precipitation averages compared to the observed data but an increase of 
16.13 mm to 108.1 mm compared to the historical projections and an 
increase of 0.55 ◦C to 0.94 ◦C in temperatures. There is an average in
crease of precipitation with about 3.38%, 4.2% and 4.1% with BCCCSM, 
CanESM and MIROC models respectively over KRB for the future sce
narios of 2021–2080 compared to observed period of 1990–2005. 
Similarly, an increase of temperature of about 0.59, 0.37 and 0.32 ◦C 
with BCCCSM, CanESM and MIROC models respectively over KRB for 
the future scenarios of 2021–2080 compared to observed period of 
1990–2005. Such increase of temperature and precipitation results was 
found to be in comparison with earlier research findings over the basin 
(Rehana et al., 2020b). For instance, based on Regional Circulation 
Model (RCM) based Coordinated Regional Downscaling Experiment 
(CORDEX) projections of precipitation and temperatures were analysed 
over KRB by Rehana et al. (2020b). Their study noted about 2.19% of 
increase in precipitation and about 1.29 ◦C of increase in temperature 
for the period of 2021–2040 and 2041–2060 respectively compared to 
observed period of 1966–2003 with RCP 4.5 scenario with various 
CORDEX model outputs. Compared to RCM projections the GCM pro
jections based on statistical downscaling model as developed in the 
present study has shown lower precipitation and temperature increases 

Table 2 
Spatial average annual precipitation and temperatures for current period (1951–1989 (Training), 1990–2005 (testing) and future periods (2021–2040, 2041–2060, 
2061–2080) over KRB.  

Hydrological Variable GCMName Current Future   
Training Validation 2021–2040 2041–2060 2061–2080 

Average Annual Precipitation(mm) Observed 763.06 812.04 – – – 
NCEP 663.68 611.83 – – – 
BCCCSM 652.39 665.97 668.52 666.65 741.15 
CanESM 636.38 653.93 693.3 744.26 744.5 
MIROC 650.57 648.26 646.13 695.67 735.91 

Annual Temperature (0C) Observed 26.26 26.54 – – – 
NCEP 26.25 26.42 – – – 
BCCCSM 26.26 26.38 27.03 27.16 27.20 
CanESM 26.17 26.29 26.72 26.93 27.08 
MIROC 26.27 26.20 26.95 26.79 26.85 

Annual Potential Evapotranspiration (mm) Observed 1772.31 1831.13 – – – 
BCCCSM 1716.91 1758.94 1917.32 1965.66 1970.01 
CanESM 1712.73 1741.71 1871.67 1932.98 1971.68 
MIROC 1717.49 1697.60 1909.87 1859.31 1868.61 

Annual Calibrated Actual Evapotranspiration (mm) Observed 340.22 495.96 – – – 
BCCCSM 571.62 611.81 611.43 621.58 674.76 
CanESM 564.31 594.07 654.35 710.18 684.63 
MIROC 575.09 592.16 580.63 613.75 648.49  
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over KRB. It can be noted that statistical downscaling models based on 
GCM outputs have provide more accurate climate change projections as 
they are developed based on the historical relationship between the 
large-scale climate and surface based hydrological variables (Eden et al., 
2014). From the comparison of the performance of GCM simulations 
with observed data, the GCM projections which are based on the sta
tistical relationships developed based on the observed climate have 
proven to be promising tools for the hydrometeorological drought 
impact assessment over KRB. 

The average annual PET estimated with future scenarios of precipi
tation and temperatures using Thornthwaite model were noted to in
crease in the range of 100 mm to 200 mm over KRB. There is an average 
increase of PET with about 6.6%, 5.2% and 2.6% with BCCCSM, Can
ESM and MIROC models respectively over KRB for the future scenarios 
of 2021–2080 compared to observed period of 1990–2005. There is a 
consequent increase in the estimates of AETHydro in the range of 250 mm 
to 500 mm compared with the current period as given in Table 2. There 
is an average increase of hydrological induced AET with about 28.2%, 
37.7% and 23.9% with BCCCSM, CanESM and MIROC models respec
tively over KRB for the future scenarios of 2021–2080 compared to 
observed period of 1990–2005. 

3.2.2. Drought projections based on SPAEIHydro 
The precipitation and temperature projections were used as input 

into the hydrometeorological droughts assessment over KRB in terms of 
SPEI and SPAEIHydro. To show the meteorological, hydrological and 
hydro-meteorological drought impacts under climate change the present 
study used SPEI, SRI and SPAEIHydro for current and future scenarios for 
three GCM outputs. We estimated SPEI, SRI and SPAEIHydro for all three 
GCMs for RCP 4.5 scenarios for KRB with downscaled projections of 
precipitation and temperatures along with the hydrologically calibrated 
AET and simulated runoff. Before applying any climate model simula
tion for impact assessment study, the predictability of the hydro- 
meteorological phenomenon has to be tested with observed data for 
the current climatology (Li et al., 2010). To study the capability of the 
downscaled climate projections of precipitation and temperatures in 
predicting for the historical drought periods the three different GCM 
model outputs in capturing the drought intensities were examined. The 
study compared the basin averaged SPEI, SRI and SPAEIHydro based 
drought intensities for the observed period and with three GCM model 

outputs as shown in Fig. 8. All three GCMs were able to capture the 
major historical drought years between the period of 1951 to 2015. For 
example, the BCCCSM has identified the major drought year of 1972 
with SPEI (-1.6), SRI (-1.5) and SPAEIHydro (-1.32), whereas, The MIROC 
also has identified the drought year of 1972 with SPEI (-1.4), SRI (-0.11) 
and SPAEIHydro (-1.3) as drought intensities. However, canESM model 
characterised the 1972 with drought intensities with SPEI (0.0), SRI 
(-1.5) and SPAEIHydro (-1.3). Overall, BCCCSM and MIROC have iden
tified major drought years over KRB with all three indices of SPEI, SRI 
and SPAEIHydro compared to canESM. 

The study considered the current climatology as 1951–1989 and 
1990–2005, with future projections time slices as 2021–2040, 
2041–2060 and 2061–2080 to study various drought characteristics in 
terms of intensity, areal extent, frequency and duration over KRB 
(Figs. 8, 9, 10 and 11). Mainly, the study compared the SPEI and 
SPAEIHydro drought indices in terms of intensity and areal extent for 
future scenarios to quantify the impacts on meteorological and hydro
meteorological droughts. The moderate and severe drought areal extents 
have been predicted to increase for the future periods compared to the 
current. However, the extreme drought areal extent has not been 
captured attributed to the caveat of statistical downscaling models 
ability to capture the extremes effectively compared to mean climate 
(Rehana and Mujumdar, 2012). Overall, the drought area has increased 
from 14.8% to 23%-44% for the 2021–2040 period, 14%-39% for the 
2041–2060 period and 15.4%-30.75% for the 2061–2080 period, there 
is a net increase of 25%-31% from the current to future periods over KRB 
(Fig. 9). 

Here, drought is analysed in terms of average intensity estimated 
over the whole basin, frequency of droughts for every time period 
considered, as well as the average duration of drought in the considered 
time period. Higher and more frequent drought intensities have been 
observed with BCCCSM and MIROC with a threshold of ‘-1′ compared to 
the current periods, particularly after 2000 year. However, the drought 
intensity is not as high for the severe and extreme drought years 
compared to the IMD data as the extremes are not captured accurately 
using the climate change projections of statistical downscaling models. 

The frequency of drought is more with SPEI compared to the drought 
frequency with SPAEIHydro for most of the basin and higher for the 
northern regions of the KRB (Fig. 10). The average drought frequency 
for the current period 1951–2014 was estimated as 9.5 and 9 years 

Fig. 8. Comparison of drought intensity of basin averaged (a) SPEI, (b) SPAEIHydro and (c) SRI for three GCMs BCCCSM, CanESM, MIROC for the time 
period 1950–2100. 
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Fig. 9. Comparison of moderate (upper), severe and extreme (lower) drought area estimated with SPEI (a) and SPAEIHydro(b) indices based on observed and various 
GCM projections for the current and future periods. 

Fig. 10. Frequency of Drought Occurrence (in years) over KRB for the three GCMs of BCCCSM, MIROC, CanESM with SPEI and SPAEIHydro for three time periods of 
2021–2040, 2041–2060 and 2061–2080. 
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respectively with SPEI and SPAEIHydro. The study noted that number of 
drought years were predicted to increase from 5 to 6 years for every 20 
years with SPEI. Whereas, the number of drought years increase is 
predicted with SPAEIHydro as 4.5 years for every 20 years. Among these 
projections, the BCCCSM has shown higher drought frequencies for the 
period of 2041–2060 over the north of the basin with both indices of 
SPEI and SPAEIHydro. The MIROC has predicted more droughts in the 
2021–2040 period with SPEI in the central region of the basin and for 
both 2021–2040 as well as the period 2061–2080 with SPAEIHydro in the 
north western region. However, CanESM has shown higher drought 
frequencies in the southern parts of the basin with SPAEIHydro for the 
period 2041–2060. 

The BCCCSM model has predicted the basin averaged drought fre
quencies with SPEI (SPAEIHydro) as 5 (4), 8 (5) and 6 (4) years respec
tively for the three future time slices 2021–2040, 2041–2060 and 
2061–2080. The basin average drought frequency with MIROC with 
SPEI (SPAEIHydro) was predicted as 9 (4.5), 3(4), and 3 (5) years 
respectively for the three future time slices 2021–2040, 2041–2060 and 
2061–2080. Following this, the CanESM also has predicted increase of 
drought frequencies with basin averaged frequencies with SPEI 
(SPAEIHydro) as 4 (4), 5.7 (6.7), and 6.5 (5) years respectively for the 
three future time slices 2021–2040, 2041–2060 and 2061–2080. Over
all, highest number of droughts were predicted during the time period of 
2061–2080 with both SPEI and SPAEIHydro drought indices, which di
rects for the possible adaptive measures and policy making for the water 
resources management over KRB. 

Longer drought duration months were noted with SPEI compared to 
SPAEIHydro for all over KRB. The basin averaged drought durations were 
estimated with SPEI and SPAEIHydro for the current period as 6 and 3 

months respectively. As the SPEI is based on the difference between 
climatic water balance of (P-PET), such long durations can be expected. 
Such results are evident due to the positive climatic demand with PET 
(P-PET) resulting in more drought months. Whereas, SPAEIHydro is based 
on the hydrological induced AET, involving runoff, along with the pre
cipitation, the lack of water can be expected for few months only 
compared to atmospheric water demand (P-PET). Therefore, the 
drought durations were estimated as less for SPAEIHydro compared to 
SPEI over KRB. 

The drought durations were compared for SPEI and SPAEIHydro for 
current and future scenarios based on three GCM climate change pro
jections and compared as shown in Fig. 11. For about 7–9 (2–3) months 
of basin averaged drought durations were predicted for the period of 
2021–2080 period with BCCCSM. Whereas, the MIROC model has 
shown higher drought durations with about 10, 5 and 5 months with 
SPEI respectively for the period of 2021–2040, 2041–2060 and 
2061–2080 with an increase of 1.5–3.5 months with SPAEIHydro. 
Whereas, the drought duration has been predicted to increase from 6 to 
9 (4–5) months with SPEI (SPAEIHydro) for the future scenarios of up to 
2060. Overall, drought durations were predicted to increase over the 
basin for the time period of 2061–2080 with both the drought indices 
predominantly in the northern parts of the basin which can directly 
affect the crop productivity and food security. 

4. Discussion 

The study aimed to include AET in the drought characterisation 
along with precipitation at catchment scale to represent both hydro
logical and meteorological aspects combinedly. Whereas, AET is a 

Fig. 11. Drought duration (in months) over KRB for the three GCMs of BCCCSM, MIROC, CanESM with SPEI and SPAEIHydro for three time periods of 2021–2040, 
2041–2060 and 2061–2080. 
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complex hydrological variable to estimate in comparison to other forms 
of hydrological variables such as precipitation, runoff and PET. There 
are various advanced state-of-the-art satellite based remote sensing 
observations of AET which are available at various spatial and temporal 
resolutions. However, drought index developed based on such data 
cannot be used to quantify the impacts of climate change projections on 
droughts based on the most sophisticated and reliable GCM outputs. 
Therefore, the study aimed to include AET which was estimated as a 
function of readily available, estimated and simulated hydro-climate 
variables (P, R and PET), which can be further used in the drought 
impact assessment under climate change. For this purpose, the study 
adopted a well-known and classical approach of AET estimation which 
was accepted globally for long-term and at catchment scales. The study 
adopted a calibration-free formulation of Budyko hypothesis to estimate 
the AET at catchment scale as a function of accumulated P and PET at 
12-month scale to frame annual drought estimation. Inclusion of AET in 
the drought characterisation can account for the transfer of moisture 
from the surface to the atmosphere in response to both the energy de
mand and available moisture supply and can be a promising variable in 
the drought estimation (Liu et al., 2016). 

Given the advantages of the proposed drought index, some caveats 
are still there, which need special attention. Starting with the AET 
empirical model to statistical downscaling model, there can be several 
uncertainties arising from various sources. It should be noted that 
Budyko formulation has been developed for long-term average and large 
catchments with stationary assumptions towards soil water storage 
changes due to ground water recharge and human interactions (Gunkel 
and Lange, 2017). Therefore, the proposed methodology of Budyko 
formulation of AET estimates for any catchment should be implemented 
through accurate validation with water balance and most dependable 
state-of-the-art satellite based AET estimates. Further, the study used 
Budyko based empirical formulation to estimate AET and one can use 
any such model (e.g. Turc, 1954) and can study the uncertainty in the 
drought characterisation. 

One of the major assumptions made in the analysis is that AET es
timates were at 12-month accumulation monthly time scale by 
neglecting the storage changes, which are prominent at monthly time 
scale. The study is limited for the annual drought indices estimation by 
neglecting the storage changes which can be further extended with the 
inclusion of appropriate storage component in drought estimation which 
can definitely account for the agricultural drought aspects at catchment 
scales. 

The AET estimates was used in a conceptual hydrological model 
involving P and AET to quantify the water availability with closure of 
water-balance calibration factors in the drought characteristics. The 
advantage of use of a conceptual hydrological model as implemented in 
the present study has allowed to use the most prominent hydrometeo
rological variables which can be modelled and estimated based on the 
most dependable climate change projections of precipitation and tem
peratures. The study adopted a dynamic calibration approach which was 
modelled as a function of P, AET and R using a data-driven algorithm 
based on Ensemble Regression. The calibrated factors were imposed on 
the AET estimates based on Budyko framework to estimate the hydro
logical induced AET, which was used in the hydro-meteorological 
drought index formulation using the structure of SPEI. Furthermore, 
we have introduced a calibration parameter only on the AET estimates in 
the water balance equation of (P-AET). One can extend such basic 
conceptual model by introducing various other variables such as soil, 
land use, etc. and can introduce more parameters. Furthermore, the 
dynamic calibration factor modelled by Ensemble Regression model can 
be implemented by various machine learning algorithms accounting for 
such multiple calibration parameter into account. Such modelled cali
bration factors were further used to estimate the dynamic calibration 
parameters for the future scenarios with climate change projections of P, 
AET and uncalibrated runoff. The formulated drought index with hy
drologically calibrated AET estimates in SPEI was named as 

Standardised Precipitation Actual Evapotranspiration Index (SPAEIHy

dro). The study adopted a statistical downscaling model to generate the 
climate change projections of precipitation and temperatures with three 
GCMs with RCP 4.5 scenarios. The study used the newly formulated 
drought index of SPAEIHydro to study the climate change impacts on 
hydrometeorological drought assessment at river basin scale. The study 
compared the meteorological (SPEI), hydrological (SRI) and hydrome
teorological (SPAEIHydro) drought impacts under climate change by 
integrating the projections of precipitation and temperatures. 

It can be noted that the proposed hydro-meteorological drought 
index is not accounting for the groundwater component of the hydro
logical system. However, based on sufficient data availability of ground 
water storage at river basin scale and with the use of basic water balance 
equation one can account for the ground water component in the pro
posed drought index. With the inclusion of ground water component in 
the basic formulation of hydro-meteorological drought index (Eq. (21)) 
along with P, AET and R, all major forms of droughts such as meteoro
logical, hydrological and agricultural can be represented with one 
drought index. 

The proposed hydrometeorological drought indicator has provided 
promising results in reconstruction of earlier major drought years over 
the basin based on both meteorological and hydrological indices ac
counting for the time-lag effects of both indices. Further, given the 
advantage to capture both meteorological and hydrological aspects 
together in one index, the proposed formulation can provide an ease in 
the water resources management and decision making for the policy 
makers. 

5. Conclusions 

The following conclusions are derived from this study:  

• The SPAEIHydro can provide more insight in capturing the severe and 
extreme drought characteristics at catchment scales compared the 
SPEI due to the inclusion of hydrologically induced AET in the 
drought characterizing instead of PET.  

• There is an average increase of precipitation (temperature) with 
about 3.38% (0.59 ◦C), 4.2% (0.37 ◦C) and 4.1% (0.32 ◦C) with 
BCCCSM, CanESM and MIROC models respectively over KRB for the 
future scenarios of 2021–2080 compared to observed period of 
1990–2005.  

• There is an average increase of PET (AET) with about 6.6% (28.2%), 
5.2% (37.7%) and 2.6% (23.9%) with BCCCSM, CanESM and MIROC 
models respectively over KRB for the future scenarios of 2021–2080 
compared to observed period of 1990–2005.  

• Intensification drought characteristics under climate change over 
KRB has been predicted in terms of drought areal extent increase of 
about 25%-31%, with increase of drought frequency as 5 years and 
durations as 4–5 months based on the proposed hydrometeorological 
drought index of SPAEIHydro.  

• The projected drought characteristics based on SPEI are more 
intensified compared to SPAEIHydro due to the consideration of PET, 
which is maximum possible moisture loss based on energy demand. 
On the other hand, inclusion of AET as demonstrated in the present 
study can account for the transfer of moisture from the surface to the 
atmosphere in response to both energy demand and available 
moisture supply and can be a promising variable in the drought 
estimation. 
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