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Abstract—The Internet of Things (IoT) plays a key role in
real-time monitoring at different stages of the power generation
system, assisting to achieve better efficiency, minimize load on
the grids by analysing usage patterns, provide faster resolutions
to power outages, and so on. In this paper, we present a
novel energy monitoring approach employing LoRaWAN-enabled
smart energy meters and a oneM2M-based platform for collecting
and analysing the data. The energy meters transmit data at 15-
minutes intervals, i.e., 96 data points per day. A novel format has
been developed for the LoRaWAN Protocol Data Unit (PDU) to
transmit the values of phase currents and voltages, and data
related to power and energy comsumption. This results in a
high-resolution dataset containing more than 10,000 instances
per meter, accumulated over the last four months. The data can
be visualised in a live dashboard enabling the signal parameters
such as Received Signal Strength Index (RSSI) and Signal to
Noise Ratio (SNR) to be monitored in addition to the electrical
parameters, to ensure proper data transmission. Finally, the
trends in power and energy consumption of the load have been
analysed, which can result in improved efficiency of building
management, and early detection of electrical faults and failures.

Keywords—Energy meters; Real-time Monitoring; oneM2M;
LoRaWAN; IoT

I. INTRODUCTION

Internet of Things (IoT) is pioneering a paradigm shift in
global energy systems, imparting capabilities such as real-time
monitoring, control, situational awareness and intelligence,
and cybersecurity [1] at different stages of energy generation,
transmission and distribution. Real-time monitoring, in partic-
ular, can assist in achieving better efficiency, minimizing load
on the grids, providing faster resolutions to power outages,
lowering the cost for consumers using demand-based dynamic
pricing, and so on. Indeed, because of these advantages, multi-
ple IoT-based energy monitoring solutions have been proposed
in recent years. A comprehensive survey of smart electricity
meters has been presented in [2] and [3], detailing aspects
of the metering process, development and deployment, data
analytics, existing technologies, and functions including data
recording, alarming, and pricing. A Bluetooth Low Energy
(BLE) based energy management method has been proposed
in [4] using a BLE-enabled mobile device (basically any
smartphone) to aggregate the energy consumption data. This
was a modified architecture of their previous Zigbee and
PLC based system [5], primarily aimed to reduce the energy
consumption. Over the years, IoT devices have gradually

steered away from traditional protocols such as Wi-Fi, BLE,
and cellular, because low power and long range are favored in
most [oT applications as opposed to higher bandwidth and data
rate. Specifically, LoORaWAN is seen as a promising solution
in sundry IoT applications [6] including smart cities [7], [8],
localization [9], [10], utility metering [11], [12], etc., owing to
its long range and low power capabilities. Extensive research
on signal propagation [13], [14], path loss modelling [15], and
range evaluation [16], has been carried out in the recent years
and LoRaWAN-based energy monitoring systems have already
been proposed in the literature [17]-[19]. In [20], class A
LoRaWAN-based smart meters were used to monitor energy
parameters and a detailed analysis of package delivery rate was
presented. Energy monitoring using an Arduino-based sensor,
Raspberry Pi-based gateway using LoRa for communication,
and a NoSQL-based MongoDB database for data storage has
been presented in [21].

One of the major disadvantages of the rapid integration of
IoT is the limitation of meaningful data exchange between
different verticals. To combat this, a global standard, oneM2M
[22], has been devised. It acts as a horizontal layer between
IoT end-nodes, communication networks, and applications by
defining common service functions (CSFs), thus restoring the
interoperability and scalability between different networks.
In this paper, we propose an advanced metering architecture
employing LoRaWAN-enabled smart meters for sensing the
energy parameters, integrated with the oneM2M platform, for
collecting and analysing the data. We deploy OM2M [23],
which is an open-source service platform compliant with
the oneM2M standards. The integration of oneM2M aids in
realizing this energy monitoring vertical as part of a scalable
smart city monitoring system, including verticals such as air
pollution, crowd monitoring, security, and water quality.

II. ARCHITECTURE AND IMPLEMENTATION

Energy consumption data has been captured through
LoRaWAN-enabled three-phase energy meters, compliant with
the IS 16444 standard. This data is formatted in a specific
PDU format and sent over a public LoORaWAN network (SenRa
Co). The meter is first registered and activated on the SenRa
network, following which, the meter starts transmitting an
uplink message to the network server through the LoRaWAN
gateways installed on campus. On the network server, the data
is formatted into a JSON object with multiple key-value pairs
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Fig. 3. The format followed for creating the LoRaWAN payload at the
transmitter.
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Fig. 2.
meter. (b) Geolocation information of the two meters deployed.

(a) Photograph of the deployed LoRaWAN-enabled smart energy

that hold the information including the payload, observation
date and time, unique identifiers of the energy meters, transmit
frequency, etc. The data packet with the best Signal to Noise
Ratio (SNR) is then forwarded to the proxy server, where
hexadecimal information of the PDU is converted into decimal
values. The proxy server re-formats the JSON object to comply
with the oneM2M standards, and forwards it to the OM2M
platform. The data can then be accessed by cloud applications
for analysis or visualization. A schematic of this architecture is
illustrated in Fig. 1. As part of the pilot project, we deployed
smart energy meters at two locations inside the campus of
IIIT Hyderabad, India (Fig. 2). The system has been designed
such that this number can be scaled up in the future without
the need for additional infrastructure.

A novel format is used for the LoRaWAN Protocol Data
Unit (PDU) to transmit electrical information. This includes
instantaneous values of individual phase currents and voltages,
average power factor (PF), average frequency, instantaneous
values of apparent and real power, and cumulative values of
reactive (kVARh), total (kVAh) and conventional (kWh or
units) energy consumption. The payload consists of 46 bytes;
each cluster of bytes representing an electrical parameter, as

=E Energy Hexadecimal to Decimal
a8 Parameters Hex value | (Hex-to-Dec)/n | Final Value
a R Current (A) 00000480 1152/1000 1.152
CYESRS “‘%‘@ Y Current (A) 00000479 1145/1000 1.145
(] ’Oﬁ% B Current (A) 00000467 1127/1000 1.127
o, R Voltage (V) 5ACD 23245/100 232.45
5. Y Voltage (V) 5B5C 23388/100 233.88
Hen, B Voltage (V) 5B69 23401/100 234.01
NCPHO2-00 _>9 Avg PF 004C 76/100 0.76
Avg Freq (Hz) 1387 4999/100 49.99
0BH Circle Power (kVA) 0000031E 798/1000 0.798
T Hyderabad @ Power (kW) 0000025E 606/1000 0.606
@_.9 Nuchibodl Energy (kWh) 00033701 210689/100 2106.89
kVRh Lead (kVRh) | 00023147 143687/100 1436.87
) kVRh Lag (kVRh) | 0000021C 540/100 5.4
Energy (kVAh) 00042B53 273235/100 2732.35

illustrated in Fig. 3. The conversion of the data bytes in the
PDU to the values of corresponding electrical parameters is
detailed in Table I. The payload data is broken into various
segments according to the PDU format, and the hex value is
converted into the equivalent decimal value and the decimal
point is placed correctly. The final value thus obtained is stored
in the OM2M platform in the appropriate data container. This
data can be subsequently used for various IoT solutions in-
cluding graphic visualization in the form of a dashboard, real-
time monitoring of energy consumption, designing algorithms
for predictive maintenance of electrical appliances to improve
performance, early detection of potential problems preventing
failures, hence reducing the maintenance costs of the system.

III. RESULTS

The deployed meters have accumulated more than 10000
data points each, over a period of four months. The live
data can be viewed in a dashboard illustrated in Fig. 4.
The real-time values of phase currents and voltages can help
in immediate fault detection in the loads. The live plots of
instantaneous power and cumulative energy assist in estimating
the time during which energy was actually consumed in a day.
The RSSI and SNR values can be monitored to ensure proper
data transmission. RSSI values above -120 dBm are considered
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Fig. 4. A live dashboard can be used to monitor the electrical parameters
and signal strength in real-time using a mobile application or a web portal.
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Fig. 5. A histogram of all the RSSI values from energy meter NC-PH02-00,
over the 4 month period of deployment.

ideal in LoRaWAN, with values below -120 dBm indicating
potential packet loss. The RSSI values of all the transmissions
from meter NC-PH02-00 over the four months of deployment
have been analysed to conclude that approximately 76% of
them were in this ideal range, as illustrated in Fig. 5.

The access to daily energy consumption in both kWh and
kVAh is one of the pivotal advantages of smart meters over tra-
ditional energy meters. This can help identify trends of energy
consumption, particularly with changing weather, to optimize
building energy consumption. The flexibility of tracking both
kWh and kVAh usage along with real-time monitoring of
PF values is also a key advantage in industrial deployments.
The daily energy consumption data is as shown in Fig. 6.
The line graphs indicate the 7-day moving average of energy
consumption, which can provide interesting insights into the
pattern of energy consumption in the campus. For example,
we had a reduced student strength on campus because of
the second wave of Covid-19 and the end of the Spring
semester, starting 1%* May. It can be clearly seen that the power
consumption has reduced in the month of May. Further, the
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Fig. 6. Daily energy consumption from 23™ March to 23" May, 2021. The
line graphs indicate the 7-day moving average of active and apparent energy.

meter NC-PHO02-00 was installed at one of the pump houses
on campus, with a three-phase pump as its only load. We
found that the values of currents in the three phases were
either zero indicating that the pump was off, or a constant
value indicating that the pump was on. The average non-zero
value of red, yellow and blue phase currents was found to be
1.11 £ 0.03 A, 1.12 £ 0.03 A, 1.11 + 0.02 A, respectively,
thus giving a mean deviation of only 2.4% from their average
values. This result can be used to determine if there is a fault
in the pump by triggering an alarm if the non-zero values of
currents are higher or lower than expected.

IV. CONCLUSION

In this paper, we have proposed a novel and scalable
real-time energy monitoring system employing LoRaWAN-
enabled smart meters and a oneM2M service platform. A
novel format was used for the LoRaWAN PDU that contained
46 bytes of payload denoting values of phase currents and
voltages, frequency, power factor, and power and energy
consumption related information. The data accumulated over
the four months of deployment can be analyzed to detect faults,
minimize power loss and reduce energy consumption, and can
be used for visualization purposes. This deployment can be
scaled up to 100 energy meters in the future, without the
need for additional infrastructure. Further, an Inter-working
Proxy Entity (IPE) can be incorporated instead of a proxy
server, to seamlessly transfer decoded packet information to
the oneM2M platform.
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