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Abstract— Most methods that attempt to tackle the problem
of Autonomous Driving and overtaking usually try to either
directly minimize an objective function or iteratively in a
Reinforcement Learning like framework to generate motor
actions given a set of inputs. We follow a similar trend but train
the agent in a way similar to a curriculum learning approach
where the agent is first given an easier problem to solve,
followed by a harder problem. We use Deep Deterministic Policy
Gradients to learn overtaking maneuvers for a car, in presence
of multiple other cars, in a simulated highway scenario. The
novelty of our approach lies in the training strategy used where
we teach the agent to drive in a manner similar to the way
humans learn to drive and the fact that our reward function
uses only the raw sensor data at the current time step. This
method, which resembles a curriculum learning approach is
able to learn smooth maneuvers, largely collision free, wherein
the agent overtakes all other cars, independent of the track and
number of cars in the scene.

I. INTRODUCTION
Over the last few decades, the area of autonomous driving

has made significant progress owing to the rise of low cost
sensors, availability of vast amounts of driving data, and
the boom of Learning based methods. Owing to the rise of
deep learning, end-to-end methods have got popular in recent
years, which try to learn driving decisions directly from
sensory inputs. This way the system learns an intermediate
representation that can give better results rather than learning
an accurate representation itself and then taking decisions.

ALVINN [1] was one of the first works to explore the
autonomous driving space using neural networks. Trained on
human driver’s road data, they use a fully connected neural
network to learn a steering wheel direction corresponding to
an input image. The authors of [2], [3] approach the task
in a similar fashion. In [4], a Recurrent Neural Network is
evolved to learn driving behavior in simulation. [5] propose a
query efficient Imitation Learning based approach to learn an
end-to-end policy for visual autonomous driving in TORCS.

Another approach to the problem is that of Direct Per-
ception [6], [7] where sensory input is mapped to few key
affordances, which are used to make a driving decision. Like
the above described methods, these require large amounts
of training data as well. The need for manual labeling is
circumvented by using TORCS[8] for gathering data.

Given that autonomous driving is a situation where an
agent makes decisions based on sensory inputs, the problem
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can be adapted to a Markov Decision Process (MDP) and
Reinforcement Learning can be readily applied. The appli-
cation of Deep RL for such control oriented tasks boomed
ever since the super human performance of Deep Q Networks
(DQNs) in Atari games [9], [10] and the success of AlphaGo
[11]. There are works tackling the problem of autonomous
driving using RL [12], [13], [14], [15], however they dis-
cretize either the state or action spaces. Other approaches
[16], [17], [18] which look at using RL in a continuous
setting focus only on lane driving without considering any
nearby cars. The authors of [19] apply RL for learning to
race in a simulated environment. Few works have also come
up showing the use of Inverse RL (IRL) [20] for the task
of autonomous driving as well. [21] present a framework to
learn costmaps for autonomous driving using IRL directly
from sensor data. [22] present an IRL approach in a simple
highway driving scenario on a custom simulator.

We follow a similar trend of learning from raw sensory
inputs in a simulated environment. We present a novel ap-
proach using Deep Deterministic Policy Gradients (DDPGs)
[23] to learn continuous actions in a Curriculum Learning
[24] like setting by making the agent learn a simpler task
first and then moving to learning a more complex task.

Our methodology of training the agent is similar to how
humans learn to drive. We are first taught to drive a car
straight on an empty road, and keep it from straying away
from its path. Once this is done, the driver is made to drive
in traffic among other cars to learn to navigate in such
scenarios. Similarly, we first train the agent for performing
lane keeping. The learned behaviour is then augmented to
learn overtaking maneuvers. To the best of our knowledge
this is one of the first works to approach the problem in
a continuous manner, and one of the first to show the
effectiveness of adopting a curriculum learning approach for
tackling such problems.

II. BACKGROUND

A. Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients[23] is a deep version
of DPGs inspired from the success of DQNs. They use the
two concepts introduced in DQNs along with a third one
called Batch Normalization[25].

1) Replay Buffer: Transition Tuples, (st, at, rt, st+1), are
sampled from the environment as per the exploration
policy and stored into a replay buffer. Here st, rt
and at denote state, reward and action respectively,
at timestep, t. We use this representation in the rest



of the paper, with the omission of the subscript t in
some cases for brevity. The correlation between the
states of similar trajectories does not allow a stable
and convergent learning. Sampling mini-batches of
experiences randomly from the buffer solves this issue
for both the actor and the critic.

2) Target Networks: Instead of directly copying weights,
target networks use ”soft” updates. A copy of the
networks for both the actor and critic are created,
denoted by QT (s, a) and µT (s) respectively, but their
weights are updated by slowly tracking the learned
network. This helps in improving the stability of the
learning by constraining the weights to change slowly.

θQT ← τθQ + (1− τ)θQT

θµT ← τθµ + (1− τ)θµT
(1)

where θµ & θQ are the network parameters for the
actor and critic networks respectively, θµT & θQT

are their corresponding target network parameters and
τ << 1, is the learning rate.

3) Batch Normalization: Different components of a input
to a neural network, usually have different units and
scales. This results in slower and inefficient training.
Batch Normalization was a solution to resolve this.
It normalizes each dimension across the samples in
a minibatch to have unit mean and variance. It also
maintains a running average of the mean and variance
to use for normalization during exploration.

DDPG is an off-policy algorithm, hence the exploration tech-
nique is completely independent from the learning policy. It
allows us to use simple techniques like adding noise into our
actor policy for exploration.

Similar to Q-learning[26], [27], weights of Critic Network
are learned using a loss obtained from the Bellman-equation:

L =
1

N

∑
i

(yi −Q(si, ai))
2

yi = (ri + γQT (si+1, µT (si+1)))

(2)

where ri is the reward at the ith timestep,
QT (si+1, µT (si+1)) is the target Q value for the state-action
pair (si+1, µT (si+1)) where µT (si+1) is obtained from
the target actor network, Q(si, ai) is the Q value from the
learned network, N is the batch-size and γ is the discount
factor.

The Actor network is updated as given below:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a)|s=si,a=µ(si)∇θµµ(s)|s=si (3)

where N is the batch-size, θQ are the critic network param-
eters and θµ are the actor network parameters. The rest of
the terms have the same meaning as those in Eq. 2.

B. Curriculum Learning

Curriculum Learning [24] refers to using training strate-
gies to further enhance the performance of a learning agent
by presenting it with examples in such a way to help guide

the learning process and make it better, rather than randomly
presenting examples to the agent to learn from. It not only
helps speed up convergence but also provides better local
optimum guarantees. It stems from the way humans and
animals learn in nature where the complexity of information
presented is gradually increased.

III. APPROACH & IMPLEMENTATION DETAILS

Algorithm 1 Overtaking using DDPG

Randomly initialize Actor and Critic Networks
TargetActor ← ActorNetwork
TargetCriticNetwork ← CriticNetwork
for i = 1 to NumEpisodes do

s← ResetTORCS()
for j = 1 to MaxStep do

action← Policy(s)
action← action+N
s′, r, done← Step(action)
Buffer ← Store(s, a, s′, r)
if size(Buffer) > BufferSize then

batch← Sample(Buffer,BufferSize)
QT ← Update(Critic, batch)
Policy ← Update(Actor, batch,QT )
Update Target networks using τ

end if
if done then

break
end if

end for
end for

We use a modified version of TORCS called Gym-
TORCS[28] which has a RL environment incorporated into
it. The AI agent car used is ”scr server1”. The opponent
cars used are of type ”scr server” with velocities randomly
initialized from 10-160km/hr. We use a NVIDIA GeForce
GTX 1080 GPU for training. We use the DDPG framework
to train the actor and critic networks with architectures as
shown in Fig. 1 and 2 respectively. The State Vector is a 65
sized array consisting of the following sensor data:

1) Angle between the car and the axis of the track.
2) Track Information: Readings from 19 sensors with a

200m range, present at every 10◦ on the front half of
the car. They return the distance to the track edge.

3) Track Position: Distance between the car and the axis
of the track, normalized with respect to the track width.

4) SpeedX: As the name suggests, speed of the car along
the longitudinal axis of the car.

5) SpeedY: Lateral speed of the car.
6) SpeedZ: Vertical speed of car, indicates bumpiness.
7) Wheel Spin Velocity of each of the 4 wheels.
8) Rotations per minute of the car engine
9) Opponent information: Array of 36 sensor values, each

corresponding to the distance of the nearest opponent
in the range of 200 meters, located at a difference of
10◦, spanning the complete car.



Further details about each of these sensor readings can be
found in [13]. The Action Vector consists of continuous
values, the ranges of which are given below:

1) Steer: This represents the steering angle and ranges
from -1 (complete right) to 1 (complete left).

2) Brake: This indicates the strength of braking and
ranges from 0 (no brake) to 1 (complete braking).

3) Acceleration: This is like the opposite of brake in the
sense that it ranges from 0 (no acceleration) to 1 (full
acceleration).

Fig. 1: Neural architecture of the Actor Network

Fig. 2: Neural architecture of the Critic Network

A. Lane Keeping Behaviour

In order to better learn the required behaviour, we have
two phases of learning. In the first phase, the agent is made
to learn to drive smoothly on the road in a single lane. The
reward function for achieving this task, is given below,

RLanekeeping = vx(cosθ − sinθ)− vxabs(t) (4)

where vx denotes the longitudinal velocity of the car, θ
denotes the angle between the car and the track axis. We
give a positive reward when the car moves forward along
the track axis, given by vxcosθ, and negative reward when it
moves laterally, i.e. perpendicular to the track axis, given by
−vxsinθ. We penalize the car for going off track by giving
a negative reward for the amount that the car has moved
off the track axis. This amount is denoted by t which is
also called the Track Position and lies in the range [-1,1].
The probability by which it could go off track is also directly
related to the velocity as a higher velocity could cause the car
to drift off the track easily as compared to a lower velocity.
Hence, we penalize the value vxabs(t), thereby making the
car learn to stay close to the track.

B. Overtaking Behaviour

Once the agent achieved suitable performance for lane
keeping, we add more cars in the simulation and augment the
reward function to teach the agent to overtake neighbouring
cars and navigate in a traffic like scenario. The reward for
the second phase of training included the above reward along
with a reward for being ahead of other cars so that the
overtaking behaviour is favored, as the car would try to get
ahead of the others. This reward function is given below.

Rovertaking = RLanekeeping + 100 ∗ (n− racePos) (5)

Here n denotes total number of cars in a given episode
and racePos denotes the position of car in the race, which
is obtained from the simulator. If the car is behind other
cars, the value of racePos will be higher, thereby decreasing
the value of n − racePos giving a lower reward. Once it
overtakes a car, the value of racePos decreases, increasing
the value of n− racePos, giving a higher reward.

Apart from equation 5, explicit rewards were given to
handle some special cases:

TABLE I: Extra Rewarding Conditions

Condition Reward
Collision −1000
Off track drifting −1000
No Progress −500
Overtaking Rovertaking + 2000
Overhauling Rovertaking − 2000

The explicit conditions of colliding with another car,
drifting off the track and not making any progress are
necessary, as our reward contains no penalty for them. The
extra conditions for Overtaking and Overhauling helped in
improving the training rate i.e with these conditions in place
the agent learns in less number of episodes. For exploration
purpose Ornstein-Uhlenbeck [29] noise is added to all three
actions.

In the beginning, for better exploration, noise is kept high.
As the agent starts learning the desired behaviour, noise is
reduced, for which we have kept a multiplier ε = 1 and
is reduced by 0.00001 every time step. We train the lane
keeping behavior for 2000 episodes and overtaking behavior



for 1000, with the learning rate for the actor being 0.0001
and for the critic being 0.001, buffer size was 100000, batch
size 32 and γ being 0.99. The value of τ for learning the
target network weights is 0.001 in both the cases.

IV. RESULTS

A. Relevant Observations

We analyzed the results produced by various modifications
of the current reward function. Our findings are given below:

1) By training the agent on a single track with 4 neigh-
bouring cars, the agent was able to learn for almost all
tracks and for number of cars as high as 10.

2) Without the reward for second component of
Rovertaking in Eq. 5 i.e 100(n− racePos), the agent
was not able to learn overtaking maneuvers. It drove
straight on the lane, colliding with various cars.

3) Without the high reward for overtaking(+2000) and
the high penalty for overhauling(-2000), the car was
able to learn the overtaking maneuvers after number
of episodes as high as 2000.

4) When the high positive and negative rewards men-
tioned above, were included in the reward function,
the car was able to learn by 1000 episodes as seen in
Fig 3. This indicates, that high positive reward for a
behavior at one time step helped in faster learning.

5) Without pre-training for lane keeping, the car was not
able to learn the overtaking maneuvers, up to 4000
episodes. This can be reasoned on the fact that, in the
first 1000-1500 episodes the car learned lane keeping
behavior, next when it was expected to learn overtaking
behavior, the OU noise was reduced greatly and the car
was not able to explore sufficiently enough to learn.

Fig. 3: Graph of Average Reward versus number of episodes during
Training. Total time steps = 210000

The highlight of our work is the fact that even by training
with 4 neighbouring cars, our car was able to successfully
drive and overtake on various tracks with as high as 9
neighbouring cars. We randomly gave the cars speeds in
range of 10km/hr to 160km/hr. The trained agent was able to
overtake in high speeds as well. Lastly, our car was able to
overtake in almost all tracks with minimal collision points.

Visually, these can be seen in Fig. 4 and 5. The purple
car is our agent and the yellow cars are the neighbouring
cars. The trajectory followed by our agent is shown in red,
with the black arrow showing the general direction of motion
along the road. Although a high negative reward was given
on collisions, but collision and overtaking being opposite
behaviors, the car did not perform extremely well in terms
of completely avoiding collisions.

Fig. 4: Results of our approach as viewed from top. The yellow
cars are opponent cars and blue is our trained car.

B. Results of DDPG with Curriculum Learning

Table II shows the performance of our agent on various
tracks with 4 and 9 neighbouring cars respectively. Out of
9 cars, our agent was able to overtake 7-8 on average. The
values in the first column are calculated over 20 episodes,
where each episode marks the beginning of all cars starting at
0km/hr from their initial positions. The episode is terminated
either when our agent is either out of track or collides
disastrously with the walls or other cars, or when it overtakes
all other cars. The second column in the table refers to the
percentage of timesteps when there was a collision between
the agent and another car. In most cases, this value is very
low, indicating the collision avoidance nature of this learning.

C. Results of DDPG without Curriculum Learning

In order to get further insights into the effectiveness of our
learning, we test how well our approach works without using
the Curriculum Learning approach and instead just using the
final reward function to learn from scratch. As it can be
seen in Fig. 6. Instead of moving around the cars, the agent
collides straight into the car, and moves it away from the
track. Clearly, it is a very hostile and unsafe behaviour which
cannot be counted in overtaking maneuvers.

D. Results of DDPG without Lane Keeping

In order to see the effectiveness of having a lane keeping
component to the reward function, we remove the lane



Fig. 5: Results of our approach. The yellow cars are the opponent cars while the purple car is our agent, along with its trajectory shown
in red. As it can be seen, our agent successfully learns to overtake cars in front of with without any collisions, or going off the road.

TABLE II: Analysis on Various Tracks with 4 opponent cars
and 9 opponent cars in scene

Track Name Avg no.
of cars
overtaken

% of
colliding
timesteps

% of episodes
where agent
overtook all
cars

4 cars 9 cars 4 cars 9 cars 4 cars 9 cars
wheel2 3.95 7.55 0.23 0.23 100 50
Forza 4 7.8 25.835 9.64 100 40
CG2 4 8.45 7.01 8.135 95 65
CG3 3.05 6.15 25.64 39.7 30 35
Etrack1 4 8.35 7.08 1.05 100 80
Etrack2 3.55 7.8 26.41 0 65 60
Etrack3 4 6.35 7.99 2.36 100 40
Etrack4 4 8.5 0 7.23 100 70
Etrack6 3.65 7.55 26.13 10.5 90 60
ERoad 4 8.05 3.25 6.9 100 75
Alpine1 4 8.55 17.45 0.67 100 80
Alpine2 3.9 7.95 7.57 0.71 85 50
Olethros 4 7.1 7.3 18.84 100 30
Spring 3.8 7.8 3.87 8.05 95 45
Ruudskogen 3.95 7.65 2.21 12.29 100 40
Street1 3.95 8.55 4.07 6.19 100 80
wheel1 4 8.5 0 10.38 100 50
CG-
Speedway1

3.85 7.95 5.62 7.53 95 50

keeping component and use only the overtaking component
of the reward. We do this to see how well the lane keeping
helps in learning overtaking behaviour.

Looking further into our results, we observed that, the per-
centage of episodes where the agent did overtake or at least
go ahead of the neighbouring cars reduced drastically (Fig.
7) . Along with this, the percentage of colliding timesteps
were much higher i.e. there were much more instances where
the agent ended up colliding with neighbouring cars (Fig. 8).
Detailed results can be found at: goo.gl/reKRJ2

V. CONCLUSION & FUTURE WORK

We present a novel approach for learning overtaking
maneuvers in a highway like scenario. Inspired from how
humans learn to drive, our approach resembles that of
curriculum learning, where we first make the agent learn the

Fig. 6: Agent’s Trajectory without using curriculum learning.
Neither does the agent properly overtake neighbouring cars, nor
does it avoid colliding with them.

Fig. 7: Percentage of episodes where agent overtook all cars (higher
the better).

simple task of lane keeping followed by adding rewards for
learning to overtake. The proposed approach is different from

goo.gl/reKRJ2


Fig. 8: Percentage of timesteps in which the agent was involved
in a collision (lower the better).

most existing methods in the fact that we gradually build
up to the task rather than training it for the final task right
away. This type of systematic training not only yields more
favourable results but does so in lesser time. The learned
agent is able to navigate on various tracks while efficiently
overtaking neighbouring cars at speeds as high as 160 km/h.

Currently our method uses only information of the cur-
rent timestep. Incorporating information from the last few
timesteps and leveraging the power of Recurrent Neural
Networks can help in tackling problems associated with
partial observability, occlusion etc. and can help improve the
performance of the agent. In city like situations, we would
need to augment vision based sensory inputs into the picture
as well to account for things like traffic lights, intersections,
road signs, footpath detection etc. which would be an inter-
esting problem to solve with our approach. Another aspect
is that some of the sensor data, such as track information,
track position etc. are not directly available in a real driving
scenario. For tackling such problems, we plan to can couple
our method with a strong visual perception module moving
it to a direct perception approach.

VI. ACKNOWLEDGMENT

We thank Phaniteja S. from IIIT-Hyderabad and Anirban
Santara from IIT-Kharagpur for their support & knowledge.

REFERENCES

[1] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. In Advances in Neural Information Processing Systems
(NIPS), 1989.

[2] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-
road obstacle avoidance through end-to-end learning. In Advances in
Neural Information Processing Systems (NIPS), 2006.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[4] Jan Koutnı́k, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino
Gomez. Evolving large-scale neural networks for vision-based torcs. In
International Conference on the Foundations of Digital Games (FDG),
2013.

[5] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning
for end-to-end autonomous driving. In AAAI Conference on Artificial
Intelligence (AAAI), 2017.

[6] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deep-
driving: Learning affordance for direct perception in autonomous
driving. In IEEE International Conference on Computer Vision
(ICCV), 2015.

[7] Mohammed Al-Qizwini, Iman Barjasteh, Hothaifa Al-Qassab, and
Hayder Radha. Deep learning algorithm for autonomous driving using
googlenet. In IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017.
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