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Fig. 1: Future prediction: Left: (top) An interesting scenario from KITTI (using Lidar and stereo) [1] where the car (cyan bounding box)
will turn left over the next 4 seconds. Using INFER, we predict this future trajectory, given the past trajectory (the trail behind the car). The
predicted future trajectory (orange) and the ground truth trajectory (blue) are projected on to the image. On the top-right and bottom-right,
we show zero-short transfer results on the Cityscapes [2] (using stereo) and Oxford Robot Car [3] (using Lidar) which demonstrates
cross-sensor and varying driving scenario transferability. For visualization, we register the predicted and ground truth trajectories in 3D
for each of the dataset (shown below the image): The green 3D bounding box depicts the first sighting of the vehicle of interest which
is also when we start preconditioning, and the red 3D bounding box indicates the start of prediction. We also register the Lidar/depth
information (cyan-road, dark gray-lane, and magenta-road) to demonstrate the accuracy of our prediction.

Abstract— In urban driving scenarios, forecasting future
trajectories of surrounding vehicles is of paramount impor-
tance. While several approaches for the problem have been
proposed, the best-performing ones tend to require extremely
detailed input representations (eg. image sequences). As a
result, such methods do not generalize to datasets they have
not been trained on. In this paper, we propose intermediate
representations that are particularly suited for future prediction.
As opposed to using texture (color) information from images,
we condition on semantics and train an autoregressive model
to accurately predict future trajectories of traffic participants
(vehicles) (see fig. above). We demonstrate that semantics
provide a significant boost over techniques that operate over
raw pixel intensities/disparities. Uncharacteristic of state-of-the-
art approaches, our representations and models generalize to
completely different datasets, collected across several cities, and
also across countries where people drive on opposite sides of
the road (left-handed vs right-handed driving). Additionally,
we demonstrate an application of our approach in multi-
object tracking (data association). To foster further research
in transferrable representations and ensure reproducibility, we
release all our code and data. 3
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I. INTRODUCTION

Deep learning methods have ushered in a new era for

computer vision and robotics. With very accurate methods

for object detection [4] and semantic segmentation [5], we

are now at a juncture where we can envisage the application

of these techniques to perform higher-order understanding.

One such application which we consider in this work,

is predicting future states of traffic participants in urban

driving scenarios. Specifically, we argue that constructing

intermediate representations of the world using off-the-

shelf computer vision models for semantic segmentation and

object detection, we can train models that account for the

multi-modality of future states, and at the same time transfer

well across different train and test distributions (datasets).

Our approach, dubbed INFER (INtermediate representa-

tions for distant FuturE pRediction), involves training an

autoregressive model that takes in an intermediate represen-

tation of past states of the world, and predicts a multimodal

distribution over plausible future states. The model consists

of an Encoder-Decoder with ConvLSTM present along the

skip connections, and in between the Encoder-Decoder. The

network takes an intermediate representation of the scene

and predicts the future locations of the Vehicle of Interest

(VoI). We outperform the current best future prediction

model [6] on KITTI [1] while predicting deep into the future
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(3 sec, 4 sec) by a significant margin. Contrary to most

approaches dealing with future prediction [6]–[9] that do not

generalize well to datasets that they have not been trained

on, we test our method on different datasets [2], [3] and

show that the network performs well across these datasets

which differ in scene layout, weather conditions, and also

generalizes well across cross-sensor modalities. We carry out

a thorough ablation study on our intermediate representation

that captures the role played by different semantics. We

conclude the results section by showcasing an important use

case of future prediction : multi object tracking and exhibit

results on select sequences from KITTI [1] and Cityscapes

[2].

In summary, we make the following contributions:

1) We propose INFER, an autoregressive model to fore-

cast future trajectories of dynamic traffic participants

(vehicles). We beat multiple challenging baselines,

as well as current state-of-the-art approaches while

predicting future locations of vehicles deep into the

future by a significant margin.

2) Uncharacteristic of prior art, INFER transfers zero-

shot to datasets it has never been trained on, whilst

maintaining similar performance. We show results of

zero-shot transfer on the Cityscapes [2] and Oxford

Robot Car [3] datasets, using a model trained on

sequences from KITTI [1].

3) We carry out principled ablation studies to gather

empirical evidence to answer the question “What kind

of semantics generalize across datasets?". We also

carry out an ablation study on how the model performs

on different frame rates than the one(s) it was trained

on.

4) We make publicly available a cross-dataset benchmark

for future prediction, comprising augmented manual

annotations and semantics for the datasets that we

evaluate on.

II. RELATED WORK

Of late, several approaches have been proposed to tackle

the problem of future prediction in dynamic scenes. Here,

we summarize a few of them, while drawing parallels and

contrast to our own.

Classical Methods: The problem has been studied ex-

tensively in the classical probabilistic modelling paradigm

[10], [11]. However, these approaches typically make strong

assumptions about the scene and/or require explicit hand-

modelling. In contrast, the recent more powerful learning

models seem to show better promise in learning the vehicle

models and in accurately forecasting their trajectories [6].

IRL for path prediction: Another set of approaches

involve using Inverse Reinforcement Learning to estimate

the action taken by an agent at each time step and predict

the future paths subsequently by applying the estimated

actions sequentially at the current target location. Activity

forecasting is done in [12] by combining semantic maps

with ideas from optimal control thoery. In contrast to our

approach, the authors use a stationary survelliance camera to

forecast activities of pedestrians, where as we predict future

locations of vehicles in highly dynamic scenes.

RNNs for future prediction: RNNs have been used

for several sequence modelling tasks and can be used for

generating sequential future prediction outputs. DESIRE [6]

proposes a stochastic recurrent encoder-decoder network for

predicting the future trajectories of agents in dynamic envi-

ronments. The overall model comprises three components,

which includes a conditional VAE followed by an RNN

encoder-decoder to generate a set of diverse plausible future

states, followed by an inverse optimal control-based ranking

and refinement module to rank the predictions and enforce

global consistency. Despite using semantic information, the

authors however do not claim transfer across datasets and

have different models for the Stanford Drone Dataset [13]

and the KITTI dataset [1]. In contrast, we are able to show

zero-shot transfer of our approach on different datasets like

[2], [3] when trained on [1].

[14] uses an interaction layer and a Kalman filter that is

embeded in the architecture to learn high variance sensor in-

puts. They evaluate on the NGSIM dataset which consists of

highway scenes. In [15], the authors leverage scene semantics

and the past motion trajectory to predict future trajectories.

They evaluate their approach on datasets recorded from a

stationary camera, and show transfer across unseen scenes

from the datasets, rather than cross dataset transfer as we do.

The approach of [16] uses geometric and motion properties

of the vehicle in the form of yaw, velocity, acceleration,

and bounding box. This approach however does not leverage

any scene semantics and does not show any results of

transfer across different datasets. All the above approaches

rely purely on the autoregressive nature of LSTMs to predict

hypotheses for future trajectories of participants.

Generative models: [9], [17] predict pedestrian trajec-

tory and exploit generative adversarial networks (GANs) to

regularize the output future trajectories to be more realistic.

In [17], a novel pooling mechanism was introduced for

aggregating information across people, and socially plausible

future states are predicted by training adversarially against a

recurrent discriminator.

Manoeuvre-based approaches: Another set of approaches

like [8], [18] use manoeuvre-based LSTMs for social

interaction-aware trajectory prediction. In [8], a convolu-

tional social pooling layer is proposed for robust learning

of interdependencies in vehicle motion. The authors define

6 classes of maneuvers (eg. brake, accelerate, etc.) and

assign a probability to each maneuver class, to obtain multi-

modal outputs. Convolutional social pooling aids the learning

process by creating a social tensor which is then fed to

the decoder to infer a distribution over plausible maneuvers.

They showcase results on [19], [20] by forming train and

test splits comprising of sequences from both the datasets,

rather than showcasing transfer across one another.

Occupancy grid approaches: An approach similar to ours

is [21], in which the the future locations of the vehicle is

predicted on an occupancy grid map, with results shown

on a highway driving dataset. In [7], the authors propose a

seq2seq model that takes as input at time t the ego vehicle’s
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velocity and yaw angle, as well as the surrounding vehicles’

positions and velocities & generates K locally best trajectory

candidates over an occupancy grid. The approach is devoid

of scene semantics and no transfer across dataset is shown.

Our approach, which predicts future location of the VoI

deep into the future (upto 4 sec) in highly dynamic envi-

ronments leverages semantics, depth information and ortho-

graphic mapping to represent the raw sensor data in the form

of a novel representation that not only reifies cross-dataset

transfer : from [1] to [2], [3] but is also able to generalize

well to cross-sensor modalities (Eg. from LiDAR to stero,

see Sec. V).

III. INTERMEDIATE REPRESENTATIONS

In this section, we describe the intermediate representa-

tions used by INFER to describe an urban driving scenario.

Our design philosophy is based on the following three

desired characteristics that knowledge representation systems

must possess:

1) Representational adequacy: Such representations

must have the capability to adequately represent task-

relevant information.

2) Inferential adequacy: They must also have the capa-

bility to infer traits that cannot otherwise be inferred

from the original unprocessed data.

3) Generalizability: These representations must neces-

sarily generalize to other data distributions (for the

same task).

Scene representation for the task of future prediction spans

a broad spectrum. On one end is solving the future prediction

problem based on raw RGB input and predicting the future

locations of the VoI in the image space in the form of

heatmaps. On the other end is leveraging the geometric

information of the VoI in the form of 3D coordinates w.r.t

ego vehicle, rotational parameters, relative velocity etc and

then regressing to locations of the VoI vehicle deep into the

future. The former representation operates on raw RGB data

without reasoning about the scene geometry in any form and

hence the predicted location of the VoI in the 2D image space

would again need to be interpreted in 3D. Approaches like

[22] that reason about depth from single view suffer from

dataset dependencies, struggling to show transfer on KITTI

[1] after being trained on Cityscapes [2]. The dependence

of the network to operate on the RGB input enfeebles the

transfer on datasets with different RGB pixel values and

sensor modalities, as seen in DESIRE [6] where different

networks were used for different datasets.

The other end of the scene representation spectrum deals

with representing the VoI in form of its geometric properties

viz. 3D location w.r.t ego vehicle, rotational parameters,

velocity. Although this form of representation captures the

depth and geometric properties, it is not able to reason

about the scene layout in any sense. Using such kind of

representation makes it infeasible to reason about scene

semantics like road, lanes, other vehicles or obstacles present

in the scene, forcing the system to reason purely based on

the relative geometry of VoI.

To this end, we choose a representation that takes the best

of both worlds. The proposed representation does not rely

heavily on the camera viewing angle, as camera mounting

parameters (height, viewing angle, etc.) vary across datasets,

and we want our approach to be robust to such variations. We

hence adopt a birds-eye view as a canonical reference frame

that we transform sensor data to. Further, this helps get rid

of undesirable perspective distortion effects. The proposed

approach dispenses the dependency on raw pixel intensities

and camera intrinsic matrix by extracting semantics of the

scenes. This also brings into play the crucial role of seman-

tics that the predictions must take into account as shown

in the ablation study in Table IV. We encompass scene

geometry by using depth sensors to project the scene to

an orthographic view. Hence, the intermediate representation

reasons about the world, capturing scene layout as well as

scene geometry, generalizing well not only across different

datasets viz. KITTI [1], Cityscapes [2] and Oxford Robot

Car [3] but showcasing cross-modality transfer from Lidar

in KITTI [1] (and stereo depth) & Oxford Robot Car [3] to

stereo depth in Cityscapes [2].

The scene is represented by a five-channel occupancy grid

in the birds-eye view. Each of these channels contains com-

plementary semantic cues from the scene, namely obstacles,

road, lane markings, target vehicle and other vehicles - the

intermediate scene concepts. All the five channels are in

metric units and are generated from stereo image pairs and

discriminative learning methods. The camera is at the center-

left of the occupancy grid channels, and faces the right end of

the grid with coordinate system being the cannonical camera

coordinate system (i.e. the X-axis and Z-axis points towards

top and right of the grid, respectively). Each generated grid

is of the size 512×512×1, where each pixel has a resolution

of 0.25m.

As shown in Fig. 3, we first perform semantic and instance

segmentation of the left camera image (considering the left

camera to be the coordinate frame of the grid) [4], [24], and

generate the disaprity maps from the stereo image pairs using

PSMNet [25].

The disparity images, segmentation masks, and the camera

parameters are used to generate point clouds for static scene

categories (viz. lane markings, road and obstacles). These

semantically classified point clouds are then projected top-

down into their respective discrete and fixed size occupancy

grids. The 3D points which do not project within the bounds

of the occupancy grids are truncated.

Occupancy grids for vehicles are generated in a similar

fashion, except that we use instance segmentation to distin-

guish between different vehicles. We also track these vehicles

across time using an appearance and geometry based multi-

object tracker [23]. For each vehicle, we have one channel in

the occupancy grid representing its own position - the target

vehicle channel. The other vehicles channel represents the

positions of the remaining traffic participants.

The proposed representation is a medley of the two ends

of the scene representation spectrum for the task of future

prediction as it captures the critical task specific information

like scene layout, depth information, and semantic informa-
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Fig. 3: Proposed framework: We first generate intermediate representations by fusing monocular images with depth information (from
either stereo or Lidar), obtaining semantic and instance segmentation from monocular image, followed by an orthographic projection to
bird’s-eye view. We use [4] to detect and [23] to track objects. The generated intermediate representations are fed through the network,
and finally we show the resulting prediction of the target vehicle’s trajectory registered in the sensor coordinate frame.

tion. Hence, it is representationaly adequate. The inclusion

of depth, orthographic mapping and sematics adorns our

representation with traits that cannot be inferred directly from

the raw unprocessed data in the form of only RGB images or

depth sensor. Having a fine-grained semantic map (different

channels for building, kerb etc.) does not add much advanced

semantic information than what is already captured by our

obstacle channel (which represents buildings, kerb, vegeta-

tion together), hence making the representation inferentialy

adequate. This representaion can be infered from any raw,

unprocessed data and as we show in Section V, transfers

well to a variety of datasets for the task of future prediction,

hence is generalizable.

Leveraging prior semantic maps: One aspect of au-

tonomous driving scenarios we wish to leverage is that using

prior maps, it is possible to obtain a coarse estimate of the

road and lane semantic channels. Specifically, we adopt the

strategy in [26] that uses OpenStreetMap (OSM) [27] in

conjunction with GPS, and align the OSM with the current

road channel. This gives us access to estimates of the road

and lane channels for future frames, which we demonstrate in

Section V to boost performance significantly. At test time,

however, note that we have no a priori information about

other vehicles on the road, as those are the very attributes

we wish to predict.

IV. INFER: INTERMEDIATE REPRESENTATIONS FOR

DISTANT FUTURE PREDICTION

We formulate the trajectory prediction problem as a per-

cell regression over an occupancy grid. We use the inter-

mediate representations introduced in the previous section

to simplify the objective and help the network generalize

better. We now detail the network architecture and the

training/testing procedure.

A. Problem Formulation

Assume that we are given a sequence of intermediate

representations τ = {It}
M
t=1 for a particular VoI V , where

It denotes the intermediate representation for VoI V at time

t. The objective of future state prediction is then to predict a

(multi-hypothesis) distribution {Ft}
N
t=M+1

, where N > M

(M,N ∈ Z). Each Ft is a distribution over a regular grid

(xi, yi) that represents the likelihood of VoI V being at

(xi, yi), conditioned on τ .

B. Network Architecture

We train an autoregressive model that outputs the VoI’s

position on an occupancy grid, conditioned on the previ-

ous intermediate representations. We use a simple Encoder-

Decoder model connected by a convolutional LSTM to

learn temporal dynamics. The proposed trajectory prediction

scheme takes as input a sequence of intermediate representa-

tions and produces a single channel output occupancy grid.

The input grids to the network are resized to spatial

dimension of 256 × 256 from 512 × 512 to reduce the

network size and training overhead. First, through a series

of convolution, pooling and non-linearity operations, the

Encoder reduces the input resolution from 5 × 256 × 256
to 64 × 32 × 32 . This reduced tensor is passed through

the Convolutional LSTM sandwiched between the encoder-

decoder. The LSTM consists of 64 convolution filters each

with a seperate hidden and cell state with kernel dimension

3×3. The output of the LSTM is upsampled via the decoder

to a resolution of 8 × 256 × 256 and then this tensor is

convolved with a 1 × 1 filter to provide the future location

of the vehicle, which is a likelihood map of dimension

1× 256× 256.

During downsampling of input via the encoder, spatial

information is lost in the pooling step. Also, as we are

dealing with future prediction of possible location of a
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vehicle after upsampling, we need to retain the temporal

information from each downsampled step in encoder. In order

to capture both the spatial as well as temporal information,

we add skip connections between corresponding encoder and

decoder branches. We also experiment without convolutional

LSTMs over the skip connections.

C. Training objective

Our training objective comprises two terms: a recon-

struction loss term, and a safety loss term. More formally,

the reconstruction loss Lrec penalizes the deviation of the

predicted future distribution F̂ from the actual future state

F∗. Mathematically,

Lrec = ‖F̂ − F∗‖2 (1)

We also add a safety loss term, that penalizes all predicted

states of vehicles that lie in an obstacle cell.

Lsafe = ‖O ⊙ F̂‖ (2)

Here, O denotes the obstacle channel, and ⊙ denotes the

elementwise matrix product.

D. Training Phase

To train the model, we feed intermediate representations

corresponding to the first 2 second of a sequence to provide

sufficient context to the convolutional LSTM. Thereafter,

we operate akin to sequence-to-sequence models, i.e., we

obtain an output from the network, construct an intermediate

representation using this output and the next incoming frame,

and feed this into the network as a subsequent input. We train

the model by truncated backpropagation through time, once

20 frames are predicted.

E. Test Phase

During the test phase, intermediate representations from

the first 2 sec is used to initialize the LSTM and the

remaining frames are predicted one step at a time. The final

output predicted by the network is upsampled to a resolution

of 512 × 512 using bilinear interplotation and the point

with the highest activation in the heatmap is chosen as the

predicted location of the target vehicle. Each grid cell of a

grid size of 512×512 correponds to 25×25 cm2 area which

is suitable resolution in real world for autonomous driving

scenarios.

V. RESULTS

A. Dataset

Most approaches to future trajectory prediction [6], [28]

demonstrate results over the KITTI [1] autonomous driving

benchmark. ( [28] deals only with pedestrians). But, the

KITTI benchmark alone does not address many challenges

that trajectory forecasting algorithms face in real-world op-

eration. In us humans, one would expect to learn a prediction

policy in a particular city (or a toy driving environment/park)

and expect it to generalize to newer scenearios, even across

cities.

Hence, we expand our test dataset to comprise sequences

from the KITTI [1], Cityscapes [2], and Oxford RobotCar [3]

datasets, for they span a number of cities, provide for enough

weather variations, and also exhibit a switch from right-side

(Germany) to left-side (the United Kingdom) driving.

The proposed approach is trained on KITTI dataset. We

take 21 sequences from the train split of the KITTI Tracking

benchmark and 5 sequences from the KITTI Raw dataset.

We use ONLY these 26 sequences for training and validating

our models. We extract a total of 223 trajectories from these

sequences, and then divide them into train and test : 178
trajectories for train and 45 trajectories for test, comprising

of over 11K frames. We perform a 5 fold cross validation

on these 26 sequences. The length of these sequences vary,

from a minimum of 3 sec (30 frames) to a max of 6 sec (60
frames, the frame rate for KITTI is 10 fps).

To highlight the core idea of learning transferrable repre-

sentations for future prediction, we test the best performing

model from the above split (i.e., the KITTI dataset) on

sequences from Cityscapes [2] and Oxford RobotCar [3].

Specifically in Cityscapes [2], we choose 26 trajectories

spread over 15 different cities. The Cityscapes dataset [2]

provides sequences of length 30 frames, recorded at 17
fps, resulting in trajectories of length upto 1.76 seconds,

comprising of approx 800 frames.

The Oxford RobotCar [3] consists of several sequences

recorded over different routes through Oxford, UK. The

dataset was recorded at 16 fps and we choose a few trajecto-

ries with a duration of 4s or more, comprising of approx 500
frames. For both, [3] & [2] we pass every alternate frame

while testing.

We evaluate all our models using the average displacement

error (ADE) metric which is defined as the average L2

distance between the ground truth and predicted trajectories,

over all vehicles and all time steps. We compare our methods

with the folowing baselines:

• Markov-Baseline: A simple discrete Bayes filter im-

plementation over a grid that uses a constant velocity

motion model [29].

• RNN Encoder Decoder [16]: A RNN encoder-decoder

model that regresses to future locations based on the

past trajectories and vehicle information in the form of

yaw, velocity, acceleration, bounding box coordinates

etc.

• DESIRE-S [6]: The best-performing variant from [6],

that uses a scence context fusion (SCF) module.

• ConvLSTM-Baseline: Our ConvLSTM architecture, tak-

ing a 4 channel input, first 3 being the RGB scene in

bird’s eye view and the 4th channel being the target

vehicle channel. That is, a variant of our model that

operates on pixel intensities, as opposed to semantics.

• INFER: Our proposed model but with a single convo-

lutional LSTM.

• INFER-Skip: The same model as INFER but with 2
additional convolutional LSTMs which serve as skip

connections.

B. Training Details

All the models were implemented in PyTorch and trained

on a single NVIDIA GeForce GTX 1080 GPU for a maxi-
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Fig. 4: (a) The average pixel error vs number of epochs for a
given split. For the first 10 epochs, we predict one frame into
the future. Subsequently, deep future prediction is done and hence
there’s a sudden rise in loss. (b) Histogram of per frame L2-norm
for all frames in KITTI, for the INFER-Skip model. 86% of all our
predictions lie within a 2m threshold.

mum of 60 epochs each. The training process takes about 6-8
hours. The models were trained using the ADAM optimizer

with a learning rate of 0.0001 and gradient clipping with L2

norm of 10.0. The loss trends across train & validation sets

for INFER-Skip & ConvLSTM Baseline is shown in figure 4a.

The distribution of L2 norm of all frames across the KITTI

dataset is shown in figure 4b.

Method 1 sec 2 sec 3 sec 4 sec

Markov-Baseline 0.70 1.41 2.12 2.99

RNN Encode-Decoder 1 [16] 0.68 1.94 3.2 4.46

ConvLSTM-Baseline (Top 5) 0.76 1.23 1.60 1.96

DESIRE-SI (Best) [6] 0.51 1.44 2.76 4.45

DESIRE-SI (10%) [6] 0.28 0.67 1.22 2.06

INFER (Top 5) 0.61 0.87 1.16 1.53

INFER-Skip (Top 1) 0.75 0.95 1.13 1.42

INFER-Skip (Top 3) 0.63 0.82 1.00 1.30

INFER-Skip (Top 5) 0.56 0.75 0.93 1.22

TABLE I: Quantitative results of baseline models vs. INFER-Skip
across KITTI dataset for the task of predicting upto 4s into the
future. Error metrics reported are ADE in metres. We have a single
model that predicts 1s, 2s, 3s & 4s into the future.

C. Performance evaluation and transfer results

The results of the Markov baseline are shown in Fig.

6a. It performs significantly better than the RNN Encoder

Decoder [16] due to the use of grid based representation for

the target vehicle. Note that both these approaches output a

single prediction. The ConvLSTM baseline outperforms these

two while predicting deep into the future, while degrading

slightly when predicting upto 1s into the future.

Our model INFER-Skip which consists of convolutional

LSTMs along skip connections outperforms current state of

the art DESIRE [6] in KITTI [1] while predicting deep into

the future(3s,4s). It outperforms all other models on all the

evaluation metrics. INFER which consists of only a single

convolutional LSTM also beats the current state of the art

method [6] for predictions deep into the future (3s & 4s).

These models do not perform as well for shorter timesteps

in the future as we are limited by the resolution of the

intermediate representation, hence making the comparison

favourable for [6]. Being multi-modal in nature, we can pre-

dict multiple future trajectories for a given track history by

sampling the top K samples at each time step. We report the

1 [16] predicts only upto 2s into the future, hence we interpolate the
values to get predictions for 3 & 4s into the future.

Method 1 sec (*) 1 sec (**)

ConvLSTM-Baseline (Top 1) 1.5 1.23

ConvLSTM-Baseline (Top 3) 1.36 1.09

ConvLSTM-Baseline (Top 5) 1.28 1.021

INFER-skip (Top 1) 1.11 1.12

INFER-skip (Top 3) 0.99 0.98

INFER-skip (Top 5) 0.91 0.91

TABLE II: Transfer results of INFER-Skip & the ConvLSTM
Baseline models on Cityscapes [2]. We report the ADE in metres.

performance of INFER-Skip with several values of K = 1,

3 & 5 respectively. Using the top 5 predictions significantly

improves performance by upto 20 cms, demonstrating the

multi-modal nature of the model.

Method 1 sec 2 sec 3 sec 4 sec

INFER-Skip 0.85 1.14 1.29 1.50

TABLE III: Transfer results of INFER-Skip model tested on a few
sequences of Oxford Robotcar. We report the ADE in metres.

Method
KITTI Cityscapes

1 sec 2 sec 3 sec 4 sec 1 sec

INFER-Skip 0.56 0.75 0.93 1.22 1.12

INFER-Skip w/o road 0.70 1.20 1.80 2.49 5.62

INFER-Skip w/o obstacles 0.54 0.80 1.00 1.24 1.21

INFER-Skip w/o lane 0.57 0.76 0.94 1.21 1.33

TABLE IV: Ablation results across KITTI & Cityscapes by remov-
ing semantics corresponding to road, lane & obstacles from the
intermediate representation. We report the ADE in metres.

Transfers: We test the transfer ability of our model by

training on KITTI [1] & testing on Cityscapes & Oxford

Robotcar dataset [2], [3]. We precondition our model for a

total of 0.8s and test upto 1s into the future for Cityscapes

dataset [2] as it provides only sequences of length 1.76s. We

present the performance of the INFER-Skip across Cityscapes

in Table II. In (*), the results of INFER-Skip without ve-

hicle channel are shown. This model transfers well to the

Cityscapes dataset which differs a lot from the KITTI dataset

in terms of scene layout, weather condition & vehicle motion.

The performance accross KITTI & Cityscapes is off by only

34 cm for 1s into the future. We find ConvLSTM-Baseline

trasfers well to the Cityscapes [2] dataset which suggests

that using a birds eye view helps in transfer, as such a

representation does not rely heavily on the camera viewing

angle and camera mounting parameters. However, INFER-

Skip performs better than the ConvLSTM Baseline highlight-

ing the potent of intermediate representations over RGB data.

All our models were trained with a preconditioning of 2s

and then predict upto 4s into the future. Thus, predicting

the future trajectories in Cityscapes with 1s preconditioning

leads to higher than expected error. In (**), we train our main

model INFER-Skip & the ConvLSTM Baseline on another

split of the KITTI dataset that consists of trajectories of

2s length only. These models were trained with only 1s

preconditioning and the results of their transfer on Cityscapes

dataset is shown in the 2nd column of Table II.

We further test transfer of INFER-Skip on a few trajecto-

ries of the Oxford Robot Car [3] dataset and the performance

does not degrade while predicting deep into the future as can

be seen in the table III. Our method is able to generalize
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Fig. 5: The above qualitative results from the validation fold of KITTI [1] showcase the efficacy of INFER-Skip in using the intermediate
representation to predict complex trajectories. For example, in the left most plot, the network is able to accurately predict the unseen
second curve in the trajectory (predicted and ground truth trajectories are shown in red and blue color, respectively). The green and red 3D
bounding boxes indicate start of preconditioning and start of prediction of the vehicle of interest, respectively. It is worth noting that the
predicted trajectories are well within the lane (dark gray) and road region (cyan), while avoiding collisions with the obstacles (magenta).

well to drastic change in scene layout (Germany to UK) and

right-side to lefts-side driving.

D. Ablation study

We conduct detailed ablation studies on INFER-Skip to

determine the type of semantics that help the model perform

well across KITTI [1] and Cityscapes [2]. For [2], we directly

do ablation on the transfer rather than training on it first.

We experiment with 3 major variants of INFER-Skip with

the road, obstacles & lane channels removed. The results in

Table IV show that the scene semantics do indeed play a vital

role in the performance of our proposed model. The removal

of the road channel reduces the performance of the model

drastically in KITTI. The performance of the model degraded

severely when tested on Cityscapes as the error reaches as

high as 5.62m. While the other channels like obstacles &

lane do not seem to affect the performance of the model

in the KITTI dataset greatly, the corresponding transfer

error in Cityscapes increases significantly, showcasing how

semantics play a critical role in transferring across datasets.

Thus, our representations are representationally adequate

and generalizes well to other datasets. We also show ablation

on the frame rate in Fig. 6b varying it while testing on KITTI

[1]. We show the loss trend for 1, 2, 3, and 4 seconds into

the future. The variation in frame rate captures the change

in relative velocity of VoI w.r.t ego vehicle. We observe that

even when the frame rate is dropped to 60%, the performance

KITTI [4] RobotCar [8] CityScapes [9]

4 sec 2.9981 2.2070 NA

3 sec 2.1277 1.5614 NA

2 sec 1.4181 1.0725 NA

1 sec 0.7035 0.7116 1.1933

0.5

0.9

1.3

1.7

2.1

2.5

2.9

3.3

A
ve
ra
ge

d
is
p
la
ce
m
en
t
er
ro
r
(m

)

Markov

INFER-Skip

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of frames

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

A
ve
ra
ge

d
is
p
la
ce
m
en
t
er
ro
r
(m

) 1 sec

2 sec

3 sec

4 sec

(b)

Fig. 6: (a) Shows the performance of the Markov baseline across
three different datasets, for predictions upto 4 seconds, and is
compared with INFER-Skip. (b) Shows the performance of INFER-
Skip for different frame rates.

does not degrade significantly, highlighting the potent of the

representations to generalize to different relative velocities.

E. Qualitative results

We showcase some qualitative results of our approach on

challenging KITTI [1], Cityscapes [2], and Oxford Robotcar

[3] sequences in figures 5, 7a & 7b respectively. These results

illustrate the effectiveness of our intermediate representa-

tions and models to predict complex trajectories and transfer

zero-shot across datasets [2], [3]. The green 3D bounding box

depicts the first sighting of the vehicle of interest which is

also when we start preconditioning, and the red 3D bounding

box indicates the start of prediction. The plots clearly show

that INFER-Skip, using the proposed intermediate represen-

tations, is accurately predicting the trajectories. It can also be

seen that even non-trivial trajectories constituting of multiple

turns are predicted very close to their respective ground

truth while being within the road (cyan) and lane (dark

gray) regions; obstacles are shown in magenta color. For

the purpose of visualizaition, all the trajectories along with

the intermediate representations (road, lane, and obstacle) are

registered in the ego vehicle coordinate frame corresponding

to the start of prediction.

KITTI [1] Cityscapes [2]

Association accuracy 85.71% 75%

TABLE V: Object association for Multi-Object tracking

F. Summary of results

The cornerstone of this effort is that intermediate represen-

tations are well apt for the task of future prediction. In Table

I we highlight that using semantics provides a significant

boost over techniques that operate over raw pixel intensi-

ties/disparities. In Table II, III we showcase the efficacy

of intermediate representations to transfer across different

datasets collected across different cities. We perform an

extensive ablation study on which semantics help in transfer

and report the results of this ablation on KITTI [1] and

Cityscapes [2] in Table IV, highlighting how semantics are

critical in transfer across dataset. We do an ablation study

on frame rates in Fig. 6b and showcase the generalizabilty
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(a) (b)

Fig. 7: Above figure qualitatively shows the result of zero-short
transfer of INFER-Skip, trained on KITTI dataset [1], to (a)
Cityscapes [2] and (b) Oxford robot car [3] datasets. The color
conventions are same as that of the plots in Fig. 5.

of our approach to the change in relative velocity of VoI

and ego vehicle. We highlight a usecase of our approach for

object association in multi-object tracking based on future

predicted locations in Table V. Association is done based

on the minimum L2 distance the future location of VoI has

with all the vehicles present in the scene. We showcase

comparable performance on [1], [2] to popular approaches

like [30].

DISCUSSION

Learning a suitable representation from the dataset makes

the whole point of transferablity moot as the learned rep-

resentation would again be dependent on the dataset it was

learned from, hence defying the whole idea of transferablity.

These learned representations would prove out to be insignif-

icant when faced with a new dataset. On the other hand, the

proposed representation is agnostic to the dataset and can

be incorporated in any future trajectory prediction problem.

It is simple and easy to compute rather than relying on

complex handcrafted features. Future work can look at trying

to learn representations that are data agnostic. Predicting

future semantics to aid the prediction of future locations can

also be looked at.

VI. CONCLUSIONS

We propose intermediate representations that are apt for

the task of future trajectory prediction of vehicles. As op-

posed to using raw sensor data, we condition on semantics

and train an autoregressive network to accurately predict

future trajectories of vehicles. We outperform the current

state of the art approaches, demonstrating that semantics

provide a significant boost over techniques that operate solely

over raw pixel intensities or depth information. We show

that our representations and models transfer zero-shot to

completely different datasets, collected across different cities,

weather conditions, and driving scenarios. We carry out a

thorough ablation study on the importance of our semantics

and show generatlization of our approach on different frame

rates. Additionally, we demonstrate an application of our

approach in data association in multi-object tracking.
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