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Abstract— We propose a novel motion clustering formula-
tion over spatio-temporal depth images obtained from stereo
sequences that segments multiple motion models in the scene
in an unsupervised manner. The motion models are obtained
at frame rates that compete with the speed of the stereo depth
computation. This is possible due to a decoupling framework
that first delineates spatial clusters and subsequently assigns
motion labels to each of these cluster with analysis of a
novel motion graph model. A principled computation of the
weights of the motion graph that signifies the relative shear and
stretch between possible clusters lends itself to a high fidelity
segmentation of the motion models in the scene. The fidelity is
vindicated through accuracies reaching 89.61% on KITTI and
complex native sequences.

I. INTRODUCTION

Segmenting a video sequence into multiple motion models
is pivotal for various situations that arise in autonomous
driving and driver assistive systems. To obtain such motion
models at high frame rates has typically proven to be
challenging and nearly elusive. This paper reveals a new
spatio-temporal spectral clustering formulation over stereo
depths that is able to provide for both high fidelity and high
frame rates motion model segmentation on KITTI [1] and
challenging native road scenes. An illustration of the output
from the proposed framework can be seen in Figure 1

The paper contributes through the novel decoupled formu-
lation, where spatial clustering is performed at dense point
level to recover object level clusters that are then made
temporally coherent across a subset of consecutive frames
using aggregated optical tracks. Subsequently, these clusters
are modeled as nodes of a motion graph where edge weights
capture motion similarity among them. Finally, a spectral
clustering is invoked on motion graph to recover motion
models. It is important to note that the proposed method
is independent of the label/model priors while capable of
incorporating such priors when they become available. It’s
fidelity is not contingent on ego motion compensation or
high accuracy LIDAR scan data or the availability of ob-
ject and semantic priors. This way it contrasts itself with
previous methods [2], [3], [4], [5], [6], a review of those is
presented in the subsequent section. Comparative results vis-
a-vis methods that segment motion based on stereo [2], [3]
showcases the performance gain due to the present method.
The paper also proposes a framework to ground-truth motion
models and a metric to evaluate performance based on such
a ground truth.
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Fig. 1. (Top) Input RGB Stereo Sequence, (Bottom) Eventual output
of our multi-motion model segmentation approach. Each color represents
individual object motion and objects with the same motion model are
represented with the same color such as the two bikes to the left of the
image (seen with violet color).

II. PRIOR ART

Among many existing ways of classifying motion segmen-
tation methods, for the purpose of this work, we review it
based on the sensing modality: monocular methods, stereo
based methods and LIDAR based approaches. Existing lit-
erature has large collection of monocular motion segmenta-
tion methods [5]. Most monocular motion segmentation ap-
proaches fall in three categories: subspace clustering methods
[7], [8], [9], [10], [11], gestalt and motion coherence based
methods and optical flow cum multi view geometry based
methods [12] [6] [13] [14]. The results of subspace clustering
methods do not handle degeneracies such as when the camera
motion follows the object typically encountered in on-road
scenes wherein the motion model of the moving object lies
in the same subspace as those of stationary ones. The results
of such methods are typically restricted to Hopkins dataset
where the degenerate scenes are not prominent. While few
such as SCC [9] and [11] are able to handle the degenerate
scenarios, but are limited by the prior input for number of
motion models in the scene or dimensionality of motion
subspaces.

Purely optical flow based methods suffer from edge effects
and are erroneous in the presence of dominant flow, while the
fidelity of geometry based results rely on accurate estimation
of camera motion or the Fundamental matrix between scenes.
Considering these limitations, recent work in [5] came up
with a method based on relative shear and stretch cues as a
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means of combining over-segmented affine motion models
into the right number of motion labels. Nonetheless, this
method relies on the stability of long term tracks (over 16
frames) and is not fast enough for a live outdoor application.
With the advent of deep learning, recurrent neural networks
(RNN) and two-stream fusion networks for joint learning of
semantic and motion features have shown benchmark results
for on-road driving scenes [15] [16] [17]. The deep-learning
approaches however either suffer from model dependency or
large running time ranging from seconds to few minutes and
high computational costs involved. There are also methods
based on dense LIDAR point clouds that segment motion
such as in [4]. The method uses SHOT descriptors for
associating point clouds, which could prove expensive for
obtaining an immediate segmentation of the frames. The
closest methods to the proposed framework are [2] [3], and
both use stereo depth as the primary sensing modality. While
[2] segments based on clusters formed from sparse scene
flow tracks, [3] uses motion potentials formed out of the
divergence between predicted and obtained optical flow as
the guiding principle for segmentation. The proposed method
differs from both of them in terms of its philosophy by
determining the number of motion models than just detecting
motion regions. In terms of details, it incorporates previously
segmented motion models to enhance the accuracy of the
subsequent clusters, while the weights of the network are
governed by the inter cluster shear and stretch cues. Since the
previous methods [3] [2] detect motion but not the models of
motion, we improvise our method to a motion segmentation
framework and compare and contrast the advantages with
respect to the prior work. While comparing with [3] we do
not use the semantic cues used there but limit the comparison
only based on motion cues based on flow divergence. Specif-
ically, we show a performance gain in terms of accuracy to
the tune of 11.6% vis-a-vis the prior art.

III. METHOD

We propose motion model segmentation problem as
spatio-temporal graph clustering, thereby capturing the rela-
tive motion of different objects over a sequence of frames.
The proposed solution first performs a foreground point
filtering followed by the spatial clustering of points to recover
object level clusters and later the motion segmentation is
eventually obtained with spectral clustering employed over
object level motion graphs.

A. Foreground Point Filtering

Only a subset of 2D points in a given scene belong to
foreground (moving objects). In order to make our method
work in generic scenarios and use less computing resources,
we project the Image to the 3D space and divide the
orthogonal 2D space relative to each frame into grids.Objects
belonging to the foreground will have higher mean height.
We compute basic mean and variance of 3D points belonging
to each grid location and threshold it to select a grid location
as belonging to foreground objects. We merge multiple image
points to single grid point. Nevertheless, we always have a
one-to-one mapping from 2D image points to 3D points and
many-to-one mapping from 3D points to grid points in 2D
orthographic plane as seen in figure 3. Thus, we can easily
transfer the dense optical tracks obtained from image pixels
to grid level tracking.

B. Spatial Grouping

To cluster 2D points that are obtained by foreground filter-
ing on orthographic projection of 3D points recovered from
depth estimation performed over video frames [18], [19]. We
adopt DBSCAN [20] for spatial clustering as it is an unsu-
pervised density based clustering technique.Let F1, · · · ,Fτ
be the set of τ number of frames in a given video. For
any frame F l (1 ≤ l ≤ τ ), let Xl = [xl1,x

l
2, · · · ,xln] be
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Fig. 4. (a) s-t graph model computed over three consecutive frames. (b) Laplacian embedding of graph nodes.

the set of selected n 2D points (pixels) in the image plane
(i.e., x ∈ R2) that belong to foreground after filtering. Let
Zl = [zl1, z

l
2, · · · , zln] and Yl = [yl1,y

l
2, · · · ,yln] be the

respective 3D points (z ∈ R3) and their 2D projection on
orthographic plane (y ∈ R2). We propose to incorporate prior
in order to improve the performance of DBSCAN. These
priors are obtained by motion model recovered in previous
frame and projected to the current frame using the dense
optical flow. The prior Mŷl

i
is motion cluster to which pixel

ŷi belonged in the previous frame. DBSCAN clustering by
modifying the Euclidean distance metric as follows:

Dist(ŷli, ŷ
l
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i
,Mŷl
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Let Ot = [Ot
1, · · · ,Ot

cl
] be the cl number of clusters

obtained by spatial clustering of Ŷt in frame F t. Here, Ol
i ∈

R2 is the mean vector computed over all 2D points belonging
to ith cluster. We interpret these clusters as individual objects
present in the scene and hence call them object level clusters.

C. Spatio-temporal (s-t) Graph Construction

(a) Cluster Tracking: In order to relate the indepen-
dent clusters obtained in each frame, we propose a
cluster based tracking using optical flow. Dense opti-
cal flow is pre-computed using Dense Inverse Search
algorithm[21]. The spatial cluster Ot

i with maximum
number of optically tracked points is taken as the
tracked cluster for Ot−1

i .This object level cluster track-
ing provides us reliable tracks as compared to pixel level
tracking. If no such cluster is found or the matched
points are below a certain threshold, either due to
temporary occlusion or disappearance, we handle the
case by introducing pseudo clusters. We estimate and
assign the orthogonal coordinates of the pseudo spatial
cluster using a running average of the 2D positions of
the tracked clusters in the previous frames. The stated
approach is repeated with reverse iteration, i.e, from
frame F t to F t−p, with backward cluster tracking.
Additionally, we remove spatial clusters which do not
appear in significant number of frames specifically,
bp/2c in the given frame window of p frames, thus
qualifying as a case of late appearance or early disap-
pearance.

(b) Creating Motion Graph:We now construct the motion
graph Ŵ over p frames. each node in the motion graph
is represented as pair of the object level clusters. Let
motion graph is represented as Ĝt = {V̂t, Êt, Ŵt}, and
each v̂ti ∈ V̂t represents the motion of object center
between the frame t and t-1. v̂ti = {Ot

i,O
t−1
i }. Every

pair of nodes (v̂ti , v̂
t
j) will be connected by respective

edge êti,j ∈ Êt with a positive valued weight wti,j
capturing the motion similarity

wti,j = exp

(
−
(
d2

σm

)
−
(
d2θ
σθ

))
(3)

d =
∥∥vti − vtj

∥∥− ∥∥vt−1
i − vt−1

j

∥∥ (4)

dθ = tan−1 (vti ,vtj)− tan−1 (vt−1
i ,vt−1

j

)
(5)

Thus, for every pair of consecutive frames F t,F t−1,
we would recover a motion graph Ĝt. We propose to
combine (p − 1) such graphs to form a single motion
graph Ĝ across frames F t, · · · F t−p where binary edges
between v̂ti , v̂

t−1
i are assigned using the cluster level

tracks.Figure 4(a) depicts the construction of spatio-
temporal graph stitched across multiple frames.

D. Graph Spectral Clustering

The key idea in spectral clustering [22] is to embed
the graph by projecting each nodes into Euclidean space
spanned by the graph Laplacian eigenvectors. the Euclidean
distance in embedding space approximates connectivity on
the graph.Spectral clustering involves selecting a subset of
K Laplacian eigenvectors (corresponding to smallest non-
zero eigenvalues) and employing Kmeans clustering in the
embedding space to recover K clusters. The number of
clusters is typically a user given parameter in case of
Kmeans algorithm. However, in case of spectral clustering,
the eigengap detection [22] can be used to automatically
recover the number of clusters (K). The idea of eigengap
analysis is to find the sharpest increase in eigenvalue (i.e.,
max(λi+1 − λi)) and selecting the corresponding index as
the the value of K. Given a weighted adjacency matrix Ŵ of
a motion graph, the un-normalized graph Laplacian matrix
L is derived as: L = D − Ŵ, where D is the diagonal
degree matrix of the graph with Di,i =

∑n
j=1 Ŵij . The K-

dimensional Laplacian embedding of graph nodes is obtained
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Fig. 5. (Bottom) Eigengap analysis; (Top) Corresponding motion segmentation results with three motion models.

using the K eigenvectors of the graph Laplacian matrix.
Let, L = UΛUT be the eigen-decomposition of the L
matrix where U = [u1, · · · ,un] be the eigenvectors and
Λ = Diag(λ1, · · · , λn) be the corresponding eigenvalues of
the L matrix with property that {λ1 ≤ λ2 ≤ · · · ≤ λn} and
λ1 = 0,u1 = ~1 for a connected graph. Kmeans clustering
is then employed in the embedding space to recover the K
motion models. Figure 5 show a real eigenvalue plot where
eigengap detection yields K = 3 (excluding zero eigen-
value/vector pair) and corresponding motion segmentation
results over the sequence of four frames where three motion
models are shown with different colors. Thus, the proposed
algorithm automatically finds the number of motion models
and provide motion model labels for each image pixel.

IV. EXPERIMENTS & RESULTS

For the evaluation of our approach we use the renown
KITTI-Tracking benchmark [1]. In order to evaluate the
accuracy of our method in terms of number of motions
(motion models) in a scene, we propose a means of ground
truthing motion models. While KITTI dataset provides a
variety of benchmarks it does not provide one that indicates
the number of motions in a scene.

A. Ground Truthing Motion Model

We use the 3D bounding boxes provided by the tracking
benchmark to generate the Ground Truth motion model
for each object in the scene. We iterate over a window
of five frames and calculate the object motion using the
tracklet coordinates for each pair of frame encountered.
We capture the motion model of the object by computing
its average motion over the window. The eventual motion
model of the sequence is obtained as number of clusters,
where each cluster contains objects with similar individual
motions. To showcase proficiency and robustness of our
approach in diverse settings, we also evaluate the proposed
approach on Indian on-road scenes. The native sequences
proves challenging with regard to both variability in type

of objects encountered in the scene and adverse scene con-
ditions observed. The Indian road dataset consists of scenes
with uncommon objects such as bikes, three-wheelers, trucks,
and other atypical moving vehicles. We manually annotate
120 frames on the Indian dataset For all experiments on
native sequences, we use color RGB-images with a resolution
of 1280 x 600.

Method
Tight Accuracy Model(%) Relaxed Accuracy Model(%)

Seq - 3 Seq - 5 Seq - 10 Seq - 11 Seq - 3 Seq - 5 Seq - 10 Seq - 11

SSD 83.66 92.05 93.81 76.84 82.31 88.76 95.78 85.88

SSD-M 84.73 92.54 94.47 78.02 87.56 94.67 96.66 86.29

SDD 86.43 89.17 95.78 77.23 90.02 92.61 97.57 86.41

SDD-M 88.13 91.11 96.66 82.59 92.85 95.14 98.25 89.24

TABLE I
QUANTITATIVE MOTION MODEL EVALUATION ON KITTI TRACKING

SEQUENCES WITH RESPECT TO GROUND TRUTH-ED MOTION MODELS.

B. Motion Model Evaluation

In this section, we analyze the performance of our motion
model segmentation against the Ground-Truth motion model.
We cover our evaluation using two notable disparity com-
putation algorithms Block Matching (BM)[18] and Semi-
Global Block Matching (SGBM)[19] abbreviated as SSD and
SDD respectively. Similarly, SSD-M denotes Spectral Clus-
tering over Sparse Disparity with Motion Prior (as described
in Equation 1) and SDD-M, Spectral Clustering over Dense
Disparity with Motion Prior. We use four prominent KITTI-
Tracking sequences. Table I and Table II summarizes our
multi motion model evaluation. Specifically, Sequence 3, 5
and 10 represent highway sequences, while Sequence 11 was
chosen to evaluate the proposed method on inner-city traffic
scenes with multiple moving agents. We split our evaluation
with two ways of computing the accuracy vis-a-vis Ground
Truth.

1) Tight Accuracy Model: Here, we denote per-frame mo-
tion model accuracy as the ratio of number of motion models
classified correctly to the total number of motion models
present in the scene. A motion model is said to be correctly
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Fig. 6. Qualitative Evaluation on KITTI dataset. The results show proficiency of our approach across diverse scenes with challenging conditions. Please
note that stationary objects above a certain height such as poles get grouped as a motion model – the stationary model
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Fig. 7. Qualitative Evaluation on Indian on-road dataset.

Method Tight Accuracy(%) Relaxed Accuracy(%)

SSD (ours) 80.38 90.82

SSD-M (ours) 82.71 90.33

SDD (ours) 84.47 90.48

SDD-M (ours) 86.51 91.26

TABLE II
QUANTITATIVE MOTION MODEL EVALUATION ON INDIAN ON-ROAD

SEQUENCES

classified if and only if all the objects following the motion
model(as per the Ground Truth) are clustered together. We
are able to obtain significant increase in accuracy when using
the motion priors from previous frames. The increase in more
prominent in Sequence 11 owing to the multiple moving
objects present in the scene In general, the results are more
accurate in SDD-M than SSD-M due to better disparity maps
obtained from the algorithm. The high accuracies obtained
in diverse scenes are attributed to the inter cluster shear
and stretch cues incorporated with the motion model priors
in a unified spectral framework. This further shows the
adaptability of our approach in diverse settings by bypassing
the need of an object detector in challenging scenarios.

2) Relaxed Accuracy Model : The evaluation metric is a
relaxed version of Motion Model based analysis explained
in the previous section. Instead of assigning a binary score
to correctness of a particular motion model, we compute the
ratio of maximum number of objects clubbed together to the
total number of objects assigned to the motion model (as
per the GT). The remaining formulation remains the same
as that of Motion Model based evaluation.

Method Motion Accuracy(%)

SCENE-M [2] 72.51

FLOW-M [3] + DIS [21] + SGBM [18] 61.57

FLOW-M [3] + DIS [21] + BM [19] 62.73

FLOW-M [3] + DeepFlow [23] + BM [18] 67.38

FLOW-M [3] + DeepFlow [23] + SGBM [19] 69.11

SSD - MS (ours) 80.03

SDD - MS (ours) 82.65

TABLE III
QUANTITATIVE MOTION SEGMENTATION EVALUATION OF OUR

PROPOSED APPROACH AGAINST SCENE-M [2] AND FLOW-M [3]

C. Motion Segmentation Accuracy

The proposed method can only recover relative motion
models but to compare our method with other methods that
recover only dynamic and static motion models. We add
pseudo object node that represents static objects which can
be initialized and updated using the ego-motion estimation.
We use the KITTI Ground Truth motion dataset provided
by [16] with 100 annotated images from KITTI Tracking
benchmark. To the best of our knowledge, the prominent
methods showcasing results for motion segmentation on
stereo sequences are SCENE-M [2] and FLOW-M [3]. We
quantitatively compare our method with [2] and [3] on the
annotated dataset. We compute the moving object detection
accuracy as the ratio of the moving objects detected to the
total number of moving objects in the scene. An object is
classified as moving if the majority number of points lying
on the object are predicted as moving by the algorithm. We



use the bounding boxes from the KITTI-Tracking Ground
Truth for representing an object in the scene. Table III
shows the motion segmentation accuracy obtained from
our spectral clustering approach over dense (SDD-MS) and
sparse disparity(SSD-MS) in comparison to SCENE-M and
FLOW-M which we implemented ourself. We are able to
obtain an increase of 10.14% in accuracy over SCENE-M
and outperform FLOW-M with both DeepFlow [23] and Fast-
DIS[21] as input flow to the algorithm and attain an overall
accuracy of 82.64% in detecting moving objects on-road.
Our approach clearly outperforms the existing approaches
by a significant margin due to the shear cues incorporated in
an unsupervised clustering approach for segmenting moving
objects.

Method Time (ms)

SDD -MS 589
SDD 387

SSD-MS 186

SSD 107

TABLE IV
PREDICTION TIME ANALYSIS OF OUR APPROACH

D. Prediction Time Analysis

Real time and fast prediction is one of major attribute
needed when looking at real-world implementation of motion
prediction based approaches. Especially in the context of
Autonomous Driving and Driver Assistance Systems detect-
ing motion models needs to be achieved almost at capture
frequency. We evaluate our running time for both multi
motion model and motion segmentation on a single core CPU
of an intel i7 processor at @ 2.50GHz and the time taken is
reported in Table IV. Our approach takes 107 ms for multi-
motion model segmentation and 186 ms for segmenting
moving objects in the scene, thereby enabling low cost and
efficient implementation with competitive accuracy. To the
best of our knowledge this is the first such reporting of the
speed at which motion models and motion segmentation is
computed amongst the methods surveyed by the authors.

E. Discussion
In the proposed method object clusters are tracked over a

few frames and modeled as the nodes of motion graph. The
length of the tracking window is kept short as the objects can
be accelerating, which changes their motion very fast hence
a smaller window provides more accurate segmentation. As
no object detector are used edges of detected objects are
not sharp but easily distinguishable. Spectral clustering is
invoked on motion graph to recover motion models.Note that
two motion models will get clubbed together if difference
in their motion is less than the minimum resolution of the
motion graph as the eigen gap would not be enough to
distinguish between them.

V. CONCLUSIONS

This paper proposed a novel method to recover motion
models through spectral decomposition methods at frame
rates nearly equal to that of disparity computation. The

present formulation follows a decoupled approach, wherein
spatial clusters are formed (aided with motion priors) and
a motion graph over such clusters is applied with spectral
clustering to find the number of motions in the scene. The
paper reports accuracies that exceed more than 90% on
some of the KITTI sequences as well as on complex Indian
road scenes, which contain apart from cars a variety of two
wheeled and three wheeled moving objects.
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