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Abstract— In this paper, we present a Model Predictive
Control (MPC) framework based on path velocity decomposition
paradigm for autonomous driving. The optimization underlying
the MPC has a two layer structure wherein first, an appropriate
path is computed for the vehicle followed by the computation
of optimal forward velocity along it. The very nature of
the proposed path velocity decomposition allows for seamless
compatibility between the two layers of the optimization.

A key feature of the proposed work is that it offloads most of
the responsibility of collision avoidance to velocity optimization
layer for which computationally efficient formulations can be
derived. In particular, we extend our previously developed
concept of time scaled collision cone (TSCC) constraints and
formulate the forward velocity optimization layer as a convex
quadratic programming problem. We perform validation on au-
tonomous driving scenarios wherein proposed MPC repeatedly
solves both the optimization layers in receding horizon manner
to compute lane change, overtaking and merging maneuvers
among multiple dynamic obstacles.

I. INTRODUCTION

Model Predictive Control or MPC has emerged as a
powerful tool for navigation of car like vehicles. Its strength
stems from the fact that it can incorporate constraints on
state and control while minimizing a user defined cost
function. For car-like vehicles, the optimization underlying
the MPC becomes strongly non-linear and non-convex due
to the motion model of the vehicle and collision avoidance
constraints. Current state of the art approaches rely on
iterative techniques like sequential convex programming [1],
[2] to solve the underlying optimization [3], [4]. However,
without a good heuristic for initialization and under the
strict real time constraints demanded by autonomous driving,
these iterative techniques can sometime fail to provide any
feasible solution. As a prospective remedy to this, most
MPC frameworks rely on the use of so called "warm
start" initializations for the underlying optimization. Herein
solutions computed at previous instants are used as an
initialization for solving the optimization problem at the
current instant. The MPC frameworks proposed in [5], [6]
follow an alternate methodology. They directly substitute
non-linear motion model with approximate linear form, thus
significantly reducing the complexity of the optimization.
However, it should be noted that trajectories thus obtained are
not guaranteed to be kino-dynamically feasible or collision
free.
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A. Overview of Proposed Approach and Contributions

The proposed approach has a similar flavor as that of the
concept of path velocity decomposition first proposed in [7].
However, the technical approach is significantly different.
Specifically, in contrast to [7], the proposed approach con-
siders the reactive setting and uses the concept of collision
cone [8] for modeling dynamic collision avoidance. Similar
to [7], we observe that the collision avoidance maneuvers
has two components namely the path taken by the robot and
the forward velocity along it. In line with this observation,
in this paper, we propose an MPC framework wherein the
underlying optimization has a two layer structure for separate
path and forward velocity optimization. It is essential that
both the optimization layers are compatible with each other.
That is, the paths obtained at the first layer should allow
us to easily obtain collision free forward velocities along
it. In the proposed work, this compatibility is naturally
achieved given that both the optimizations solves the same
collision cone constraints but with different set of variables.
The path optimization solves the collision cone constraints
with angular velocity as the variable. The forward velocity
optimization solves the so called time scaled collision cone
(TSCC) constraint [9], [10] which is a projection of collision
cone constraints along a given path.

A key feature of the proposed work is that it reduces the re-
liance on using iterative techniques and solving general non-
linear optimizations for computing a collision free trajectory.
This is achieved by offloading most of the responsibility of
exactly satisfying the collision avoidance constraints to the
forward velocity optimization layer for which computation-
ally efficient structures can be derived. To be precise, we
extend the concept of TSCC beyond [9], [10] and formulate
the forward velocity optimization as a convex quadratic
programming problem. Both the optimizations layers are
solved repeatedly in receding horizon manner to obtain lane
change, overtaking and lane merging scenarios.

The rest of the paper is organized as follows. Section II
presents a review of the related works. Section III briefly
describes the main notations and symbols used in the
formulation. Section IV introduces the path optimization.
Section V reviews the time scaling concepts and formulates
the forward velocity optimization. Section VI presents the
reformulation of the forward velocity optimization into a
convex quadratic programming problem. Section VII de-
scribes the method of encompassing tangents through which
the collision avoidance between rectangular objects can be
treated in the same way as that between disk shaped objects.
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Section VIII presents the simulation results validating our
proposed formulation.

II. RELATED WORK

In this section, we first review the existing approaches
for motion planning in dynamic environments for non-
holonomic robots in the backdrop of autonomous driving.
Subsequently, we review the more niche approaches specif-
ically designed for autonomous driving.

A. Motion Planning in Dynamic Environments.

Motion planning in dynamic environments has been exten-
sively studied through the lens of velocity obstacle (VO)
[11] which are analogous and independently developed along
with collision cone (CC) [8]. The strength of (VO) or
(CC) concept is that it models dynamic collision avoidance
as a first order constraint in combined position-velocity
space. As a result, imminent collisions till some future time
instants can be modeled based on just current velocity and
positions. This feature has been exploited in works like [12],
[13], [14] to formulate a one step MPC framework. Both
the concept of VO and CC were originally developed for
holonomic robots moving along straight line trajectories.
Their extension to non-holonomic robots is non-trivial and
still an active area of research. The extension proposed in
[13] is built on the idea that a non-holonomic robot would
exhibit a finite tracking error while tracking a holonomic
(piece-wise straight line) trajectory. Moreover, these tracking
errors can be modeled as a function of the current state
and the commanded holonomic velocities. In other words,
this abstraction essentially signifies that for a given tracking
error, it is possible to define a space of allowed holonomic
velocities. Thus, [13] proceeds by first enlarging the radius
of the robot by the tracking error that would be observed
while simultaneously constraining the collision free velocity
to lie within a specific set of allowed holonomic velocities.
This last step of constraining the collision free velocity is the
key as the set of allowed holonomic velocities are usually
non-convex. A convex approximation can be obtained at
the expense of unearthing a reduced space of collision free
velocities.

An alternative extension has been proposed in [14] where
the VO constraints for non-holonomic robots are solved
by exhaustive control sampling. Various heuristics and off
line pre-computations are exploited to make the process
computationally efficient. It is clear the effectiveness of this
approach depends on the number of control samples which
in turn depends on the resolution of discretization. However,
it is worth pointing out that the computational efficiency and
the resolution of discretization are conflicting criteria in this
methodology.

The above discussed formulations were primarily designed
for general robotic environments with mobile robots. Conse-
quently, their extension to autonomous driving setting poses
some key challenges. For example, the technique of enlarging
the size of the robot as proposed in [13] is not suitable
for autonomous driving setting where lanes of the road

provide a restricted space for maneuvers. Moreover, such
size increment was proposed for only disk shaped robots
and their extension to rectangular car-like vehicles is not
straightforward. In contrast, the control sampling approach of
[14] is good prospective solution provided good heuristics are
available for restriction of search space. A recent approach
called control obstacles (CO) [15] was used for computing
collision free trajectories in autonomous driving setting [16].
Herein, the robot’s kinematics as well as constraints are
linearized to allow for quick computation. However, as men-
tioned earlier, the trajectories computed through linearized
models are not guaranteed to be collision free. The proposed
formulation provides some key advantages over these cited
works. one such advantage being that it can work with
rectangular geometries of the vehicle and can satisfy the
collision avoidance constraints for provided non-holonomic
motion model.

B. Motion Planning for Autonomous Driving

Both sampling/graph search based planners and optimization
based approaches are currently used for motion planning
for autonomous driving. Either of these approaches can
be used in a receding horizon manner to develop a MPC
framework. Refer [17] for an extensive survey on different
existing approaches. In the context of the proposed work,
we will primarily focus on reviewing the optimization based
approaches. Works like [18], [19], [20] uses optimization to
refine a coarse collision free trajectory obtained from the
sampling based planners. A similar approach is presented in
[21] wherein, the vehicle’s motion model is first approxi-
mated as a series of integrators and subsequently optimized
trajectories are computed for a set of sampled points. These
cited approaches do not explicitly include collision avoidance
constraints directly within the optimization. A more holistic
approach was presented in [3] wherein various kino-dynamic
and collision avoidance constraints are directly included
in the optimization framework. The proposed formulation
shares the same holistic nature but differs from [3] in the
technical approach followed. As mentioned earlier, we rely
on exploiting structure of path velocity decomposition to
limit our reliance on general non-linear optimization tech-
niques. Moreover, unlike [3], we model collision avoidance
between rectangular objects through the concept of encom-
passing tangents. This is less conservative than the multiple
circle approximation used in [3].

III. SYMBOLS AND NOTATIONS

We use normal faced lower cased letters to represent
scalars while bold faced small case letters would be used
to represent vectors or vector valued functions. For example,
x(t) = (x(t), y(t)) and xj(t) = (xj(t), yj(t)) respectively
represents the trajectory of the vehicle and the jth obstacle in
some future time horizon. With a slight abuse of notation, we
will use x(ti) and xj(ti) to represent the respective positions
at time instant ti. Both the vehicle and the obstacles are
assumed to be disk shaped with radius d and dj respectively.
The symbols, v(ti), θ(ti) would be used to represent the



forward velocity and heading angle of the vehicle at time
instant ti. Matrices would be denoted by bold faced higher
case letters.

IV. PATH OPTIMIZATION

Consider the following optimization with variable as the
angular velocity θ̇(ti) acting in a constant manner over
the interval [ti ti+1] and resulting in a trajectory x(t).
The forward velocity v(ti) is kept constant over [ti ti+1].
Further, ∆t = ti+1 − ti.

min
θ̇(ti)

J = w1(θ(ti+1)− θd)2 + w2θ̇(ti)
2 (1a)

(x(ti+1), ẋ(ti+1) = f(x(ti), v(ti), θ(ti)) (1b)
cbounds(v(ti), θ(ti)) ≤ 0 (1c)

θd = atan2(y(ti)− yf , x(ti)− xf ) (2)

f(x(ti), v(ti), θ(ti)) =


x(ti+1) = x(ti) + ẋ(ti+1)∆t

y(ti+1) = y(ti) + ẏ(ti+1)∆t

ẋ(ti+1) = v(ti) cos(θ(ti) + θ̇(ti)∆t)

ẏ(ti+1) = v(ti) sin(θ(ti) + θ̇(ti)∆t)
(3)

cbounds(v(ti), θ(ti)) ≤ 0 :

{
−κmaxv(ti) ≤ θ̇(ti) ≤ κmaxv(ti)

|θ̇(ti)| ≤ θ̇max
(4)

cavoid(.) ≤ 0 :
(rTj vj)2

‖vj‖2
− ‖rj‖2 + (dj + d)2 ≤ 0.,∀j = 1, 2..n

(5)

rj =

[
x(ti+1)− xj(ti+1)
y(ti+1)− yi(ti+1)

]
, vi =

[
ẋ(ti+1)− ẋi(ti+1)
ẏi(ti+1)− ẏi(ti+1)

]
.

The first term in the cost function, (1a) is inspired from
path following algorithms [22], [17] and aims to align the
heading angle of the vehicle to that of the straight line
connecting its current position to the goal (refer 2). It is easy
to see that under such condition, a non-holonomic vehicle
can easily navigate towards the goal. The second term of
the cost function penalizes the use of high magnitude of
angular velocities and induces smoothness in the resulting
trajectory. The weights w1, w2 trades-off smoothness with
goal reaching behavior. The equality constraints (1b) ensures
that the position and velocity at time ti+1 conform to the
motion model of the vehicle (refer 3). The inequalities (1c)
models the bounds on curvature (κmax) of the resulting
trajectory as well as magnitude of the angular velocity. The
inequalities (5) model the collision avoidance between the
vehicle and the dynamic obstacles through the concept of
collision cone. Note that we only include such dynamic
obstacle in (5) which are seen as converging from the
vehicle’s perspective [8].

A. Simplification and Solution Process

The main challenge in solving optimization (1a)-(5) stems
from the non-convex motion model and collision avoidance
constraints. Our solution process involves first eliminating
the equality constraints (1b) by explicitly substituting its right
hand side in (5). We next linearize the resulting collision
avoidance constraints to obtain the affine approximation
Aavoidθ̇(ti+1) ≤ Bavoid. Consequently, we solve a simpler

variant of optimization (1a)-(5) wherein there are no equality
constraints and the collision avoidance constraints have an
affine form.

V. TIME SCALED COLLISION CONE (TSCC)

The optimization in the last section provides us with a
trajectory x(t), t ∈ [ti ti+1] which may be very close to
being collision free 1. It could also be completely collision
free but in general there is no such guarantee since the
optimization in the previous section only dealt with an affine
approximation of the collision avoidance constraints. In this
section, we apply the concept of TSCC over the trajectory
x(t) and ensure exact satisfaction of collision avoidance
constraints by appropriately modifying the forward velocity
profile of the trajectory. To this end, we next present a
preview of the time scaling and TSCC concept followed by
the construction of the second layer optimization.

A. Time Scaling

Given a trajectory, x(t), a change in its time scale from t
to τ does not alter the geometric path associated with the
trajectory. In other words, let x(ti) correspond to a position
on the trajectory at time ti. Then, a change in time scale from
t to τ would mean that the same point on the trajectory would
be reached but now at a different time instant τi. It is clear
that this change in time of traversal is simply due to the fact
the time scaling transformation changes the forward velocity
along the path associated with x(t). The exact change in
velocity and acceleration are characterized by the following
set of equations.

ẋ(τ) = ẋ(t)ṡ(t)
ẍ(τ) = ẍ(t)(ṡ(t))2 + ẋ(t)s̈(t)
dt
dτ

= ṡ(t)
(6)

The term dt
dτ in (6) is called the scaling function and it

decides the transformation between the time scales t and
τ .
Now, assuming dt

dτ as a linear function in arbitrary time
interval [ti ti+1], we obtain the following relation [23].

τi+1 − τi =
2(ti+1 − ti)
ṡ(ti) + ṡ(ti+1)

=
2∆t

ṡ(ti) + ṡ(ti+1)
(7)

Equation (7) describes how an arbitrary time interval
[ti ti+1] in the current time scale gets modified to an interval
(τi τi+1) in the new time scale τ .
Using (7), we can derive the following expression for d2t

dτ2

[23].

d2t

dτ2
≈ ṡ(ti+1)2 − ṡ(ti)2

2∆t
(8)

Equation (8) suggests that d2t
dτ2 is approximated as a constant

in time interval (ti ti+1) (or alternately (τi τi+1) ), with its
value dependent on the magnitude of the scaling function dt

dτ
at the two end of the interval [ti ti+1].

1From closeness, we mean that the collision avoidance constraints are
very close to the boundary of the feasible region i.e cavoid(.) ≈ 0



B. TSCC

Using (6) and the discussions presented in the previous
section, the space of velocities that can be achieved at
position x(ti+1) for the vehicle can be characterized in the
following manner in terms of the scaling function.

ẋ(τi+1) = ṡ(ti+1)ẋ(ti+1) (9)

Using (9), the following time scaled variant of the collision
avoidance constraints (5) can be obtained

((rsij)T vsj)2

‖vsj‖2
− ‖rsj‖2 + (d+ dj)

2 ≤ 0. (10)

rsij =

[
x(ti+1)− xj(ti+1)
y(ti+1)− yj(ti+1)

]
, vi =

[
ṡ(ti+1)ẋ(ti+1)− ẋj(ti+1)
ṡ(ti+1)ẏ(ti+1)− ẏj(ti+1)

]
.

(11)
In (10), the entities x(ti+1), ẋ(ti+1), y(ti+1), ẏ(ti+1), ẋi(ti+1)..
etc. are known since the vehicle trajectory, x(t) in old time
scale is given. Inequalities (10) can be represented in a
compact form as the following generic quadratic inequalities.

aj ṡ(ti+1)2 + bj ṡ(ti+1) + cj ≤ 0 (12)

Where, aj , bj and cj are functions of
x(ti+1), ẋ(ti+1), y(ti+1), ẏ(ti+1)... etc.

C. Velocity Optimization

We now formulate an optimization problem to compute
the scaling function ṡ(t), t ∈ [ti ti+1] and consequently a
collision free forward velocity along the path associated with
x(t)

arg min
ṡ(t)

J2 =
∑
i

(ṡi(ti+1)− ṡpref ). (13a)

vmin ≤ ṡ(ti+1)
√
ẋ(ti+1)2 + ẏ(ti+1)2 ≤ vmax. (13b)

amin√
2
≤ ṡ(ti+1)2ẍ(ti) + s̈(ti)ẋ(ti) ≤

amaxi√
2
. (13c)

amin√
2
≤ ṡ(ti+1)2ÿ(ti) + s̈(ti)ẏ(ti) ≤

amaxi√
2
. (13d)

aj ṡ(ti+1)2 + bj ṡ(ti+1) + cj ≤ 0, ∀j = 1, 2, 3..n. (13e)
s(ti) = 1, .∀i = 1, 2, 3....n (13f)

ṡpref =
vpref√

ẋi(ti+1)2 + ẏ(ti+1)2
(14)

The cost function in (13a) seeks to compute such scaling
functions which minimizes the deviation of the vehicle from
its preferred forward velocity, vpref . This preference velocity
calculated based on output of Behavioural layer and average
lane speed. The chosen design of the cost function assumes
a specially important role in the context of autonomous
driving. For example, in overtaking scenarios, vpref should
necessarily be higher the dynamic obstacles it is overtaking.
Inequalities (13b) enforces the constraints that the forward
velocity resulting from time scaling transformation should
respect the minimum and maximum bounds. In our formu-
lation, vmin is strictly greater than zero to account for the
fact that in autonomous driving scenarios, brining the vehicle

to a halt may disrupt the traffic flow. Inequalities (13c)-
(13d) enforces the acceleration bounds. For computational
reasons, we have split the acceleration bounds into equivalent
bounds for the separate x and y components. Inequalities
(13e) is same as (12). Finally, the equality (13f) ensures
that the velocity profile resulting from the time scaling
transformation has continuity with the current velocity profile
at initial time instant ti.

VI. SIMPLIFICATION OF VELOCITY OPTIMIZATION

In this section, we show that velocity optimization (13a)-
(13f) can be reformulated to a convex quadratic programming
(QP) problem. We start with the convexification of TSCC
constraints (10) or (12) and then subsequently show that its
intersection space with velocity and acceleration bounds can
be described in terms of linear inequalities. For the ease of
exposition, we introduce the following change of variables
[23].

ṡ(ti)
2 = zi(ti), ṡ(ti+1)2 = zi(ti+1). (15)

With the help of (8), we can also obtain the following relation
.

s̈ ≈ z(ti+1)− z(ti)
2∆t

. (16)

A. Convexification of TSCC Constraints

In our past work [9], [10], we have shown the convexity
of (12) depends on the sign of aj , which in turn depends
on the relative positions and velocities between the vehicle
and the dynamic obstacles. There, we exploited the fact that
for each dynamic obstacle (12) represents a single variable
quadratic inequality and thus can be solved in closed form.
Subsequently, we employed a sorting algorithm to compute
the resultant solution space. However, we have observed that
such process become computationally expensive especially
if many non-convex instances of (12) are present. Thus,
here, we present an alternate methodology wherein two
new insights are provided. Firstly, we show that even when
aj < 0, inequalities (12) can be converted to a convex
form provided we have cj ≥ 0. Secondly, we show that
for the non-convex instance of (12), we can linearize it to
obtain an approximation which is more conservative than the
original constraints. In other words, satisfaction of linearized
constraint guarantees satisfaction of the original constraints.

The following analysis is for one dynamic obstacle but
can be easily extended to the general case of n obstacles

1) aj ≥ 0, cj ≤ 0: The solution space of (12) for this
case is given by

ṡ(ti+1) ε [ṡjmin ṡjmax]. (17)

ṡ
j
min

= min(

−bj +

√
(b2

j
− 4ajcj)

2aj

,

−bj −
√

(b2
j

− 4ajcj)

2aj

). (18)

ṡ
j
max = max(

−bj +

√
(b2

j
− 4ajcj)

2aj

,

−bj −
√

(b2
j

− 4ajcj)

2aj

). (19)

Using (15), we have

z(ti+1) ≥ (ṡjmin)2, z(ti+1) ≤ (ṡjmax)2. (20)



2) aj ≤ 0, cj ≥ 0: In this section, we start with writing
(12) in a slightly different form as below

aj + b
1

ṡ(ti+1)
+ cj

1

ṡ(ti+1)2
≤ 0 (21)

The above inequality is convex with respect to 1
ṡ(ti+1)

and
whose solution space can be characterized in the following
form.

1

ṡ(ti+1)
ε [ṡjmin ṡjmax]⇒ ṡ(ti+1) ε [

1

ṡjmax

1

ṡjmin
]. (22)

ṡ
j
min

= min(

−bj +

√
(b2

j
− 4ajcj)

2cj

,

−bj −
√

(b2
j

− 4ajcj)

2cj

). (23)

ṡ
j
max = max(

−bj +

√
(b2

j
− 4ajcj)

2cj

,

−bj −
√

(b2
j

− 4ajcj)

2cj

). (24)

Finally, using (15), we have

z(ti+1) ≥ 1

(ṡjmax)2
, z(ti+1) ≤ 1

(ṡjmin)2
. (25)

3) aj ≥ 0, cj ≥ 0: The previous two discussed cases
are a subset of this case and any of the approaches can be
followed.

4) aj ≤ 0, cj ≤ 0, bj ≥ 0: This represents a non-convex
instance of (12) and thus is the most difficult to handle. We
start with recalling (15) and writing the (12) in the following
form

ajz(ti+1) + bj
√
z(ti+1) + cj ≤ 0 (26)

Inequality (26) is in the so called convex-concave form
wherein the first term is convex while the second term is
purely concave. We linearize the second term around some
initial guess z∗ resulting in the following affine approxima-
tion for (26).

ajz(ti+1) + bj(
√
z∗ +

1

2
√
z∗

(z(ti+1)− z∗)) + cj ≤ 0 (27)

An interesting point about (27) is that it is a more con-
servative constraint than (26) [1]. Thus, satisfaction of (27)
guarantees satisfaction of (26).

B. Velocity and Acceleration Bounds

Squaring both sides of (13b), we obtain

(vmin)2 ≤ ṡ(ti+1)2(x(ti+1)2 + y(ti+1)2) ≤ (vmax)2.

⇒ (vmin)2 ≤ z(ti+1)((x(ti+1)2 + y(ti+1)2) ≤ (vmax)2 (28)

Using (15), (16), the acceleration bounds can be put in the
following form.

amin√
2
≤ z(ti)ẍ(ti) + ẋ(ti)

z(ti+1)− zi(ti)
2∆t

≤ amax√
2
. (29)

amin√
2
≤ z(ti)ÿ(ti) + ẏ(ti)

z(ti+1)− zi(ti)
2∆t

≤ amax√
2
. (30)

Clearly, (29)-(30) are set of linear inequalities in terms of
variable z(ti), z(ti+1).

Summary: The discussions presented in this section has
shown that the TSCC constraints and the velocity and accel-
eration bounds can all be represented as linear inequalities
in terms of variable z(ti), z(ti+1). Let these inequalities
be compactly represented as Ainqz − bineq ≤ 0, where
z = (z(ti), z(ti+1)). The optimization (13a)-(13f) can then
be presented in the following simple form.

arg min
z(ti),z(ti+1)

J2 =
∑
i

(zi(sc)− (sprefi )2)2. (31a)

Ainqz− bineq ≤ 0. (31b)
zi(ti+1) ≥ 0. (31c)
zi(ti) = 1. (31d)

As can be seen, (31a)-(31d) is a convex QP problem.
The variables in the optimization are z(ti), z(ti+1). The
scaling functions can be easily recovered through ṡ(ti) =√
z(ti), ṡ(ti+1) =

√
z(ti+1).

VII. METHOD OF ENCOMPASSING TANGENTS

The formulations presented in the last couple of sections
have assumed a disk shape for the vehicle and dynamic
obstacles. In this section, we show that using the method
of encompassing tangents [8], the same formulation can be
easily adapted for rectangular shaped objects as well. The
following presentation is a slight adaptation of the original
concept proposed in [8].

Consider Fig. 1(a) where P (vehicle) and Q (dynamic
obstacle) represent two rectangular objects. A Minkowski
sum boundary polygon R, can be mathematically represented
as R = Q⊕(−P ), Where P⊕Q = [p+q | p ∈ P, q ∈ Q]. As
shown in Fig. 1(b), the Minkowski sum allows us to reduce
the rectangle P to a point and enlarge Q into polygon R. The
minkowski sum R can be computed in O(m + n) time for
two polygons with m and n edges. Next, we compute the so
called encompassing tangents (solid black line in Fig. 1(b))
which are straight lines drawn from P to polygon R with an
enclosing angle ϕ given by

ϕ = maxi,j(| arctan(pi)− arctan(pj) |)

where pi is the slope of the lines drawn from P to ith

vertex of R. Following [8] and as shown in Fig. 1(b), the
collision avoidance between rectangles P and Q can be
equivalently modeled as that between a point and the circle
Cobst constructed on the basis of encompassing tangents.
Their velocities will be same as that of P and Q respectively.
Note that the Cobst is much less conservative than the
circumscribing circle of R. Cobst also has less area than
that obtained by representing the polygon R with multiple
circles [3].

VIII. SIMULATIONS RESULTS

A. MPC and Simulation Framework

The employed MPC framework is simple and consists of
repeatedly solving the path and velocity optimization and
executing the computed trajectory. Nevertheless, few key
points are worth pointing out. Firstly, only a part of the
current computed trajectory is executed before a new set of



(a)

(b)

Fig. 1. (a) Collision modeling between rectangular objects. The blue rep-
resents the planned vehicle while the red represents the dynamic obstacles.
(b) The planned vehicle is reduced to a point and the dynamic obstacle
is enlarged through the concept of Minkowski sum. The solid black lines
represent the so called encompassing tangents. Collision avoidance between
rectangles can be modeled as that between a point and a circle (Cobst)
constructed based on encompassing tangents.

computations are initiated. In other words, our planning hori-
zon is much smaller (typically 10 times) than the planning
horizon which is typical for an MPC framework. Secondly,
in autonomous driving scenarios the vehicle is required to
follow a path rather than reach a specific goal position. In
our MPC implementation, we induce this behavior by giving
a pseudo velocity to the goal position. The magnitude of this
pseudo-velocity is tuned to get the best results. Finally, to
constrain the vehicle to stay within the road boundaries, we
created some fictitious static obstacles along the boundaries
and included them in the path optimization framework as
dynamic obstacles with zero velocities. Simulations were
performed in Gazebo [24] while optimizations were solved
in Python with CvxOpt [25] as the solver. Gazebo is a 3D
simulator developed and supports multiple physics engines.
The obstacle locations and their velocities were sensed by LI-
DAR mounted on top of car. In the Gazebo snapshots shown
later, the gray color SUV represents the vehicle while rest of
the cars are dynamic obstacles. A simulation video can be
found at https://www.youtube.com/watch?v=8re0I9z0LEk&
feature=youtu.be

B. Benchmark Scenarios

1) Overtaking: Fig. 2(a)-2(c) shows the simulation of
overtaking maneuvers in Gazebo. The dynamic obstacles are
all moving at a speed of 5m/s along straight line paths.
Fig. 2(d) shows the path of the concerned vehicle. As can
be seen, the vehicle first departs from the lane and comes
back to it after overtaking. The forward velocity plots shown
in Fig. 2(e) reveal an interesting trend. The initial forward
velocity is around 2m/s for the vehicle which is significantly
less than the dynamic obstacles ahead. Thus, to initiate an
overtaking maneuver, we set vpref = 15m/s in (13a). As
can be seen from Fig. 2(e), the vehicle gradually increases its
forward velocity and settles down at 15m/s after overtaking.
The angular velocity plots are shown in Fig. 2(f) and exhibit
a smooth profile.

(a) (b) (c)

(d)

(e)

(f)

Fig. 2. (a)-(c): Gazebo snapshots of overtaking maneuver. (d): Path of
the planned vehicle. (e)-(f): Forward and angular velocity plots.

2) Overtaking and Following: Fig. 3(a)-3(f) show the
concerned vehicle change lane to overtake a slow moving
dynamic obstacle and then slow down to follow the dynamic
obstacle ahead. The behavior can also be cross-validated
against the forward velocity plots shown in Fig. 3(g). The
forward velocity increases to vpref = 8m/s during the
initiation of the overtaking and then decreases to 4m/s
after coming back to the lane. In between, the forward
velocity jumps momentarily to 12m/s to quickly complete
the overtaking maneuver. The angular velocity plots shown
in Fig. 3(h) again exhibit a smooth profile.

3) Merging and overtaking: Fig. 4(a)-4(f) show the con-
cerned vehicle first moving along a free lane and then
converging to a lane with slow moving dynamic obstacles
followed by an overtaking maneuver. As shown in Fig. 4(g),
the forward velocity increases to the preferred magnitude
of 8m/s and then slows down to 4m/s to converge and
overtake. The angular velocity plots are shown in Fig. 2(f)
and is similar in nature to that obtained for the previous
cases.

4) Overtaking and Lane Change: Fig. 5(a)-5(f) shows
the vehicle changing its lane by overtaking two dynamic
obstacles ahead. Due to lack of space, we do not show the
forward and angular velocity plots but they show similar
smoothness as in the previous cases.
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Fig. 3. (a)-(c): Gazebo snapshots of overtaking combined with following
maneuver. (d)-(f): Path of the planned vehicle at three different time instants.
(g)-(h): Plots of forward and angular velocity.

C. Computation Time

The mean computation time for each iteration of our MPC
loop observed across all the examples presented in the previ-
ous section is shown in Fig. 6. The implementation was done
in Python on a 64 bit laptop with 6GB RAM, i5 processor
with 2.60 GHz clock speed. As can be seen, the proposed
MPC with hierarchical path and velocity optimization can
be solved at around 13ms for a scenario with 10 obstacles,
resulting in an update rate of almost 77Hz.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a computationally efficient
MPC framework for autonomous driving. The underlying op-
timization is based on path velocity decomposition paradigm
and can exactly satisfy the complex kino-dynamic and colli-
sion avoidance constraints. In contrast to existing works, the

(a) (b) (c)

(d) (e) (f)

(g)

(h)

Fig. 4. (a)-(f): Snapshots and path of the planned vehicle for lane merging
followed by overtaking maneuver. (g)-(h): Plots of forward and angular
velocity.

proposed MPC limits its reliance on solving general non-
linear optimizations. Instead, the forward velocity optimiza-
tion layer assumes most of the responsibility of guaranteeing
collision avoidance. We have shown that the computation
time of our MPC is very low and it in fact can run at an
update rate of about 77 Hz in realistic scenarios.

Our future efforts are focused towards including uncer-
tainty in our MPC framework. A probabilistic variant of
TSCC had already been developed in [26] and we are looking
to extend that formulation to autonomous driving setting.
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