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Abstract Reference Evapotranspiration (ET0) is one of the prominent hydrologic
variables affecting water and energy balances and critical factors for crop water
requirements and irrigation scheduling. Evapotranspiration is a complex hydrolog-
ical variable defined by various climatic variables. Various empirical formulations
have been developed to estimate ET0 depending upon the availability of meteorolog-
ical variables. Such empirical formulations are region-specific and are for particular
climatic conditions. In this context, mathematical models have emerged as simple
and readily implementable for the estimation of ET0 with measured meteorological
parameters as independent variables. Such data-driven models can be valuable to
predict ET0 when climate data is insufficient. The present study compared various
empirical models and data-driven algorithms to predict ET0 using various climate
variables. Artificial neural networks (ANN) were adopted to estimate reference ET0.
Four empirical methods Penman-Monteith, Hargreaves, Turc, and Priestley-Taylor
were used to estimate ET0 at a daily time scale. Dataset consists of daily meteoro-
logical data over a period of 51 years (1965–2015) for Hyderabad, the largest city
of the Indian state, Telangana, with semi-arid climate. The input variables for the
ANN model consist of maximum and minimum air temperatures, relative humidity,
solar radiation, andwind speed. The Penman-Monteithmethodwas considered as the
standard method to compare the ANN and various empirical models of ET0. ANN
model was trained and tested with climate variables as input variables and various
empirical models as reference models. The most influencing climate variables on
ET0 were found in the order of temperature, solar radiation, wind speed, and relative
humidity based on correlation coefficients. These variables have formed as the basis
to choose different datasets to train over ANN model. Validation has been carried
out using the coefficient of determination (R2) which is obtained for the training
(1965–2000) and testing period (2001–2015) period as 0.97 and 0.96 respectively.
Temperature and radiation-based models of Turc and Priestley-Taylor methods can
be used to estimate ET0 when all other climate variables are not available as they
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also correlate well with the Penman-Monteith method. Advancement towards artifi-
cial intelligence techniques in water resources engineering has motivated to simulate
reference ET0 using limited meteorological variables to produce accurate results.
Such data-driven algorithms developed based on standard empirical models can be
implemented for prediction with limited climate data.

Keywords Artificial neural network · Penman-Monteith · Evapotranspiration ·
Turc · Priestley-Taylor · Hargreaves

1 Introduction

Evapotranspiration (ET) is one of the most critical components of the hydrological
water cycle affecting terrestrial water-energy balances. Actual evapotranspiration,
potential evapotranspiration, and reference evapotranspiration are significant types
of evapotranspiration.Actual Evapotranspiration (AET) is a significant component of
thewater balance and utilized generally in fields such as agronomy, hydrology, clima-
tology, meteorology, ecology, and environmental sciences (Chiew and McMahon
2002; Liu et al. 2018; Peng et al. 2019; Tasumi 2019). Twomore closely related types
of evapotranspiration are potential evapotranspiration (PET) and reference evapo-
transpiration (ET0). Although both PET and ET0 provide estimates of atmospheric
evaporative demand, they are based on different ideas, concepts, application fields
and have different equations that can help to differentiate the terms. However, many
researchers have treated PET and ET0 as identical concepts and used similar equa-
tions for their estimation (Allen & Food and Agriculture Organization of the United
Nations 1998; Irmak and Haman 2003a, b; Yates 1997; Zhang et al. 2017) The first
idea of PET was proposed by Thornthwaite (1948) and that core idea with improve-
ments are being used now. The PET equations were classified as mass-transfer,
temperature, and radiation-based, while the reference ET0 equations were classified
as temperature, radiation, and pan-evaporation based (Chiew and McMahon 2002).
PET has been applied mostly in hydrology, meteorology, and climatology. Whereas,
the ET0 has been applied mostly in agronomy, agriculture, irrigation, and ecology.
The accurate estimation of ET0 is essential in irrigation planning, scheduling, hydro-
logical balance studies, and watershed hydrology (Feng et al. 2018; Yao et al. 2018).
It has a broader significance in numerous fields of research including crop yield
simulation, optimization of water lost, management and irrigation system design,
water usage improvement in agriculture, and hydrologic water balance.

The ET0 can be estimated based on energy balance and water vapour mass flux
transfer methodologies (Rehana et al. 2020). Various methods to estimate reference
ET0 have been developed and are being utilized, depending upon the availability of
meteorological variables. Empirical models for ET0 estimation, i.e., statistical func-
tions of approximation between meteorological variables and values, can overcome
the difficulties associated with data availability for ET0 estimation (Magliulo et al.
2003; Naoum and Tsanis 2003a, b). Among these Priestley-Taylor (Hargreaves and
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Samani 1985; Penman 1948; Priestley and Taylor 1972) are well-establishedmodels.
These empirical models vary in terms of solar radiation, temperature considering the
physical processes of radiation and transport characteristics of natural surfaces.

Themodified Penman-Monteith 56 equation has been recommended for the calcu-
lation of ET0 and calibration of other equations by various international organizations
such as the United Nations Food and Agriculture Organization (FAO) and World
Meteorological Organization (Allen & Food and Agriculture Organization of the
United Nations 1998; Walter et al. 2001). The Penman-Monteith equation has two
critical advantages. First, it can be used in a wide variety of environments and climate
scenarios without the need for any local calibrations because of its physical basis.
Second, it is a well-documented method that has been validated using lysimeters
under a wide range of climate conditions (Landeras et al. 2008). The main drawback
of this equation is that it requires data on a large number of climate variables that are
unavailable in many regions. An empirical model such as The Priestley-Taylor equa-
tion (Priestley and Taylor 1972) can estimate regional monthly ET0 provided that
the adjustment factor is adapted to different site conditions (Castellvi et al. 2001).

Nevertheless, the superiority of the Penman-Monteith method over the Priestley
Taylor equation has recently been demonstrated (Alexandris et al. 2006) carried out
surface polynomial regression analysis using hourly solar radiation, air temperature,
and relative humidity (RH) to estimate ET0. Amuch simpler alternative is the Thorn-
thwaite scheme (Thornthwaite 1948) as it requires the only temperature as input data.
However, this approach has been found to underestimate ET0 under arid conditions
and overestimate in a humid climate (Pereira and Pruitt 2004). The Hargreaves and
Samani equation are an empirical approximation of the ET0 calculation based on
temperature and extraterrestrial radiation data (Gafurov et al. 2018).

Empirical models can be the best choice for estimating the ET0 given the avail-
ability ofmeteorological variables.However, for ungauged basinswheremeteorolog-
ical data is insufficient data-driven algorithms have proven to be valuable tools. Such
data-driven models work with various climate factors as input variables and ET0 esti-
mates as referencemodels. In the past decades, there has been awidespread interest in
the application of data-driven modelling andmachine learning techniques in the field
of water resources and hydrology (Kumar et al. 2020; Rehana 2019). In this context,
the Artificial Neural Network (ANN) has been a widely applied machine learning
algorithm in water resources engineering, including evapotranspiration (Kumar et al.
2020). ANNs are mathematical models whose architecture is inspired by biological
neural networks and are highly appropriate for the modelling of nonlinear processes
and are being used to predict and forecast water variables in the last decades and
have been successfully used in hydrological processes, water resourcesmanagement,
water quality prediction and reservoir operation (Antonopoulos and Antonopoulos
2017). In recent years, ANN algorithms have been applied in the field of ET0 esti-
mation. Kumar et al. (2002) developed ANN models for the estimation of ET0

and found that the ANNs could predict ET0 better than the conventional empir-
ical methods. More recently, Kisi (2007) investigated the modelling of ET0 using
ANNs with the Levenberg-Marquardt training algorithm and inferred that ANNs
could be employed successfully in modelling ET0 from available climate data. Jain
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et al. (2015) interpreted the physical meanings of ANNs for ET0 estimation. Some
of them utilized the comparable climatic data required for the application of the FAO
Penman-Monteith method (Kumar et al. 2002; Odhiambo et al. 2001a, b; Trajkovic
2005). These researchers reported that the ANN can anticipate ET0 ever better than
the FAO Penman-Monteith conventional method. Sudheer et al. (2003) and Zanetti
et al. (2007) simplified the input variables, and ET0 was evaluated as a function
of air temperature, extraterrestrial solar radiation, and daylight hours. Chauhan and
Shrivastava (2009) compared the performance of four climate-based methods and
Artificial Neural Networks (ANNs) for estimation of ET0 when input climatic param-
eters are insufficient to apply the FAO Penman-Monteith method. They concluded
that ANN models performed better than climatic methods. Suryavanshi et al. (2014)
examined the trend in temperature and potential evapotranspiration over the Betwa
basin, India. Sonali and Nagesh Kumar (2016) analysed the trend of maximum and
minimum temperature of annual, monthly, winter, pre-monsoon, monsoon, and post-
monsoon. The studies were carried out for three-time slots 1901–2003, 1948–2003,
and 1970–2003, for India as a whole and seven homogeneous regions of India.
Authors considered the effect of serial correlation, trend detection analysis while
applying the Mann-Kendall test, Sen’s slope estimator, and other non-parametric
methods. Bandyopadhyay et al. (2020) have carried out the trend analysis of ET0

using the Mann-Kendall trend test for India. The authors indicated that the leading
cause of the rising trends of ET is due to an increase in relative humidity and a
decrease in wind speed for the study duration. In another study, Rahimikhoob (2010)
applied the ANN technique to estimate ET0 based on air temperature data under
humid subtropical conditions on the southern coast of the Caspian Sea situated in
the north of Iran. The study showed that ANN successfully estimated the daily ET0

better than the Hargreaves classical equation. Adamala (2018) made a comparison of
developed models with the artificial neural network models and also with the linear
and wavelet regression and conventional methods to estimate evapotranspiration
using temperature-based generalized wavelet-neural network models. Estimation of
the ET0 of Punjab was done based machine learning models and was compared
in predicting daily ET0 with the performance of the Deep Learning model and
was compared to Penman-Monteith model. The Generalized Linear Model (GLM),
Random Forest (RF), and Gradient-Boosting Machine (GBM) models were also
used in the study as various machine learning algorithms and concluded that the
deep learning model performed better than the considered models for training, vali-
dation and testing sets. Pal and Deswal (2009) and Saggi and Jain (2019) investigated
the different data-driven based regression approaches to model daily ET0 using four
inputs, including solar radiation, average air temperature, average relative humidity,
and average wind speed. Results from their study suggested that the different data-
driven and machine learning models could successfully be employed in modelling
the ET0.

The present study made efforts to implement the ANN model for the estimation
andpredictionofET0 in a semi-arid climate of India.Theobjectives of this study are to
(1) developANNmodelswith available climate factors forET0 estimationusing long-
term meteorological data; (2) to assess the applicability and validity of different ET0
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methods such as Penman-Monteith, Priestley-Taylor, Hargreaves, and Turc methods.
Since the maximum and minimum air temperature and relative humidity records are
more readily available around the globe, these records with extraterrestrial radiation
are being used as input in the above models for the estimation of ET0. Extraterrestrial
radiation reflects the seasonality of ET0 and can theoretically be calculated as a
function of the local latitude and Julian data, according to the equations presented by
Allen& Food and Agriculture Organization of the United Nations (1998). Therefore,
for the models suggested in this study, only temperature and relative humidity are
the parameters that require monitoring. Here, the FAO Penman-Monteith method
was used as a substitute for measured ET0 data, as this is the standard procedure
used when no measured lysimeter data is available (Irmak and Haman 2003a, b).
The study has been implemented on the semi-arid climate conditions of Hyderabad,
Telangana, India.

2 Data and Case Study

The area under study was Hyderabad, the largest city of the Indian state of Telan-
gana which lies between latitude 17.3850° N and longitude 78.4867° E located on
theDeccanPlateau in the northern part of South India and covers an area of 650 km2 at
an elevation of 542m. Based on theKoppen climate classification, the climate is trop-
ical wet and dry bordering on a hot semi-arid, with an average annual precipitation
of about 171 mm (Fig 1).

Daily meteorological data were obtained from January 1965 through December
2015 (51 years) (612months) fromweather station situated in Professor Jayashankar
Telangana State Agricultural University, Rajendranagar Mandal, Hyderabad, Telan-
gana. The annual average weather data of the meteorological station is presented in
Table 1. Five monthly meteorological variables were recorded including: (1) mean
maximum air temperature (Tx °C); (2) mean minimum air temperature (Tn °C); (3)
mean relative humidity (RH%); (4) mean wind speed (U2 m s−1); (5) solar radiation
(Rs, MJ m−2 d−1) and (6) Evapotranspiration (ET0 mm/day). Measurements were
made at the height of 2 m (air temperature and relative humidity) and 10 m (wind
speed) above the soil surface. Wind speed data at 2 m (U2) were obtained from those
taken at 10 m using the log-wind profile equation.

3 Materials and Methods

This study mainly implemented the ANN model for estimation and prediction of
ETo. Evapotranspiration is calculated using the following methods with the limited
meteorological parameters by considering Penman-Monteith method as standard
method as it requires radiation, wind speed, relative humidity and temperature.
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Fig. 1 Case study: Hyderabad, Telangana, India

Table 1 Statistical parameters of available meteorological variables and ET0 at Hyderabad

Parameters Tx Tn RHmean U2 Rs ET0

Maximum 45.5 33.0 139 36.0 14.45 13.16

Minimum 17.6 5.0 10 0 4.00 0.48

Mean 32.37 19.88 60.70 4.69 9.32 3.76

Standard deviation 4.1 4.79 14.93 4.62 2.44 1.72

3.1 FAO-56 Penman-Monteith Method

The Penman-Monteith (Penman 1948) method was recommended by the FAO. It is
calculated on a daily time scale. The formulation can be expressed as follows:

ET0 = 0.408�(Rn − G) + g
(

900
T+273

)
U2(es − ea)

� + g(1 + 0.34U2)
(1)

where, Rn is net radiation (MJ m−2 d−1), G is soil heat flux (MJ m−2 d−1), T is
average temperature at 2 m height (°C), U2 is wind speed measured at 2 m height
(m s−1), (es − ea) is pressure deficit for measurement at 2 m height (k Pa), � is slope
vapor pressure curve (k pa °C−1), g is psychrometric constant (k pa °C−1), 900 is
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coefficient for the reference crop (l J−1 kg K d−1), 0.34 is wind coefficient for the
reference crop (s m−1).

3.2 Turc Method

Turc (1961) method estimates ET0 based on mean temperature and solar radiation
on daily time scale. The formulation can be expressed as follows

ET0 = 0.013
Tm

Tm + 15
(23.88Rs + 50) (2)

where Tm is mean temperature (°C), solar radiation (Rs) is [0.25 + 0.5 (n/N)] Ra,
Ra is extraterrestrial radiation (mm day−1), n is actual hours of bright sunshine (h),
N is maximum possible hours of sunshine (h).

3.3 Priestly and Taylor Method

Priestley and Taylor (1972) method is calculated using net radiation and latent heat
of vaporization on a daily time scale. The formulation can be expressed as follows

ET0 = A

(
D

D + g

)(
Rn − G

L

)
(3)

D = 4098
[
0.6108exp

(
17.27∗Tm
Tm+237.3

)]

(Tm + 237.3)2
(4)

where D is slope vapour pressure curve (k pa °C−1), g is psychrometric constant (k
pa °C−1), Rn is the net radiation at crop surface (MJ m−2 d−1), A is a calibration
constant 1.26, L is the latent heat of vaporization and can be considered as 2.45
(MJ/kg) which is constant.

3.4 Hargreaves Method

Hargreaves (1972) method which was modified in 1985 (Hargreaves 1983) estimates
ET0 based on temperature and radiation is calculated on a daily time scale. The
formulation can be expressed as follows:

ET0 = 0.0023Ra

(
Tm

2
+ 17.8

)
(Td0.5) (5)
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where, Td is difference between maximum temperature and min temperature (°C),
Tm is mean temperature (°C), Ra is extra-terrestrial radiation (mm day−1)

3.5 Artificial Neural Networks (ANN)

Artificial Neural Networks has gained much attention in hydrology for the prediction
of various conceptual processes such as rainfall-runoff, streamflows, water quality
and ground water modelling, etc. (Kurian et al. 2020). ANN is a computational
model inspired by networks of biological neurons, wherein the neurons compute
output values from inputs (Heddam and Kisi 2018). It learns from its past experience
and errors in a nonlinear parallel processing manner (Gupta and Singh 2011). ANNs
are fully connected neural nets that consist of an input layer, hidden layers (multiple
or single), output layer. Each node can be considered as a neuron. The neuron is
the basic calculating entity that computes from a number of inputs and delivers one
output compared with a threshold value and turned on (fired). The computational
processing is done by internal structural arrangement consisting of hidden layers
that utilize the backpropagation and feed-forward mechanism to deliver output close
to accuracy. Fully connected neural nets are those where each node in a layer is
connected to every other node in the next layer (right). Each node takes the weighted
sum of its inputs which then passes through a nonlinear activation function (like
RELU, sigmoid, tanh, etc.), which then becomes the input of other nodes in the
next layer (Rumelhart et al. 1986). In Eq. 6 the function, f , represents the activation
function and w is the weight matrix, X is the set of input vectors (Fig. 2).

Z = f (x. w) = f

(
n∑

i=1

xiwi

)

x ∈ d1×n,w ∈ dn×1,z ∈ d1×1, (6)

The present study used a feed-forward backpropagation neural network. The
weights are initially randomly assigned. The train: test spilt on the dataset is 7:3.
A forward pass is performed for every training data using the current weights, and
the output is calculated for each node. At the last node, the final output is acquired,
and the error is calculated with a loss function. Now, a backward pass is performed
to calculate the contribution of each node in error calculated. The error is propagated
to every single node using backpropagation. Once, the contribution of each node has
been calculated the weights are adjusted accordingly using gradient descent. The
present study used gradient descent with momentum and adaptive linear regression.
The procedure is repeated until the loss function gives an error which is less than the
threshold value and the weights and bias of the required network are thus obtained.
Thus, the model converges, and a definite result can be obtained for any type of
testing dataset.
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Fig. 2 Structure of ANN used for training a model with hidden layer and weights and the output
layer showing a feed-forward pass

3.6 Performance Metrics

The model’s performance criteria were validated using different standard statistical
methods. In this study coefficient of Determination (R2) (Krause et al. 2005) Root
Mean Square Error (RMSE) (Legates and McCabe 1999) the Mean Absolute Error
(MAE) were used as validation criteria. The equations for these methods are as
follows:

R2 =
⎛

⎝
∑n

i=1

(
Oi − Oav9

)(
Si − Sav9

)

√∑n
i=1

(
Oi − Oav9

)2
√∑n

i=1

(
Si − Sav9

)2

⎞

⎠

2

(7)

RMSE =
√√√
√

n∑

i=1

(Oi − Si )
2 (8)

MAE = 1

N

n∑

i=1

(Oi − Si ) (9)
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whereO is the observed values (the reference evapotranspiration), S is the simulated
values by the other methods, andOavg and Savg are the mean observed and computed
values, respectively.

4 Results and Discussions

The climate variables considered for estimating daily ET0 using ANN and Penman-
Monteith methods were the daily maximum temperature, minimum temperature,
relative humidity, solar radiation and wind speed. Similarly, for the Turc and corre-
sponding ANN model, the input variable considered is the mean temperature and
solar radiation. Whereas, for the Hargreaves and corresponding ANN model, the
input variables considered are maximum and minimum temperatures and solar radi-
ation. Furthermore, for the Priestly Taylor method, the input variables used in ANN
are temperature, solar radiation, and relative humidity. The ANN model used in the
present study is Multi-Layered Perceptron (MLP) imported from the sci-kit-learn
library in python. The study used three hidden layers with several neurons same as
the number of features or parameters, i.e. 6 (maximum air temperature, minimum
temperature, relative humidity, solar radiation), and ran the model for 500 iterations.
Convergence was obtained for the datasets of all the four empirical methods. The
prediction values have been calculated by fitting the test data on the trained model.
As the number of meteorological variables for each empirical method is different,
therefore, for each empirical model, an ANN model was trained, and results were
tested. Input vector has the features considered in eachmethod (Penman, Hargreaves,
Turc, and Priestley-Taylor) 3 hidden layers have been used for each method and the
output vector is the expected reference evapotranspiration value calculated from each
method. The optimal node number in the hidden layer of the network was determined
using a trial and error method by considering the MAE, RMSE, and R2 values from
a test sample. In this study, ANNs were trained for 500 epochs with one to 6 nodes in
the hidden layer and mentioned before, statistical parameters were calculated using
only the whole test data set after each training run. The training period considered
is from 1965 to 2000 and the testing period considered from 2001 to 2015. The
validity and efficiency of the model can be seen when the training dataset is fit on the
trained model, and high accuracy and minimal values of RMSE were obtained. The
performance of each empirical model corresponding with the ANN model in terms
of R2, RMSE, and MAE was listed in Table 2. Figures 3, 4, 5, 6 and 7 shows the
comparison between daily ET0 values form empirical models of Penman-Monteith,
Priestley-Taylor, Hargreaves, Turc, and ANNmethodologies for training and testing
datasets.

Figure 3a shows the comparison of ET0 daily values predicted by the ANNmodel
versus the ET0 values of the Penman-Monteith method for both testing and training
periods. A good correlation was observed with R2 values as higher than 0.95, RMSE
as 0.03, and MAE as 0.009 between the Penman-Monteith method and ANN for the
testing period. The trained and testedANNmodel performs verywellwhen compared
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Table 2 Statistical summary of testing and training period for ANN

Empirical methods Artificial neural network
(training)

Artificial neural network (testing)

R2 RMSE MAE R2 RMSE MAE

Penman-Monteith 0.97 0.02 0.008 0.96 0.03 0.009

Turc 0.96 0.03 0.007 0.95 0.04 0.012

Hargreaves 0.94 0.05 0.015 0.94 0.06 0.017

Priestley Taylor 0.91 0.10 0.022 0.92 0.12 0.025

with Penman-Monteith estimates. The comparison shows that neither overestimation
nor underestimation was produced in the range of the values studied. This verifies
that the ANNmodels can be used to estimate ET0 values. Thus, compared to all other
empirical models, the Penman-Monteith has been predicted well with the data-driven
algorithm of ANN. It can be noted that, as the Penman-Monteith method accounts for
all climate variables into modelling, such accuracies were expected to be comparable
to other empirical models.

Furthermore, the present study tried to understand the sensitivity and dependency
of each meteorological variable on the modelled ET0 using the Penman-Monteith
model. The study plotted the scatter plots between each climate variable and ET0

modelled based on the Penman-Monteith method, as shown in Fig. 8.
As shown in Fig. 8, the temperature and solar radiation followed by relative

humidity have the most substantial influence on ET0 estimations based on the
Penman-Monteith model. Therefore, ANN models that were derived based on
temperature, solar radiation, wind speed and relative humidity as input and the ET0as
output variables. The ANN model results, when using (T, RH, Rs and U2) from the
four essential meteorological variables as input, seldom show the same values of
coefficient of determination (R2). These results prove that the relative humidity has
a very low contribution to ET0 when using ANNs models. The overall accuracies of
most models were found to be similar to each other.

Furthermore, the results of the ANN can be significantly influenced by the number
of input data which can lead to significant error and deviation. On the other hand,
lowering the number of neurons in the input layer to three or even two can give us
satisfactory results in the estimation of the reference evapotranspiration. The most
critical inputs for accurate estimation of ET0 using an ANN are temperature and
radiation data (Jain et al. 2015). The results showed that the proper choice of ANN
architecture allows not only error minimization but also maximizes the relationship
between the dependent and the independent variables. The results of the study reveal
that temperature and solar radiation as the most influencing variables compared to
relative humidity and wind speed for semi-arid climate conditions, as demonstrated
in the present study. Given the intense data requirements for applying the Penman-
Monteith model, the study employed ANN with minimum input variables such as
temperature, and solar radiation. The trained and tested algorithms developed based
on empirical models can be valuable tools to predict ET0 for limited data case studies.
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Fig. 3 a Variation in reference evapotranspiration (ET0) from Penman-Monteith for the first 100
data points using ANN. b Variation in reference evapotranspiration (ET0) from Turc for the first
100 data points using ANN. c Variation in reference evapotranspiration (ET0) from Hargreaves
for the first 100 data points using ANN. d Variation in reference evapotranspiration (ET0) from
Priestley-Taylor for the first 100 data points using ANN
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Fig. 3 (continued)

Analysing the sensitivity of each climate variable on ET0 and testing the statistical
dependencies, data pre-processing to acquire relevant information before the devel-
opment of such data-driven algorithms is of most importance in the implementation.
Analysis of compensating accuracies with the inclusion of limited climate input vari-
ables in the ET0 estimates compared to standard empirical models can be a potential
area of research.
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Fig. 4 Comparison of ET0 predicted by ANN and Penman-Monteith method values for training
and testing periods

Fig. 5 Comparison of ET0 predicted by ANN for Priestley-Taylor method values for training and
testing periods
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Fig. 6 Comparison of ET0 predicted byANN for Hargreavesmethod values for training and testing
periods

Fig. 7 Comparison of ET0 predicted by ANN for Turc method values for training and testing
periods
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Fig. 8 Correlation of main meteorological parameters such as temperature, relative humidity, solar
radiation, wind speed to ET0

5 Conclusions

The daily reference evapotranspiration over semi-arid climatic conditions over
Hyderabad,Telangana, India,weremodelled using empirical anddata-drivenmodels.
The Penman-Monteith model estimates of reference evapotranspiration were consid-
ered as standard referencemodels for various temperature and radiation-based empir-
ical models and also for data-driven models. The daily reference evapotranspiration
rates were estimated with ANN modelling technique using four input variables as
maximum and minimum air temperatures, relative humidity, solar radiation, and
wind speed; three input variables as average air temperature, relative humidity, and
solar radiation; two input variables as temperature and solar radiation. The results
were discussed with the results of alternative methods of ET0 calculation, such as
the combination-based method of Penman-Monteith, the radiation-based methods of
Priestly-Taylor, the temperature-based methods of Hargreaves, and the Turc method.
The correlation coefficient values suggest that temperature is the most important
factor followed by solar radiation, wind speed, and relative humidity, respectively.
ANN with all-climate variables as input was able to simulate ET0 values esti-
mated using the Penman-Monteith method. Temperature and solar radiation have a
maximum correlation with ET0 estimates of Penman-Monteith models as compared
to relative humidity and wind speed. The Turc model uses temperature and solar
radiation as input variables and high accuracy with the ANN model. Whereas, the
relative humidity has the least correlation with the reference ET0 estimates. The
Priestly-Taylor model considers relative humidity, temperature, and solar radiation
as input variables. Due to the lower dependency of relative humidity on the reference
ET0 estimates, the Priestly-Taylor model has lower accuracy with ANN compared
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to the Turc model. The study concludes that the empirical models work well with
data-driven algorithms that consider the climate variables having high dependency
with the standard reference ET0 estimates. Such studies can be implemented for the
development of data-driven models statistically dependent with reference model ET
estimates. Further, it can be concluded that when a parameter or an input variable
with a lower correlation is added to the set of features for training over ANN, the
accuracy of prediction will be decreased. The results showed that ANN provides
quite good agreement with the ET0 obtained by the Penman-Monteith method. The
study demonstrated that modelling of ET0 through the use of the ANN technique
gave better estimates that provedwith their performance criterion, i.e. R2 as 0.96. The
study concludes that the performance of the model varies according to the number of
inputs aswell as the predicted time step.Overall, results are of significant practical use
when limited climate data is available to estimate the reference evapotranspiration.
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