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Abstract

Visual servoing approaches navigate a robot to the desired pose with respect to a

given object using image measurements. As a result, these approaches have several

applications in manipulation, navigation and inspection. However, existing visual

servoing approaches are instance specific, that is, they control camera motion

between two views of the same object. In this paper, we present a framework for

visual servoing to a novel object instance. We further employ our framework for the

autonomous inspection of vehicles using Micro Aerial Vehicles (MAVs), which is vital

for day‐to‐day maintenance, damage assessment, and merchandising a vehicle. This

visual inspection task comprises the MAV visiting the essential parts of the vehicle,

for example, wheels, lights, and so forth, to get a closer look at the damages incurred.

Existing methods for autonomous inspection could not be extended for vehicles due

to the following reasons: First, several existing methods require a 3D model of the

structure, which is not available for every vehicle. Second, existing methods require

expensive depth sensor for localization and path planning. Third, current approaches

do not account for the semantic understanding of the vehicle, which is essential for

identifying parts. Our instance invariant visual servoing framework is capable of

autonomously navigating to every essential part of a vehicle for inspection and can be

initialized from any random pose. To the best our knowledge, this is the first approach

demonstrating fully autonomous visual inspection of vehicles using MAVs. We have

validated the efficacy of our approach through a series of experiments in simulation

and outdoor scenarios.
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1 | INTRODUCTION

Visual servoing utilizes image sensory information to move a robotic

system toward a goal position with respect to a given object or scene.

A visual servoing approach is composed of extracting a set of visual

features from image measurements and controlling the robot

such that these features match their desired configuration (Chaum-

ette & Hutchinson, 2006). Based on whether the control objective is

defined in the Cartesian space or in the image space, the traditional

visual servoing approaches are classified into Position‐Based Visual

Servoing (PBVS) and Image‐Based Visual Servoing (IBVS; Hutchinson,

Hager, & Corke, 1996). PBVS utilizes visual features to compute the

object’s pose in the robot’s Cartesian space. Estimating the robot’s

pose requires additional information regarding the geometry of the

object. This can be obtained completely by explicit knowledge of the

object’s 3D model or partially by 3D reconstruction of the object

while servoing. IBVS in contrast directly controls the robot in the

image space by iteratively minimizing the feature error. However, in

IBVS, the controller could lead to local minima as there is no explicit

control in the Cartesian space (Chaumette, 1998).
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Previous visual servoing approaches used low‐level geometric

primitives (e.g., corners, lines, contours) as visual features

(Chaumette & Hutchinson, 2006) for servoing between two views

of the same object as shown in Figure 2a. However, these features

do not generalize well for matching between two different object

instances due to large appearance and shape variations, as

illustrated in Figure 2b. In this paper, we propose part‐aware

keypoints as visual features that encode the global perspective of

the object and retain only the meaningful information in contrast

to local appearance‐based descriptors, like scale‐invariant feature
transform (SIFT) (Lowe, 1999) and oriented FAST and rotated

BRIEF (ORB) (Rublee, Rabaud, Konolige, & Bradski, 2011), as

shown in Figure 2c. To learn these part‐aware keypoints, we

employ a convolutional neural network (CNN) based on stacked

hourglass architecture (Newell, Yang, & Deng, 2016).

Existing visual servoing controllers minimize an error function

between the current and the desired configuration of visual features.

Since these visual features are geometrically related, a possible

solution exists in the SE(3) space such that the error converges to

zero at the desired pose. However, when servoing across instances in

the same object category, the geometry of the objects may not

permit the error to diminish at the desired pose. This limits the scope

of traditional visual servoing to views of the same object. Such

problems arise frequently in practical scenarios where servoing to a

new instance is required, especially in the case of manipulation and

navigation. Hence, these approaches are not well suited for

performing an autonomous vehicle inspection.

Visual inspection has been widely adopted in industries to assess

the quality of the product as well as to identify defects resulted from a

manufacturing process. In industries, almost every product goes through

the process of visual inspection by trained persons. This procedure of

visual inspection is highly monotonous and laborious; therefore,

autonomy in visual inspection is rapidly progressing its way into

industries. Equipping the autonomous robots with mobile actuation and

integrating sensory feedback helps them to perform inspection task

outside factory settings. Micro Aerial Vehicles (MAVs) further offer a

unique opportunity to achieve sensory measurements from places,

which are generally beyond the reach of ground vehicles. Also, they can

provide images from a different perspective with finer details. Hence,

recently, these MAVs are being used for numerous autonomous

inspection tasks, such as for large structures (Bircher, Kamel, Alexis,

Oleynikova, & Siegwart, 2016; Morgenthal & Hallermann, 2014),

tunnels (Ozaslan et al., 2017), shipboards (Fang et al., 2017), agriculture

(Das et al., 2015), and so forth.

These autonomous visual inspection applications commonly

require a pipeline comprising exploration and mapping. The

common objective is to achieve a dense reconstruction of the

object of interest or structure to capture fine details and analyze

these details offline. Various aspects of the autonomous inspection

problem have been previously studied, such as efficient coverage

planning (Bircher, Kamel, Alexis, Burri, et al., 2016), obstacle

avoidance (Bircher, Kamel, Alexis, Oleynikova, et al., 2016), map

representation (Teixeira & Chli, 2017), vision in degraded

environment (Fang et al., 2017), and so forth. Visual inspection

of automobiles, in contrast, is slightly different as it is required to

visit essential components of the vehicles and decide whether the

component or part is in healthy condition or not. To achieve

complete autonomy in visual inspection of a vehicle, the MAV

should understand the notion of essential components/parts and

should navigate to these parts for obtaining a finer view. Visual

inspection has several benefits: First, frequent inspection helps

monitor the health of the vehicle. Second, this part‐aware visual

inspection of the vehicle could be helpful in the estimation of

damage to the vehicle, especially for an insurance claim. Third, the

inspection results could also be used for merchandising the

vehicle. As a result, the vehicular inspection is luring numerous

ventures, for example, QuickFoto Claim, Express Auto Inspection,

and so forth. However, such ventures require the manual effort for

collecting a video of the vehicle, which is then processed offline.

Car360 Inc.1 employs either a turntable or a large manipulator for

F IGURE 1 Aim: (a) The MAV is initially observing the current instance (yellow Beetle hatchback) from a side view. The instance invariant

visual servoing task requires the MAV to move to the front of the Beetle so that observed view matches the desired view of a template instance
(white Range Rover). Such navigation maneuver is difficult to attain using existing visual servoing approaches, due to a large variation in shape
and appearance between the two instances. (b) Using our instance invariant visual servoing framework, we propose a novel autonomous
navigation framework for the visual inspection of a vehicle using a low‐cost off‐the‐shelf MAV. Starting from a random initial pose, the MAV

servoes to different parts of the vehicle, like wheels, lights, mirrors, and so forth, to capture finer images of these parts, which plays a crucial
role in day‐to‐day maintenance and damage assessment of the vehicle. MAV: Micro Aerial Vehicle; PBVS: Position‐Based Visual Servoing [Color
figure can be viewed at wileyonlinelibrary.com]
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automating the inspection process. However, their setup has

scalability issues due to the requirement of a huge infrastructure.

In this study, we address the problem of visual servoing across

instances of an object category. Specifically, provided the desired view of

an object, the aim is to attain the same desired view for any other

instance from that category. Figure 1a describes a servoing scenario, in

which an MAV starts from a random initial pose and is required to attain

a pose with respect to the current car (yellow Beetle) such that the

resultant view matches the desired view of a template instance (white

Range Rover). We formulate this problem of servoing across instances as

pose induction followed by PBVS, where the pose‐induction step infers

the desired pose with respect to the current instance from the desired

pose of the template. The PBVS step estimates the current pose of the

robot with respect to the current instance and moves the robot toward

the inferred desired pose. One of the key research challenges in the

proposed inspection task is to address the large variations in shape and

texture among vehicles. This poses an immense challenge for vision‐
based classifiers to discriminate them from a background. Not only there

are variations in the overall design of vehicles but also the shape and

texture of essential parts vary significantly. Detecting the location of

these parts is one of the problems, which is gaining interest among

computer vision researchers. We propose to employ a stacked hourglass‐
based CNN for identifying the locations of these essential parts.

After laying the foundation for servoing across instances, we

propose a visual navigation pipeline for achieving autonomous part‐
aware visual inspection of a vehicle using an inexpensive off‐the‐shelf
multirotor MAV equipped with a monocular camera. For the inspection

purpose, mere identification of these parts is not sufficient, and the

MAV is also required to visit every part for capturing fine details. Thus,

we present a novel dilated convolution neural network (DCNN)‐based
framework that is able to detect the car and assign a dense pixelwise

segmentation to these parts. Another key challenge in the proposed

work is to navigate the MAV to these parts using a monocular camera

and erroneous odometry. We therefore consider this navigation task for

autonomous visual inspection as a visual servoing problem, where the

objective of MAV is to attain a desired pose with respect to a selected

part in the image space (e.g., move the MAV in the Cartesian space such

that the selected part should be in the center of image). Hence, here, we

propose a hierarchical instance invariant visual servoing pipeline that

guides the MAV to acquire the desired pose with respect to every part

sequentially. Figure 1b describes a use case of visual inspection, where

MAV is moving around a novel instance of a car and is inspecting

headlights.

1.1 | Contributions

Our contributions could be summarized as follows:

1. We have introduced a novel problem of instance invariant visual

servoing through our previous works (Kumar, Pandya, Gaud, &

Krishna, 2017; Pandya, Krishna, & Jawahar, 2015, 2016 ) that is

more suitable in practical scenarios as compared with existing

visual servoing approaches for manipulation and exploration

tasks. In this paper, we propose a pose‐induction framework for

visual servoing to a novel object instance. Our framework

accommodates the changes in appearance through part‐aware

keypoints learned using a CNN.

2. To the best of our knowledge, this framework is the first attempt

in addressing autonomous inspection of vehicles incorporating

semantics. Our approach is able to generalize well despite high

intracategory variation in texture and shapes of vehicles. The

presented framework is designed to work with a low‐cost off‐the‐
shelf MAV.

3. We present a dilated‐CNN‐based system that is able to achieve

state‐of‐the‐art part‐segmentation performance with 96.72%

pixelwise accuracy and 82.98% intersection over union (IOU) on

PASCAL‐part data set (X. Chen et al., 2014) for person category.

4. We present multiview data augmentation and optical flow‐based
Bayesian fusion refinements for improving the segmentation

performance, especially for oblique views, which is a common

problem when using deep networks due to lack of sufficient

F IGURE 2 (a) IBVS approaches (Crombez et al., 2015) are designed to servo between two views of the same object. (b) Challenges faced by
existing IBVS approaches: Variations in appearances, shapes of car, and viewpoints especially nonoverlapping views. (c) Local descriptors, like
SIFT‐based keypoints, might result in an incorrect matching when the instances are different, whereas our part‐aware semantics are more
suitable for computing correspondences across object instances. IBVS: Image‐Based Visual Servoing [Color figure can be viewed at

wileyonlinelibrary.com]

1https://www.car360.com
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training data. Our approach is able to perform visual servoing

across large camera transformations and nonoverlapping scenes,

which is a nontrivial task for existing visual servoing approaches.

5. We validated our approach through a series of simulation and

field experiments. In the Gazebo simulation, we tested our

approach for 12 different vehicles, where the MAV was able to

achieve 88.54% accuracy for part inspection. For the field

experiments, we evaluated our approach using an off‐the‐shelf
low‐cost Parrot Bebop‐2 (Parrot SA, Paris, France) MAV, which

was controlled using Asus ROG laptop (AsusTek Computer Inc.,

Taipei, Taiwan, Republic of China) over Wi‐Fi. We conducted 16

experiments on seven different vehicles during different illumina-

tion conditions, resulting in more than 190 min of completely

autonomous flying time. Starting from a random pose, the MAV

was able to inspect the required 113 parts out of 128 given parts

in total. We further analyzed the performance of our approach on

both visual inspection as well as visual servoing parameters, such

as the resulting area of a part before inspection, velocity profile,

error in visual features, position error, and trajectory of the MAV.

2 | RELATED WORK

2.1 | Shape retrieval and pose estimation from
single image

Joint estimation of camera pose and shape of the object from a single

image has gained significant attention in computer vision literature due

to the availability of economical and compact cameras in comparison to

3D sensors. Early approaches relied on the knowledge of 3D models, for

instance, specific reconstruction of the object (Lim, Pirsiavash, &

Torralba, 2013). Modern approaches generalize the shape retrieval

task to an object category by modeling a given shape as a linear

combination of previously selected basis shapes (Hejrati & Ramanan,

2012; X. Zhou, Leonardos, Hu, & Daniilidis, 2017; Zia, Stark, Schiele, &

Schindler, 2013) or learned deformable basis shapes (Kar, Tulsiani,

Carreira, & Malik, 2015; Vicente, Carreira, Agapito, & Batista, 2014).

These weights are then optimized along with the viewpoint to minimize

reprojection error. Hejrati and Ramanan (2012) have used alternative

shape and pose refinements to solve this optimization problem. Zia et al.

(2013) used shape‐based priors and maximized the posterior for the

pose inference. Recently, X. Zhou et al. (2015) have proposed a convex

optimization based on augmented shape and viewpoint basis. However,

due to the ill‐posed nature of the problem, only reconstruction up‐till a
similarity transform could be achieved the above‐mentioned ap-

proaches and full 6D pose could not be recovered. Therefore, these

approaches could not be directly used for navigation purposes. Another

recent approach proposed by Murthy, Sharma, and Krishna (2017) is

able to retrieve full 6D pose of the vehicle relative to the camera, but

they assumed the height of the camera to be known. However, in our

case, even this approach could not be used due to: (a) Inaccurate

odometry, especially large errors in the estimation of MAV’s height by

the ultrasonic sensor. (b) These approaches require the estimation of six

camera parameters and shape parameters; therefore, more they require

more keypoints as compared with our approach, which might not be

available from all poses especially when the keypoints are predicted by

a deep neural network. (c) Even if we are able to retrieve accurate pose,

it will be difficult to attain due to erroneous state estimation of the

MAV. We, therefore, use a novel pipeline based on instance invariant

visual servoing to navigate the MAV to a desired pose.

2.2 | Instance invariant visual servoing

Existing visual servoing approaches servo between two views of the

same object. However, in practical scenarios, robotic systems are

often required to servo to several objects. This paper addresses the

problem of visual servoing across instances of an object category.

Specifically, provided the desired view of an object, the aim is to

attain the same desired view for any other instance from that

category. This study is built upon our previous works on instance

invariant visual servoing. In Pandya et al. (2015), we used part‐aware

keypoints for making the approach robust to textural variation across

instances in an object category. We further proposed a linear

combination of available 3D models for a servoing iteration.

However, the semantic features were computed manually that

makes the approach laborious for a large number of object instances.

Moreover, the procedure requires a search over all models in all

prerendered poses for every visual servoing iteration, which makes

the approach computationally expensive. We also proposed a

discriminative learning‐based framework for visual servoing across

instances (Pandya et al., 2016), where we used principal orientation

glyph (POG) as visual features and a classification error‐based
controller for achieving geometry invariance. However, the POG

features do not capture the 3D information of the object, which

resulted in a relatively smaller convergence domain. In Kumar et al.

(2017), we formulated this problem of servoing to a novel instance as

pose induction and alignment problem. The pose‐induction step

infers the desired pose with respect to the current instance from the

desired pose of the template. The pose alignment step estimates the

current pose with respect to the current instance and moves the

robot toward the desired pose using PBVS.

In this paper, we present a hierarchical servoing framework for

navigating to essential parts, which extends our pose‐induction formula-

tion from Kumar et al. (2017) for navigating the MAV across different

sides of the vehicles so that MAV can servo through large camera

transformations and even nonoverlapping scenes. We further present an

IBVS-refinement step that significantly improves the servoing perfor-

mance over our previous work (Kumar et al., 2017). After navigating to a

side, we propose using Part‐IBVS that helps the MAV to servo to

essential parts for inspecting them. The evolution of our approach

starting from previous versions is presented in Figure 3.

2.3 | Part localization and segmentation

Computing descriptors that provide unique and accurate corre-

spondences among multiple views of the same instance or across

different instances have been one of the classical problems in
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computer vision. Previous approaches from computer vision

literature report superior performance in keypoint correspon-

dences when the keypoints are conditioned on object category,

especially when the keypoints were semantically related to

object’s parts (Felzenszwalb, Girshick, McAllester, & Ramanan,

2010; Maji & Shakhnarovich, 2012). Motivated from recent

breakthroughs in CNNs, Tulsiani and Malik (2015) presented a

CNN that was able to learn part‐aware keypoints through

supervision. They reported a significant improvement in keypoint

prediction accuracy by conditioning keypoints inference on

viewpoint estimations. Recently, Newell et al. (2016) proposed

a stacked hourglass architecture for CNN that showcased

state‐of‐the‐art results for keypoint prediction for the human

category. In this paper, we use a similar stacked hourglass CNN

from our previous work (Kumar et al., 2017) trained on PASCAL

3D data set (Xiang, Mottaghi, & Savarese, 2014) for cars. We

obtained superior results for keypoints detection over Tulsiani and

Malik (2015) for ‘car’ object category.

As compared with object localization where only the center of

the object is estimated, the semantic segmentation problem

consists of assigning a class label to every image pixel. Thus, the

segmentation helps in better understanding about the object and

the scene compared with mere object localization. Classical

segmentation approaches based on Markov Random Fields (Blake,

F IGURE 3 Evolution of instance invariant visual servoing. (a) Existing approaches, like photometric visual servoing, attempt to minimize the
pixel error without accounting for the variation in shape. (b) Our previous work used a linear combination of 3D models to cater the shape
variations. However, a manual annotation of part‐based keypoints was required. (c) We then introduced a discriminative learning‐based
approach, where SVM classification error was used for IBVS. However, the POG features do not capture the 3D information of the object, which
limits the convergence basin. (d) We next used CNN for estimating the part‐based keypoints. Using the pose‐induction‐based pipeline, we were
able to servo across instances for large camera transformations. (e) In this paper, we extend our previous work by proposing an
IBVS‐refinement step that significantly improves the visual servoing performance. CNN: convolutional neural network; IBVS: Image‐Based
Visual Servoing; POG: principal orientation glyph; SVM: support vector machine [Color figure can be viewed at wileyonlinelibrary.com]
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Rother, Brown, Perez, & Torr, 2004; Tang, Gorelick, Veksler, &

Boykov, 2013) considered this as graph labeling problem, where

the objective was to minimize the network’s energy by assigning

correct labels to every pixel. Another branch of approaches based

on Conditional Random Fields (CRFs; Gonfaus et al., 2010; Maire,

Stella, & Perona, 2011; Plath, Toussaint, & Nakajima, 2009) used

multiple cues from different modalities to improve segmentation

performances. Recent advances in CNNs have revolutionized this

problem of segmentation. In the past couple of years, several

CNN‐based models were proposed for category‐level segmenta-

tion (Badrinarayanan, Kendall, & Cipolla, 2015; L.‐C. Chen,

Papandreou, Kokkinos, Murphy, & Yuille, 2016; Dai, He, & Sun,

2016; Yu & Koltun, 2015). For the purpose of visual inspection of a

vehicle, we are more interested in part‐level segmentation. A few

recent approaches cater use CNNs for part‐level segmentation

(Oliveira, Bollen, Burgard, & Brox, 2018; B. Zhou et al., 2017).

In this paper, we present a dilated‐CNN‐based framework trained

on PASCAL‐parts data set (X. Chen et al., 2014) for segmenting

essential parts of the vehicle. Since our control framework employs

this part‐segmentation feedback for visual servoing, we are required

to see cars from several viewpoints. However, the training data

available from PASCAL‐parts data set do not provide an extensive

set of viewpoints. Therefore, we present a simulation framework for

synthetic data augmentation. Oliveira et al. (2018) have also reported

that data augmentation (spatial and color) results in significant

performance improvement. Furthermore, in our case, the camera

attached to the robot is also moving; therefore, we use this active

vision to our advantage by fusing segmentations from multiple views.

We propose optical flow‐based warping along with the Bayesian

fusion (Ma, Stückler, Kerl, & Cremers, 2017), for improving the

segmentation performance.

2.4 | Autonomous visual inspection

Early works on autonomous visual inspection using a fixed camera

were tailored to the requirement of determining the quality of the

product during a manufacturing process (Chin & Harlow, 1982).

With the addition of mobility to the camera, the applications of

autonomous visual inspection increased by many folds. Recently,

the MAVs are being extensively used for inspection of large

structures (Bircher, Kamel, Alexis, Oleynikova, et al., 2016;

Morgenthal & Hallermann, 2014), tunnels (Ozaslan et al., 2017),

shipboards (Fang et al., 2017), agriculture (Das et al., 2015), and so

forth, due to the ability of MAVs flying stably at lower altitudes

and reaching places that are difficult to approach for humans. To

achieve complete autonomy in inspection problems, challenges

related to navigation need to be addressed, such as accurate state

estimation. Several navigation approaches (Bircher, Kamel, Alexis,

Oleynikova, et al., 2016; Dryanovski, Valenti, & Xiao, 2013; Shen,

Michael, & Kumar, 2011; Usenko, von Stumberg, Pangercic, &

Cremers, 2017) rely on accurate depth sensors, like LIDARs, for

accurate state estimation and mapping, which makes the MAV

heavy and expensive. Fraundorfer et al. (2012) and Schauwecker

and Zell (2014) in contrast use a stereo camera pair for depth

estimation, which requires matching features between frames and

increases time delay in the system. Although the stereo pair is not

heavy compared with the LIDAR sensor, however, it is still

expensive and is not present in the majority of off‐the‐shelf
MAVs, such as Parrot’s Bebop (Parrot SA), DJI Phantom (SZ DJI

Technology Co., Ltd. Shenzhen, Guangdong, China), and so forth.

Recent approaches from Lin et al. (2018), Weiss, Scaramuzza, and

Siegwart (2011), and Wu, Johnson, Kaess, Dellaert, and Chowdh-

ary (2013) propose a visual inertial navigation framework that

fuses the inertial measurement unit (IMU) measurements with

image measurements from monocular camera, but for accurate

localization their framework requires a global shutter camera and

hardware synchronization between the clocks of camera and IMU,

which is again not present in off‐the‐shelf MAVs. Hence, in this

paper, we use visual servoing in the image space to navigate the

MAV to the desired pose of essential parts circumventing the

requirement for accurate pose estimation.

3 | PROBLEM DESCRIPTION

The problem of vehicular inspection, as it is considered in this

paper, consists of a low‐cost off‐the‐shelf MAV equipped with a

monocular camera for inspecting a given vehicle (current

instance). The given vehicle could be any novel instance of a

car, previously unseen by our approach. We, therefore, formulate

this navigation problem as an instance invariant visual servoing,

where a template model is used to estimate the pose of the MAV

with respect to the given vehicle and navigate the MAV to sides

(left *l� , right *r� , and front *f� ) of the vehicle from a random

initial pose 0� . Here, the images of sides of the template model

act as desired views, in which the MAV is required to servo

sequentially.

The objective of the inspection problem is to visit the pose

∀θ= X Y Z i N* [ *, *, *, *],i i i i i P� corresponding to every essential

part i among the set of all parts NP of the vehicle (wheels,

headlights, and mirrors) starting from a random initial pose 0� . We

define *i� such that the part i occupies a predefined area A*i and

lies in the center of the image captured by MAV at *i� , that is,

∕ ∕=u v N M[ , ] [ 2, 2]i i i i , for the image with size ×M Ni i. We assume

that the navigable workspace is obstacle free and the initial pose

of the MAV, denoted by 0� , has the vehicle in the field‐of‐view of

the camera. All the computations need to be carried out near

real time.

4 | OVERALL PIPELINE

The overall pipeline comprises a perception and a control module.

The perception module processes the image sequence and returns

(i) a bounding box capturing the car, (ii) keypoint locations of the

parts in the image, and (iii) pixelwise segmentation of essential

6 | PANDYA ET AL.



parts. The control pipeline is responsible for navigating the MAV

to the desired pose *i� for every part in a sequential order. The

MAV starts at a random pose 0� and visits a vantage pose for

every side ∀ s l f r*, { , , }s � (front *f� , left *l� , and right *r� ). After

reaching to the vantage point, the MAV visits all the parts of that

side sequentially. The key challenge here is that the poses *, *i s� �

are not known in the Cartesian space, rather these are to be

inferred from images using the vision pipeline. As shown in

Figure 4a, we divide the control pipeline into three modules: Pose

induction, side navigation and part servoing, where the pose‐
induction and side‐navigation modules are the components of the

instance invariant visual servoing framework. The outputs of every

module are visualized in Figure 4b. We now briefly summarize the

functionality of every module.

The pose‐induction module is responsible for reconstructing

the given vehicle (current instance) and estimating the vantage

poses for every side *s� . Provided a random starting pose 0� , the

MAV initially follows a straight line maneuver orthogonal to

the optical axis for reaching an arbitrary pose ′,0� such that the

corresponding images I0 and ′I0 captured from 0� and ′0� form a

multiview stereo pair. We refer to this step as multiview stereo

initialization. We further use our keypoint prediction network to

extract the part locations from these images. These part locations

from I0 and ′I0 are then used for triangulation and semantic

reconstruction of parts as 3D keypoints =P X Y Z[ , , ]i i i i in the

Cartesian space. A standard model (template) of a car is then

aligned with the reconstructed 3D model so that the vantage

poses *s� could be transferred from the template model to the

current reconstruction, as for the template model these vantage

poses can be easily computed using 2D–3D correspondences from

desired images. As shown in Figure 4b, the pose‐induction module

produces four outputs: (a) Semantic reconstruction of the current

instance, (b) initial pose of MAV with respect to the current

instance 0� , (c) desired poses of all sides ∀ s l f r*, { , , }s � , and (d)

the order in which these sides should be visited.

After *s� is estimated in the Cartesian space, the side‐
navigation module guides the MAV to *s� using PBVS. Here, we

use odometry provided by the MAV for localization. However, the

F IGURE 4 Overall workflow. (a) The overall pipeline of the proposed approach and (b) the results of major components of the pipeline for a
field test case. The multiview stereo initialization, based on keypoints encoding the part locations, gives a semantic reconstruction of the

vehicle. This is aligned with the template of a car. The pose‐induction module is also responsible for estimating the desired pose in the Cartesian
coordinates. The side‐navigation module assigns an ordering to these poses and helps the MAV to visit every visit every facet/side (left, right,
front, or back). This is followed by part servoing for zooming‐in to every part. IBVS: Image‐Based Visual Servoing; MAV: Micro Aerial Vehicle;

PBVS: Position‐Based Visual Servoing [Color figure can be viewed at wileyonlinelibrary.com]
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odometry measurements obtained by MAV are inaccurate and

tend to drift over time; therefore, we additionally use an image

moment‐based visual servoing for pose refinement. The resulting

of images captured by the MAV after the refinements is also

shown in Figure 4b.

Eventually, our part‐servoing module guides the MAV to a

desired pose *i� for all parts belonging to that side in a sequential

order. We employ the semantic part segmentation parameterized by

image moments =p u v A[ , , ]i i i i as visual features for navigating to

parts using IBVS. After attaining the desired pose, we use the

reverse‐PBVS module to return to *s� and continue this procedure

until all the parts visible from that side are servoed. Then, to switch

side, we again use PBVS followed by IBVS refinement to attain the

vantage point for the next side ( *l� or *r� or *f� ). This process is

repeated for all parts and is summarized in Algorithm 1. Images along

with overlaid segmentations captured by the MAV from a few *i� are

shown in Figure 4b for a test case. We also encourage the readers to

refer the video at the project website2 to see our workflow in action.

It should be noted that the current instance of the car is different

from the standard model (template) of the car, thus classical IBVS

and PBVS methods could not be directly used. Also, we need to

navigate to all sides of the car that requires servoing between

nonoverlapping scenes, which could not be achieved only by using

IBVS, thus we employ this switching‐based hierarchical servoing

approach.

5 | POSE INDUCTION

The objective of the pose‐induction module is to estimate the desired

pose *s� using a template model Y along with its desired image I*s for

the current side and transfer it to the current instance X . We employ

a CNN to compute the part correspondences x from current IX and

desired image =I I* *Y s of the current side. Once we obtain the

predictions y* from I*Y , we use its 3D model (template) to compute the

desired camera pose *Y� by solving the perspective‐n‐point (PnP)

problem, as described in Figure 5. Kindly note that here we are

dealing with two reference frames, one frame is attached to the

center of current object instance, which is being servoed X� and

other is attached to the template Y� . Hence, we align both X and Y in

a single virtual canonical frame v� , so that =* *s X� � could be

transferred from the template *Y� . Also, note that the *Y�

F IGURE 5 Pose induction: The objective of the pose‐induction module is to estimate a vantage pose for the current side *s� . This is achieved
by using a standard 3D model of a car (template) and the provided desired view in the form of an image. Our deep network predicts the
keypoints, which, along with template instance model information, is used to predict the desired transformations *Y� in its canonical frame using

perspective‐n‐point (PnP) solver. The keypoints predicted on the current image along with the previous views are used for semantic
reconstruction of the current object X and the origin *X� , which is its centroid. This reconstruction is aligned with *Y� using the axis
normalization and alignment module in a canonical frame v� to obtain the desired pose specific to the current vehicle =* *s X� � . This pose is

then fed to the side‐navigation module that employs position‐based visual servoing (PBVS) controller for generating control commands for the
MAV. CNN: convolutional neural network; MAV: Micro Aerial Vehicle [Color figure can be viewed at wileyonlinelibrary.com]

2Project website: http://robotics.iiit.ac.in/people/harit.pandya/vi_inspection
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computation is required only once per side and hence could be

performed offline. Our framework performs real‐time reconstruction

and servoing of the current instance.

5.1 | Keypoint prediction

In this study, we leveraged the recent hourglass architecture‐based deep

CNN for our task of part‐aware keypoint prediction. This network

architecture was initially proposed by Newell et al. (2016) for human

pose estimation. The network architecture comprises eight hourglass

modules stacked one after the other. Each hourglass is an encoder–

decoder setup and is followed by residual module (we encourage readers

to refer Newell et al., 2016 for complete network architecture). We have

trained this network on annotated images of cars from PASCAL 3D data

set (Xiang et al., 2014) using Stochastic Gradient Descent (SGD) with a

Euclidean loss. The design of hourglass network captures information at

multiple scales similar to Tulsiani and Malik (2015). However, this model

is faster and more accurate compared with Tulsiani and Malik (2015) due

to the following architectural improvements: (a) Use of stacked hourglass

provides an end‐to‐end solution for estimating part‐aware keypoints,

which is more optimal than ensemble of three networks, since all

parameters are jointly optimized rather than an inference over

independently optimized parameters. (b) The stacking of hourglass

modules assures both repeated bottom‐up and top‐down re‐evaluation
of initial feature estimates. (c) We trained the network to estimate the

confidence scores along with the image coordinates corresponding to

each keypoint for a given image. The low scores corresponding to

occluded parts or less guessable parts helped us to filter out the less

confident predictions by the network. These predictions were further

used as features for reconstruction, pose estimation while visual servoing.

We evaluated this network on PASCAL 3D data set for vehicles, and our

network is able to outperform previous approaches as shown in

Section 8.1.

5.2 | Desired pose estimation

The problem of determining pose of a calibrated camera from n

correspondences between 3D reference points and their 2D

projections is known as PnP problem. The solution to this PnP

problem is used for estimating the camera extrinsics (R t, ). Provided a

set of n points Xi in 3D and their 2D correspondences xi , estimating

the camera pose can be posed as a problem of minimizing

reprojection error as

∣∣ ∣∣+ −

=
=
∑ K X t x

I

R

R R

min ( )

subject to: .

t i

n

i i
R, 1

2

T

(1)

PnP is a well‐established problem in a 3D geometry, and there are

multiple solutions to the problem. We have used accurate and scalable

solution to the perspective‐n‐point (ASPnP) (Zheng, Sugimoto, &

Okutomi, 2013) since it solves the 3D–2D correspondences using a

Gröbner basis solver, which guarantees a globally optimal camera

pose. The desired pose of the camera *Y� is determined from the

annotated 3D model Y , and the desired 2D part correspondences y*

using PnP.

5.3 | Semantic reconstruction

In our approach, the features used for reconstruction are keypoints,

which uniquely corresponds to parts of a vehicle; therefore, we use the

term semantic reconstruction. The process of semantic reconstruction

starts with a multiview stereo initialization, that is, giving a translation

orthogonal to the optical axis of the camera in a horizontal plane to form

a stereo image pair. Assuming the knowledge of camera parameters, the

stereo pair obtained is used in triangulation for estimating 3D

coordinates of the visible keypoints. The triangulated points are

determined in the initial camera frame 0� , which is then transferred to

a frame X� that is attached to the centroid of the reconstructed model X .

The odometry readings are used for determining the actual scale of the

current instance, which is further utilized in the pose alignment step to

scale up the normalized reconstruction of the current instance. Note that

only a few keypoints are visible from the initial pose, hence only a partial

3D model is reconstructed.

5.4 | Normalization and alignment to the canonical
frame

The reconstruction of the current instance X from semantic

reconstruction pipeline is in the frame X� , whereas the desired

camera pose given by PnP is in the frame of template instance Y� .

Therefore, to compute the desired camera pose with respect to X , we

need the transformation between X� and Y� , which unfortunately is

not always available. We tackle this issue by defining a canonical

frame v� and transforming (aligning) both X� and Y� to v� using an

alignment protocol. A valid alignment protocol requires exactly three

rules: one rule to define an origin and two rules to define the

alignment of any two coordinate axes. As an example, consider the

alignment between the partial reconstructions of two car instances

as shown in Figure 6a, where a current instance given by the blue

wireframe is required to align with a template instance given by the

red wireframe. Further, consider a set of four keypoints correspond-

ing to “left front wheel,” “right front wheel,” “left rear wheel,” and

“right rear wheel.” We select the origin of canonical frame ( v� ) as the

right front wheel. Thus, the origin of the template instance ( Y� ) is

also selected at right front wheel. We place the frame attached to

vehicle X� at the centroid of the reconstructed points, which is at

known transformation from our selected origin (right front wheel).

The x‐axes in all the frames are parallel to the ray from the right front

wheel to the left front wheel, and the y‐axes are parallel to the ray

from the right front wheel to the right rear wheel starting at their

corresponding origin as shown in Figure 6b. By aligning the frame

attached to the template and the canonical frame, we get the

transformations Tv
Y , whereas Tv

X is known since both X� and v�

belong to the same instance X . To maintain the homogeneity in the

scale, all the keypoints of the template instance have to be in the
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same scale as that of the current reconstruction. Since the model is

reconstructed partially, so we assign the scale between two

keypoints of the longest visible side to all the keypoints. This assigns

an approximate scale to the template, which results in some

alignment errors. The error in alignment can be reduced by using a

linear combination of more than one templates similar to Pandya

et al. (2015) and X. Zhou et al. (2015). However, we do not focus on

this objective because, even if the correct pose is estimated, it would

be difficult to attain it due to incorrect odometry estimates provided

by the MAV. Therefore, in this study, we employ an IBVS‐based
refinement after alignment and PBVS step as explained in Sec-

tion 6.1.

The pose‐induction process can then be explained with the

following equation:

= −T T* ( ) *,X
v

X
v

Y Y
1� � (2)

where T ’s are 4 × 4 homogeneous transformation matrices and could

be represented as

=T
R t
0 1 .

⎡
⎣⎢

⎤
⎦⎥

After alignment, the estimated desired pose for the current side

=* *s X� � is used by the PBVS controller for navigating the MAV from

the initial pose 0� to the current side *s� , since now they are defined

in the same frame X� . This alignment is only possible because our

keypoints have a semantic meaning associated with them.

6 | PBVS TOWARD SIDE

PBVS approaches control the robot directly in the Cartesian space,

and thus the resulting camera trajectory is an optimal path, that is, a

straight line. Furthermore, for PBVS approaches, the interaction

matrix is full rank; therefore, these approaches can tackle large

camera variations without getting stuck in local minima. These

properties of PBVS approaches make them ideal candidate for visual

navigation tasks especially between nonoverlapping scenes. In our

problem, we need to navigate the MAV from 0� to all the sides of the

vehicle sequentially, starting with the current side

( * [ *, *, *]s r l f� � � � ). However, we only know *r� or *l� or *f� with

respect to the template Y . Thus, the standard PBVS techniques could

not be directly applied here.

Therefore, the pose‐induction step as explained in Section 5

employs a template model Y and the semantic reconstruction X to

estimate the required camera pose *s� such that the camera

projection at *s� matches I*s . As a result, now both 0� and *s� are in

the same frame. Therefore, we can apply classical PBVS to navigate

the MAV to *s� . Similar to the classical PBVS, we consider c� as the

current pose and *s� as the desired pose, where the current pose of

the MAV is obtained from the odometry provided by MAV. Let Rs
c

*

and ts
c

* denote the rotation and translation of the current pose of

MAV c� with respect to the desired pose *s� . Then, PBVS control law

could be stated as follows (Chaumette & Hutchinson, 2006):

λ= −v R t ,c l
s

c
T

c
* (3)

ω λ θ= − u,c a (4)

where vc and ωc are linear and angular commanded velocities, and λl

and λa are step sizes corresponding to linear and angular velocities,

respectively. θu is the angle‐axis representation of Rs
c

* .

6.1 | IBVS‐based refinement

The PBVS controller explained above generates the required velocity

command to move the MAV from 0� to *s� . However, the PBVS

controller requires the estimation of the current pose of the camera

F IGURE 6 Axis alignment: The axis alignment is one of the crucial steps for the pose‐induction module. This procedure transfers the desired

pose Y *� from the template instance Y to the current instance X . (a) The partial reconstruction of the current instance X and the template
instance Y are shown with blue and red wireframes, respectively. (b) All the required frames are shown. Y *� is the desired camera pose obtained
by using PnP between desired image and template model (red wireframe). The frame X� is attached to the centroid of the current instance. We
then select a suitable keypoint (say left front wheel) and attach the canonical frame v� capturing a semantic relation of keypoints (such as x‐axis
of the frame is parallel to line joining the front wheels). Next, we select the same keypoint capturing the same semantic relation in template
instance and attach the template frame Y� . (c) Since Y� and v� are semantically the same frame, therefore, they could be directly aligned and
using Equation (2), we can compute the desired pose in current frame X*� . Note that axis alignment is only possible since our part‐based
keypoints have semantic meaning unlike SIFT or ORB keypoints. PnP: perspective‐n‐point [Color figure can be viewed at
wileyonlinelibrary.com]
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at every time instance, which was furnished by noisy odometry

reading of the MAV. Moreover, there could also be errors on account

of the large difference in shape between the current instance and the

template. Hence, MAV could attain an incorrect desired pose

= +′ ′
T*s s

s
s*� � . We, therefore, use an IBVS refinement to minimize

the error
′
Ts

s* in the desired pose.

For this IBVS‐refinement step, we use the segmentation mask

generated by our part‐segmentation module (refer to Section 7.1) and

extract image moments (center and area of segmentation). These image

moments x y A[ , , ]g g are used as visual features to control the MAV using

IBVS. The approach is similar to Part‐IBVS, and the details are described

in Section 7.2. In contrary to Part‐IBVS, here we use the segmentation of

the entire vehicle for extracting the image moments. Note that the

desired image ( =I I* *s Y ) remains the same as that for the PBVS module.

Note that while servoing between sides, the vehicle could itself

become an obstacle we circumvent this issue by (a) ensuring that the

MAV always servos to an adjacent side and not directly to the

opposite side of the vehicle. (b) Taking a conservative approach,

we assign intermediate waypoints while performing IBVS. These

waypoints are selected as images of corners of the vehicle, so that

the MAV follows an elliptical trajectory around the vehicle instead of

a straight line, which avoids collision with the vehicle.

7 | IBVS TOWARD PARTS

The instance invariant PBVS presented in Section 6 navigates the MAV

to a side of the vehicle s� using part‐based keypoints. Approaching

further to a part requires zooming‐in to a single keypoint, which is a

degenerate scenario for IBVS as the interaction matrix becomes singular

and hence noninvertible. Also, PBVS could not be used due to erroneous

odometry, which could lead to fatal consequences as the MAV is closer

to the vehicle. Therefore, we propose to employ image moments of the

part‐segmentation mask as visual features for zooming‐in into a part.

We refer to this as Part‐IBVS. The moments used are the location of the

centroid of the part‐segmentation mask (x y,g g) and its area A.

We propose a novel cascaded DCNN architecture for computing the

semantic segmentation of a part. We further improve the performance

by using synthetic data augmentation and multiview segmentation. We

describe the existing approaches for part segmentation in Section 7.1

and present the cascaded architecture in Section 7.1.1, and the

necessary refinements to adapt the network for visual servoing are

described in Sections 7.1.2 and 7.1.3. Implementation details regarding

the data set, network training, and evaluation metrics are explained in

Sections 7.1.4–7.1.6. The part‐segmentation masks produced by the

network are further used in extracting the visual features and controlling

the MAV using IBVS as described in Section 7.2.

7.1 | Part segmentation

Recent CNN‐based approaches (Badrinarayanan et al., 2015; Dai

et al., 2016; B. Zhou et al., 2017) define the problem of semantic

segmentation as assigning every pixel i of input image Ix , a class label

yi from a list of predefined categories Ncl, which is obtained by

training the network under supervised settings on a data set of Ntr

samples, each consisting of an image Ixtr and corresponding ground

truth label provided in the form of pixelwise annotation image Iytr .

The network weights θ for the architecture f are learned by

minimizing the following cost function:

θ θ=
θ = =

∑ ∑ y f Iarg min log( ) smax( ( ; )),
i

N

k

N

i k x
1 1

tr cl

i (5)

where smax denotes the soft‐max function,

=
=

m
m

m
smax( )

exp( )

∑ exp( )
k

k

l
N

l1
cl

(6)

over all classes. The inference step consists of assigning a label k with

the maximum score to each pixel i of the input image Ix:

θ=y i f x( ) max ( ( ; )).k k (7)

In this paper, we propose a cascaded DCNN‐based framework for

part segmentation of a given vehicle. Previously, DCNN was utilized by

Yu and Koltun (2015), for semantic segmentation to improve the

performance over fully convolutional networks (Long, Shelhamer, &

Darrell, 2015). Yu and Koltun (2015) dropped pool4 and pool5 from

fully convolutional VGG‐16 network (Simonyan & Zisserman, 2014) and

replaced the following convolutions with dilated convolutions, which

improved the segmentation accuracy. B. Zhou et al. (2017) proposed a

branched cascaded architecture for semantic segmentation. They divide

the image into three branches, (a) objects, (b) stuff, and (c) parts, and use

three different streams for each of them. The loss function is

constructed by combining the individual loss of each of the branches.

Similarly, the network proposed by Oliveira et al. (2018) consists of two

streams: one for object detection and other for the parts. The part

network operates at twice the scale of the object similar to

Felzenszwalb et al. (2010), to capture finer details of the parts. Dai

et al. (2016) also indicated that capturing parts conditioned over the

object masks improve the performance of parts segmentation Table 1.

7.1.1 | Two‐stage stage cascading

In this paper, we present a two‐stage cascaded DCNN network

architecture for object part segmentation as shown in Figure 7. In

contrast to Oliveira et al. (2018) and B. Zhou et al. (2017), we

propose to sequentially stack the two cascaded modules, and the

motivation behind this is to condition the part segmentation on

object masks. The first DCNN module (DCNN module1) in the

cascade is responsible for object segmentation at instance level. A

bounding box is then computed from the segmentation mask

produced by DCNN module1 for every object instance in the image.

The object instance is then zoomed‐in based on the bounding box

produced by DCNN module1, which is then fed to the second module

of the cascade (DCNN module2) after resizing. Thus, DCNN module2

processes every instance separately at the same scale for estimating
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the part segmentations. This zooming‐in every object instance and

rescaling facilitates easier training and inference for DCNN module2.

However, the issue with training parts conditioned to object

segmentation is that the error resulted by the object segmentation

module propagates to the parts segmentation module. This issue

could be easily seen in the segmentation results presented by Dai

et al. (2016). Therefore, we feed the cropped image to DCNN

module2 instead of filter responses of DCNN module1, while training

TABLE 1 Network architecture describing individual module of the stacked DCNN used for pixelwise semantic segmentation

Layer name Kernel size Pad Stride Dilation Output size

Input – – – – 1 × 3 × 376 × 376

conv1_1 3 × 3 1 1 1 1 × 64 × 376 × 376

conv1_2 3 × 3 1 1 1 1 × 64 × 376 × 376

pool1 2 × 2 0 2 1 × 64 × 188 × 188

conv2_1 3 × 3 1 1 1 1 × 128 × 188 × 188

conv2_2 3 × 3 1 1 1 1 × 128 × 188 × 188

pool2 2 × 2 0 2 1 × 128 × 94 × 94

conv3_1 3 × 3 1 1 1 1 × 256 × 94 × 94

conv3_2 3 × 3 1 1 1 1 × 256 × 94 × 94

conv3_3 3 × 3 1 1 1 1 × 256 × 94 × 94

pool3 2 × 2 1 1 1 × 256 × 47 × 47

conv4_1 3 × 3 1 1 1 1 × 512 × 47 × 47

conv4_2 3 × 3 1 1 1 1 × 512 × 47 × 47

conv4_3 3 × 3 1 1 1 1 × 512 × 47 × 47

conv5_1 3 × 3 2 1 2 1 × 512 × 47 × 47

conv5_2 3 × 3 2 1 2 1 × 512 × 47 × 47

conv5_3 3 × 3 2 1 2 1 × 512 × 47 × 47

fc6 7 × 7 12 1 4 1 × 4,096 × 47 × 47

fc7 1 × 1 0 1 1 1 × 4,096 × 47 × 47

fc‐final14_p 1 × 1 0 1 1 1 × 15 × 47 × 47

upsample_p 16 × 16 4 8 1 1 × 15 × 376 × 376

Note. DCNN: dilated convolution neural network.

F IGURE 7 The architecture of our cascaded DCNN. The proposed network consists of two DCNN modules stacked together. The part‐
segmentation output from the first module of the cascade (DCNN module1) is used to compute an overall mask of the vehicle. A tight bounding

box extracted from this mask is used to zoom‐in the vehicle instance from the input image. This zoomed‐in image is then fed to the second
module (DCNN module2) of the cascade, which significantly improves the performance of pixelwise segmentation. This procedure of zooming‐in
to individual instances ensures that DCNN module2 is trained on images of the same scale, making the inference easier and more accurate. Both
the modules of the cascade are trained separately so that the error vehicle segmentation from the first module is not propagated to the second

module. The detailed architecture of the individual DCNN modules is similar and is presented in Table 1. DCNN: dilated convolution neural
network [Color figure can be viewed at wileyonlinelibrary.com]
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each layer of DCNN modules is initialized by the weights of the

baseline network provided by B. Zhou et al. (2017). We use the

pixelwise soft‐max loss function given by Equation (5), (6) to train

both the networks of the cascade. With the proposed refinements in

the architecture, we are able to obtain a significant improvement in

the performance for part segmentations. For the task of visual

navigation, we are relying on our networks for accurate part

localization and segmentation. However, such tasks require the

vehicles to be seen from even oblique poses, which are generally not

present in training data set. Thus, to enhance the segmentation

performance, we further propose two refinements as described in

the following subsections.

7.1.2 | Synthetic data augmentation

The PASCAL‐part data set consists of images of vehicles taken by

persons not explicitly for visual inspection tasks. Thus, there exist

numerous viewpoints from which the vehicle has not been previously

seen. To cater to the deep network’s need for large data set with

sufficient viewpoints, we augment the training data with images

generated by rendering the 3D models of car from several variations

of viewpoints and distance. We have manually annotated ten 3D

models of car, by assigning the labels for the desired parts to vertices

of computer‐aided design (CAD) models. These models are rendered

using the Gazebo platform (Koenig & Howard, 2004) from 32 × 6 × 3

viewpoint variations comprising 32 yaw variations, 6 height changes,

and 3 discrete levels in depths to generate our data set of 5,760

synthetic images. It is known that data augmentation improves the

performance of a network. For example, it was reported by Oliveira

et al. (2018) that color and spatial augmentation has significantly

improved the performance. We further achieve a noticeable

improvement in the accuracy pertaining to synthetic multiview data

augmentation. We evaluate the performance upgrade due to the data

augmentation in Section 8.4.

7.1.3 | Multiview segmentation fusion

In Section 7.1.2, we use data augmentation to prepare our network to

foresee various viewpoints; however, it is exhaustive to cover all the

possibilities in SE(3) space. Any error in segmentation could lead to a

collision with the vehicle, since our navigation pipeline relies on

segmentation for localization. Therefore, we use optical flow‐based
image warping to transform the part‐segmentation label for a given

pixel in previous image to its corresponding location in current image.

Provided the coordinates of ith pixel xi
j in previous camera frame j� ,

the warped image coordinates

ϕ η η= = −( )( )( ) ( )x x π T π x Z x, ( ) ,i
k

i
j

i
j

j i
j1 (8)

are computed by the warping function ⋅ϕ ( ), which transforms pixel xi
j

to the current camera frame k� based on the depth Z x( )j at xi
j in

image Ij and pose η (Ma et al., 2017), where T denotes the camera

Euclidean camera transformation matrix and the function ⋅π ( ) refers

to the projective transform induced by the camera at the current

pose η. However, in our scenario, the depth is not known, and we

tackle this issue by assuming that the motion between two iterations

is small. Thus, by estimating the optical flow between two

subsequent images Ij and Ik , we can forward warp the segmentation

mask from Ij to Ik .

We further enhance the segmentation by fusing the warped

segmentation of previous view with the current segmentation using

maximum a posteriori probability (MAP) estimate thereby producing

a multiview consistent output. Ma et al. (2017) used warping‐based
multiview segmentation association followed by the Bayesian fusion,

which improved the segmentation accuracy. For a pixel j, provided

the segmentation class labels for the sequence images up‐till current
frame …z z z( , , , )t1 2 , the predicted label for the current frame at the

current pixel j is estimated using the Bayesian fusion:

∣
∣ ∣

∣
= − −

−
p j z

p z j z p j z
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( )
.t

t t t

t t
1:
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1
(9)

Assuming the measurements satisfying independent and identi-

cally distributed and using log‐odd notation, the update rule

simplifies to summation of the likelihood term repeated over

sequence of frames:

∣ ∣ ∣ ∣= + −− − −p j z p z j z p j z p z zlog( ( )) log( ( , )) log( ( )) log( ( )).t t t t t t1: 1: 1 1: 1 1

(10)

7.1.4 | Data sets

CNNs often require a large amount of data for training, moreover

training a segmentation network is even more exhaustive, since every

pixel has to be labeled. Thus, in contrary to classification and object

detection data sets, there are very few data sets for image

segmentation. Due to the increase in categories, part segmentation is

highly laborious, as a result there are only two principal data sets with

focus on part‐level semantic segmentation having a sufficient number of

instances (a) Scene Parsing data set (B. Zhou et al., 2017): This data set

consists over 15,000 instances of cars and persons each. However, the

part‐level labels are not accurate as reported by B. Zhou et al. (2017),

which introduces unnecessary noise into the system. (b) PASCAL‐parts
data set: This data set is composed of 10,103 images taken for PASCAL

VOC challenge (Everingham et al., 2015) and provides part annotations

for each of 20 PASCAL classes. For the task of autonomous inspection,

we are interested in cars as category, B. Zhou et al. (2017) is the only

paper that reports part‐segmentation results on Scene Parsing data set

for the car category; however, the ground truth labels for the parts are

noisy, which refrains from obtaining a valid benchmark. Another paper

that showcases the results for part segmentation is from Oliveira et al.

(2018); however, they have trained their network on the person

category. Thus, for the comparison purposes, we train our networks on

persons as well. Following the data set selection guidelines described by

Oliveira et al. (2018), we merged labels at two granularity levels: coarse

and fine. For the coarse version, we consider four labels (head, torso,

arms, and legs). In the finer version, we have 14 labels discriminating
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even between the left and right sides of the person (head, torso, upper

right arm, lower right arm, right hand, upper left arm, lower left arm, left

hand, upper right leg, lower right leg, right foot, upper left leg, lower left

leg, and left foot). Furthermore, similar to Oliveira et al. (2018), we

divide the persons data set into training and validation sets. For coarse

granularity, we use 70% data for training and 30% for testing the

network and for fine granularity, we use 80% data for training and 20%

for testing the network as used by Oliveira et al. (2018).

7.1.5 | Network training

We train all the DCNN baseline networks and its refinements and

cascades separately. For all the networks, we initialize the

weights from the category‐level segmentation weights provided

by B. Zhou et al. (2017) and fine tune the networks on PASCAL‐
parts data set. The solver is based on SGD since the batch size

selected is 1. The solver’s parameters are as follows: Learning

rate is initialized with 0.00003 and momentum was constant at

0.9. We use step learning rate policy, and the learning rate is

reduced to one‐tenth after every 70K iterations. We have trained

our networks for 400K iterations, which takes around 48 hr on a

Titan‐X GPU (Nvidia Corporation, Santa Clara, CA).

7.1.6 | Evaluation metric

For dense pixelwise segmentation, two metrics are reported as a

standard practice: (a) pixelwise accuracy and (b) IOU. Let nij be the

number of pixels of class i predicted to belong to class j, where

=t n∑i j ij be the total number of pixels of class i. The pixel accuracy is

then given by ∕= n tPA ∑ ∑i ii i i. The pixel accuracy takes into account

also the prediction of background pixels, and the background pixels

cover of the majority of the images. Therefore, pixelwise accuracy is

not considered as optimal metric to evaluate the performance of

segmentation. Although considering the background pixels, when

computing the pixelwise accuracy is not essentially futile, since the

background prediction is important to avoid false positives (Oliveira

et al., 2018). Therefore, we evaluate our segmentation network on

IOU, along with pixelwise accuracy, where IOU is computed

as ∕ ∕= + −N n t n nIOU (1 ) ∑ ( ∑ )i ii i j ji ii .

7.2 | Part‐IBVS

PBVS requires accurate estimation of current camera pose in the

Cartesian space. However, such knowledge is generally not available

or could be susceptible to noise as in our scenario. IBVS in contrast

controls the camera motion directly in the image space. This is

achieved by considering some geometrical primitives as visual

features, such as points, lines, and regions, followed by moving the

camera such that the configuration of these features matches a

desired configuration. In classical IBVS approaches, keypoints are

considered as visual features = …x y x ys [ , , , , ,]N N1 1 . The control law is

then defined by assigning the camera a velocity vc that minimizes the

following objective function:

⇒ ∇

⇒

λ
λ

= − −

= −
= − −+

s s s s

v

v L s s

( *) ( *)

( *),
c

c s

1

2
T�

� (11)

where Ls is the interaction matrix that maps feature velocity in

the image space to the camera velocity vc in the Cartesian space. For

a 3D point X Y Z[ , , ] as visual feature, the interaction matrix is given

as (Chaumette & Hutchinson, 2006)
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In this paper, the objective for Part‐IBVS is to attain a desired

pose with respect to a given part. However, the part belongs to a

novel instance of a car, which has not been previously seen, that is,

the instance in the desired image is different from the current

instance. Thus, classical IBVS could not be directly used for achieving

our task. Therefore, in this paper, we use the segmentation masks

provided by our part‐segmentation CNN for visual servoing as shown

in Figure 8. The objective is modified as to place the camera attached

to the MAV such that the center of the segmentation coincides with

the camera center and the area of the segmentation equals a

predetermined area.

To accomplish this modified task, we consider image moments as

visual features (Chaumette, 2004). Since our MAV is underactuated

and only four degrees of freedom (DOF) could be controlled.

Therefore, we employ the following image moments as visual

features: (i) centroid of the segmentation and (ii) the area occupied

the segmentation in the given image.

=
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The interaction matrix for these visual features is given by
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Finally, to control the MAV, we use the exponential decay controller

used by classical IBVS approaches presented in Equation (11).

7.3 | Reverse‐PBVS

The objective of this module is to navigate the MAV back to the

desired pose of the current side *s� from current pose resulted from

Part‐IBVS module *i� . Since both *s� and *i� are in the same frame

X� , therefore, classical PBVS could be directly applied to achieve this

objective. Similar to the PBVS module, we rely on the noisy odometry

provided by the MAV for state estimation. Thus, the state estimation

could be incorrect and an IBVS refinement could be applied for

rectifying the state estimation error. However, IBVS refinement will

consume additional time for alignment, we, therefore, skip the IBVS
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refinement for this reverse‐PBVS module, since we observed only

small pose errors while inspecting three‐to‐four parts. When we

switch sides, the side navigation again employs IBVS refinement.

8 | EXPERIMENTS AND RESULTS

We evaluate our approach extensively through a series of experi-

ments. Initially, we assess the performances of individual components

of the pipeline on both qualitative and quantitative measures.

Section 8.1 presents the results of the keypoint network from our

previous work (Kumar et al., 2017; Murthy et al., 2017) and in

Section 8.2, we showcase the results of our segmentation network.

Sections 8.3 and 8.4 are dedicated to the refinements proposed in

this paper to improve the part‐segmentation performance. Finally, in

Section 8.5, we implement our approach on a Parrot Bebop‐2 MAV

and perform multiple field experiments for our completely autono-

mous inspection pipeline.

8.1 | Evaluating keypoint network

Herein, we evaluate the accuracy of our 2D keypoint localization

framework. We trained and evaluate our network on annotated

images of cars from publicly available PASCAL 3D data set (Xiang

et al., 2014) for cars category. All the images while training and

testing were annotated for 14 part‐based keypoints. To evaluate

the performance of our network based on hourglass architecture

F IGURE 8 Part‐servoing pipeline: We propose dilation‐based convolutional neural network for extracting pixelwise part segmentation.
Image moments (centroid and area) are extracted from these segmentation masks as visual feature for IBVS algorithm. The velocity control

commands issued by IBVS controller are smoothly tracked by MAV’s local controller, and finally, the loop is closed by MAV’s vision sensor.
IBVS: Image‐Based Visual Servoing; MAV: Micro Aerial Vehicle [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Overall performance of keypoint network on the

PASCAL 3D data set with 14 body parts

Approach

PCK

(%; α = 0.1)

Tulsiani and Malik (2015) 81.3

Li et al. (2017) 81.8

Hourglass architecture (Newell et al., 2016) 93.4

Note. Best value is presented in bold. PCK: Percentage of Correct Metrics.

F IGURE 9 Qualitative results showing the 2D keypoint localization performance of the used architecture. Top seven keypoints per instance

are shown (in accordance with the confidence scores output by the CNN). Discriminative features are extracted consistently across instances,
pose variations, and occlusions. The last row shows some failure cases. CNN: convolutional neural network [Color figure can be viewed at
wileyonlinelibrary.com]
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proposed by Newell et al. (2016), we use the standard Percentage of

Correct Metrics (PCK) used by Tulsiani and Malik (2015). In our

analysis, we use a very tight threshold of 2 pixels to determine

whether or not our keypoint estimate is correct. We further compare

the accuracy obtained by our approach for the car category with the

state‐of‐the‐art part‐based keypoint prediction approaches (Li et al.,

2017; Tulsiani & Malik, 2015). Table 2 shows the keypoint

localization accuracy obtained by the hourglass network architec-

ture. The results indicate a significant performance boost in the task

of keypoint localization, which also improves the performance of the

pose‐induction module. A few keypoint predictions are shown in

Figure 9. It can be seen that our approach robust to even large

appearance variations. The figure also shows some failure cases,

which are due to the change in shape, such as an opening of trunk or

parts not visible.

8.2 | Evaluating part‐segmentation network

The objective here is to thoroughly validate the segmentation

network, since semantic segmentation of parts is the central

component of our visual inspection pipeline. A wrong segmentation

could lead the MAV in an incorrect direction due to lack of any

manual supervision during the test time. Furthermore, our keypoint

network requires bounding box of the car as additional prior for

keypoints predictions. This bounding box is computed by the first

cascade of our network. Another option while computing the

bounding box is YOLO (Redmon, Divvala, Girshick, & Farhadi,

2016), faster‐RCNN (Ren, He, Girshick, & Sun, 2015), which again

requires an additional network that means more computation

during test time. Also, YOLO and faster‐RCNN are not trained for

zoomed‐in part predictions, as result of any zoomed‐in car they result

in highly inaccurate bounding box predictions. These situations arise

frequently in our scenario of part inspection, which makes YOLO and

faster‐RCNN not well suitable for this task.

To compare our results with Oliveira et al. (2018), we test our

network for both coarse and fine part predictions. Similar to Oliveira

et al. (2018), for the coarse parts data set, we retain four labels (head,

torso, arms, and legs) and for fine parts, we predict all the 14 parts of

person category from PASCAL‐parts data set. Oliveira et al. (2018)

have trained their network on 80% and 70% images, respectively, for

coarse and fine part predictions. However, Oliveira et al. (2018) do

not provide an extensive list of training and testing images; therefore,

we randomly select 70% images for training and the remaining 30%

images for testing the coarse predictions. Similarly, the 80:20 ratio

was used for training and testing the segmentation network on fine

parts.

Figure 10 shows the predictions by our network for a few images

from PASCAL‐parts data set. It can be seen that even for multiple

humans and at different scales, our network is able to successfully

capture the part information. We compare our network with existing

networks on both fine and coarse label predictions. It can be seen from

Table 3 that our baseline network, which is a single DCNN module and is

trained without any data augmentation, outperforms Part‐Net for

segmentation of almost every part giving us significant improvement in

the mean segmentation. Table 4 compares the performance on coarse

data set with four parts. Our network results are at par with M‐Net
(Heavy) and significantly better over other networks for IOU.

Furthermore, our network achieves over 5% improvement over

state of the art in pixelwise accuracy, which indicates that the false

positives are less since the pixelwise accuracy also includes the

F IGURE 10 Qualitative results for pixelwise segmentation of 14 parts on person category from PASCAL data set. Here, we compare the
performance of the baseline DCNN network with single DCNN module, which significantly improves the segmentation performance. DCNN:

dilated convolution neural network [Color figure can be viewed at wileyonlinelibrary.com]
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background labels. Moreover, the average time taken for forward

pass by our network on a Titan‐X is 161.66ms, which is near real

time and is more suitable for autonomous navigation‐based applica-

tions that require online processing.

8.3 | Improvements due to two‐stage cascading

We now evaluate the cascaded architecture presented in this paper on

PASCAL‐parts data set for car category. Similar to Section 8.2, we divide

the data set in 80:20, and use 80% data for training and rest for testing.

We compare the performance of sequential cascading with the baseline

DCNN for parts segmentation. Figure 11 shows the predictions by both

the networks on PASCAL parts, and the quantitative evaluation on the

same is presented in Table 5. It can be seen from Table 5 that cascading

improves the segmentation performance significantly both in terms of

pixel accuracy and IOU. The reason accounting for this improvement is

that segmentation is degraded on cars that are at a farther distance as

could be seen in Figure 11. Furthermore, the output from the first

module of the cascade is normalized for scale for each car which, when

passed to the second module, helps in capturing fine details of the parts,

thus improving the segmentation performance for individual parts

significantly on the cars that are farther, and a marginal improvement

even on the cars that are closer due to uniformity in the scale. Note that

only B. Zhou et al. (2017) presents the part‐segmentation results on car

category on ADE20K data set. However, annotations provided by

ADE20K are noisy as reported by B. Zhou et al. (2017); therefore, we do

not directly compare with B. Zhou et al. (2017).

8.4 | Effect of proposed refinements

In this section, we evaluate the effect on segmentation performance

due to the refinements proposed in this paper. Since these proposed

refinements in part‐segmentation networks are based on synthetic

data augmentation and multiview Bayesian fusion, which are not

available on public data sets, therefore, we report results only in

simulation, where the ground truth could be easily computed.

8.4.1 | Synthetic data augmentation

Vehicle part inspection requires viewing cars from oblique angles,

which are generally not available in images provided by public data

sets. We, therefore, create data set of ten 3D CAD models and

manually annotate the meshes. These models are rendered using the

Gazebo platform from 32 × 6 × 3 viewpoint variations comprising 32

yaw variations, 6 height changes, and 3 discrete levels in depths to

generate our data set of 5,760 synthetic images. These data are

augmented to the PASCAL‐parts data set for training the network. We

have seen a noticeable improvement in the network performance,

TABLE 3 Partwise comparison results of our baseline dilated network with existing approaches for segmentation on the PASCAL data set
with 14 body parts

Method Head Torso L U arm

L

LW
arm L hand

R

U
arm

R

LW
arm R hand R U leg

R

LW
leg R foot L U leg

L

LW
leg L foot

Mean of
all parts

FCN 74.0 66.2 56.6 46.0 34.1 58.9 44.1 31.0 49.3 44.5 40.8 48.5 47.6 41.2 48.8

Part‐Net (spatial) 81.8 78.0 69.5 63.1 59.0 71.2 63.0 58.7 65.4 60.6 52.0 67.9 60.3 50.0 64.3

Part‐Net (spatial

+ color)

84.0 81.5 74.1 68.0 64.0 75.4 67.4 61.9 72.4 67.1 56.9 73.0 66.1 57.7 69.2

Ours (dilated net

baseline)

92.9 84.1 76.2 69.9 67.0 77.2 71.0 68.6 72.2 70.1 67.0 71.3 68.9 72.2 73.5

Note. We have evaluated our network on human category to benchmark with Oliveira et al. (2018) Best value is presented in bold. L: Left; LW: Lower; R:

right; U: upper.

Best value is presented in bold.

TABLE 4 Overall performance on segmentation on the PASCAL data set with four body parts

Method IOU PA Precision Recall Time (ms)

FCN (Long et al., 2015) 57.35 71.79 77.28 67.92 150

SegNet (Badrinarayanan et al., 2015) 45.22 44.82 49.88 80.71 47.7

ParseNet (Liu et al., 2015) 64.25 70.02 74.66 78.95 88

Part‐Net (Oliveira et al., 2018) 78.23 85.47 86.00 87.78 225

Fast‐Net (Oliveira et al., 2018) 81.92 88.81 88.74 90.04 48.7

M‐Net (Oliveira et al., 2018) 78.15 84.95 86.29 87.60 130

M‐Net (heavy) 84.62 91.51 91.47 90.57 345

Ours (Dilated Net baseline) 82.98 96.72 91.61 89.06 161.7

Note. Our network performs at par with state of the art in IOU while giving a significant boost in pixelwise accuracy (PA).

Best value is presented in bold. IOU: intersection over union.
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F IGURE 11 Qualitative results for pixelwise segmentation of 11 parts on cars category from PASCAL data set. Here, we show the
advantage of cascaded architecture over the baseline, which is a single DCNN module. DCNN: dilated convolution neural network [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 5 Results for part segmentation on the cars category of PASCAL data set using our baseline dilated network and the proposed
cascaded architecture

Method Front Back Left Right Roof Door Window Headlight L‐Mirror R‐Mirror Wheel Mean IOU PA

Dilated Net (baseline) 50.2 23.5 24.1 30.4 17.8 32.7 58.0 34.6 14.9 7.8 58.2 32.02 49.01

Dilated Net (cascaded) 86.0 78.0 75.3 68.5 70.5 73.8 80.9 74.9 48.0 56.1 83.9 61.23 86.20

Note. IOU: intersection over union; PA: pixelwise accuracy.

F IGURE 12 Qualitative results for improvements due to data augmentation refinement over our cascaded DCNN on the Gazebo simulation

for different viewpoints. Note the improvement in the segmentation of mirror and headlights. DCNN: dilated convolution neural network [Color
figure can be viewed at wileyonlinelibrary.com]
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especially for oblique views. Figure 12 qualitatively compares the

performance of our cascaded network trained only on PASCAL‐parts
data set with that trained over the multiview augmented data set.

Although only the data from the simulation are augmented, still we

obtain substantial improvements even in real images of vehicles while

executing the complete visual inspection task.

8.4.2 | Multiview fusion

Our pipeline relies on part segmentation, for which the network has

been extensively trained in both simulation and real data. However, we

employ IBVS for navigation, which could result in camera viewpoints in

the SE(3) space, in which the network may be unable to generalize.

Therefore, we use warping‐based multiview fusion approach discussed

in Section 7.1.3 for improving the segmentation. The comparative

results are shown on the simulation environment only, since there is no

public data set with such viewpoint variations for part segmentation.

The setup comprises an MAV platform, for which we use the RotorS

Gazebo (Furrer, Burri, Achtelik, & Siegwart, 2016) library, and twelve

3D CAD models of cars. We use one car among them as the template

model Y and the rest are used as previously unseen novel instances X

for the inspection. For every car, the MAV is initialized at a random pose

with no prior knowledge of the environment. The proposed pipeline is

further used by the MAV for servoing to all the required parts (eight

parts per car) in a predefined order. We showcase the improvement in

inspection performance by integrating the Bayesian fusion with the

visual inspection pipeline, as depicted in Table 6. It can be seen from the

table that the Bayesian fusion not only increases the convergence rate

but also decreases the residual error. We encourage the readers to

refer the supporting information3 for details regarding the simulation

experiments, such as experimental setup, qualitative results, and

additional quantitative results, for the complete visual inspection

pipeline.

8.5 | Evaluating the autonomous inspection
pipeline on field experiments using MAV

Finally, as a final proof of concept and viability of our approach, we

validate our pipeline for autonomous inspection of vehicles using the

low‐cost Parrot Bebop‐2 MAV. In our experiments, we showcase our

results of 16 runs in the field on seven different car models (Suzuki

Alto, Tata Indigo, Hyundai Accent, Mahendra E2O, Hundai Creta,

Mahendra Scorpio, and Suzuki Omni van) with an autonomous flight

time of over 190 min. We next describe the setup used and outline

the scenarios, in which we conducted the experimentation.

8.5.1 | Experimental setup

The experimental setup shown in Figure 13a comprises a Parrot Bebop‐
2 MAV, a vehicle from Alto, Indigo, Accent, E2O, Van, Scorpio, and

Creta and an ROG GL552VX laptop (AsusTek Computer Inc.). The

sensory suite of a Parrot Bebop MAV consists of a front‐facing
monocular RGB camera, Global Positioning System (GPS), IMU, and Wi‐
Fi, as illustrated in Figure 13b. We employ the front‐facing camera for

capturing the images, although the front camera consists of a fish‐eye
lens, we use the undistorted images so that the pin‐hole camera model

could be applied for visual servoing. Bebop‐2 MAV provides odometry

by fusing IMU measurements with its optical flow sensor. However, this

odometry is noisy and tends to drift over time. In our experiments, we

use this odometry for PBVS and inverse‐PBVS; however, as mentioned

previously, we do not require accurate odometry since we employ IBVS

refinements and Part‐IBVS for better localization. Since MAVs are

underactuated, only four DOF control tasks were selected for visual

servoing. We use ROG GL552VX laptop for processing the images

captured by the MAV and generating control commands. The image

captured by the MAV, and corresponding control commands generated

by the visual servoing controller are exchanged between the system and

MAV over Wi‐Fi. ROG GL552VX laptop features a Core i7 CPU, Nvidia

GTX 960M GPU and 16 GB RAM. The CNN forward pass for keypoint

prediction as well as part detection was performed using this laptop

computer, and it takes 800 ms for one iteration to complete on the

laptop, which includes the forward pass of the cascade network,

keypoint network, and optical flow computation. Note that for

inspection tasks the MAV moves to three different sides of the vehicle

requiring to fly through large camera transformations between

nonoverlapping scene with a total autonomous flight time of around

12 min for every flight, without any manual intervention during the

flight. Also, note that we report the quantitative results using an

approximate odometry provided by the MAV as in the real world, it is

difficult to accurately predict the position of an MAV. In every

experimentation scenario, we selected one vehicle from the four

models and the MAV was randomly placed around the car such that the

car was in the field‐of‐view of the MAV. The car was parked outdoors,

and the navigable area for the MAV (5 m × 5 m) was obstacle‐free;
however, the car itself was an obstacle and our approach ensured no

collision.

TABLE 6 Quantitative results showing the improvement in
performance of visual inspection attributed to the Bayesian fusion

Method Mean residual error Convergence rate (%)

Without

Bayesian fusion

0.4250 78.21

With Bayesian

fusion

0.2625 88.54

Note. CAD: computer‐aided design; MAV: Micro Aerial Vehicle.

Note. We validate the effect of the Bayesian fusion module in the Gazebo

simulation setup, where the MAV starts from a random pose and servoes

to the required parts of a novel car. In total, 12 car instances (CAD

models) were used for the experiment, and the MAV was required to

servo eight parts per car (i.e., 96 parts for all cars). The Convergence rate

depicts the number of parts, and MAV was able to visit correctly out of

96 parts, whereas the residual error, measured in percentage of total

image size, describes the mean error between the area of the part after

servoing and desired area of that part. It can be seen that the Bayesian

fusion significantly improves the inspection performance.3Supporting information: https://robotics.iiit.ac.in/people/harit.pandya/vi_inspection/vi_supp.eps
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8.5.2 | Evaluating visual inspection

After exhaustive testing of individual components, we conduct

experiments for 16 experiments on seven different vehicles

(Suzuki Alto, Hyundai Accent, Tata Indigo, Mahindra E2O, Hundai

Creta, Mahendra Scorpio, and Hundai creta). These cars are

selected to cover the four major sub‐categories of vehicles (sedan,
hatchback, MUV, SUV, and Van). In every experiment, we place the

MAV at a random initial pose such that car is visible. The MAV

starts with no prior knowledge about the environment, it then

employs the pose‐induction pipeline to estimate its pose with

respect to the given vehicle and servoes to the eight essential

parts (4 wheels, 2 headlights, and 2 mirrors) for every car. We do

not test on taillights because taillights are not part of PASCAL‐part
data set. With sufficient training sample, our approach could easily

be extended to other parts or object categories. Here, we assume

that the workspace is obstacle free and car is visible in the initial

random pose.

The qualitative results are presented in Figure 14. These

results show that the image captured by the MAV from the initial

pose, from the resultant pose attained after side‐navigation step

and the final image of every part captured after the part navigation

step along with their segmentation masks computed by our

network. It could be seen that with our approach. The MAV is

able to visit the correct parts despite different shapes of essential

parts and their configurations. Additional qualitative results are

shown in Figure A1 in the Appendix.

The objective of the visual inspection pipeline is to navigate the

MAV so that it visits all the required parts and capture their images.

Thus, for quantitatively evaluating our approach we compute the area

of every part captured from the resulting pose of Part‐IBVS and

compare it to the desired area of that part. These areas are selected as

1% of the total image area for mirrors, 2% of the total image area for

the headlights, and 10% of the total image area for other parts. The

desired area can be selected as per requirement. However, it should be

noted that for achieving a larger desired area, the MAV has to fly closer

to the vehicle, which could lead to collisions. The quantitative results are

presented in Table 7. Out of total 128 parts to be inspected our

approach failed to converge for 15 parts, which are marked as ‘–’ in the

table. Thus, it can be seen that our approach is able to converge for

more than 88% of the times and the average error in the area is 0.75%,

which is under acceptable limits. A few failure cases are also shown in

Figure 14, which occur due to incorrect pose induction and wrong

segmentation produced by the network. Note that while reporting the

quantitative results presented in Table 7, the reported area of the part

(A) in the final image is computed by manually annotating the part

rather than relying on the segmentation given by the network. The

motivation behind this is to obtain the ground truth area of the part as

the segmentation mask provided by the network could be incorrect.

8.5.3 | Evaluating visual servoing

Once we have evaluated our approach on visual inspection

parameters, we now show the performance of our approach on

visual servoing metrics, specifically on error in visual features (image

area and image centroid), camera poses error, velocity profile, and

camera trajectory for PBVS, reverse‐PBVS, and Part‐IBVS. We

consider a single test case and plot evolution of these parameters

over the entire run. The images captured by the MAV for this run are

presented in Figure 14 column 1. PBVS is used to navigate the MAV

to the three sides. We, therefore, show the position error (translation

in X Y Z, , and yaw) of the MAV for the three sides in Figure 15a.

Since the MAV starts from the left side, it quickly attains the desired

pose of the left. For the front and the right side, the position error

exponentially decreases initially followed by a small increase before

converging to the desired pose. This overshooting behavior is due to

the higher gains of PBVS controller of the MAV and could also be

seen in the MAV’s trajectory shown by Figure 15f. In Figure 15b, we

show the position error for reverse‐PBVS, which navigates the MAV

from a part to the corresponding side. Similar to the PBVS, the

position error decreases exponentially to the desired pose. For

analyzing the Part‐IBVS approach, we plot the feature error and

position error. The visual features are composed of centroid’s

F IGURE 13 Experimental setup. (a) The setup used for the field experiments. It consists of a vehicle parked outdoors, an MAV, which starts

at a random pose with respect to the vehicle and a base station for processing the images captured by the MAV and issuing control commands
to the MAV. (b) For our experiments, we have used Parrot Bebop‐2, which is a low‐cost off‐the‐shelf MAV. Its sensory suite includes a front‐
facing camera, Wi‐Fi antennas, GPS, IMU, downward facing camera for stabilization, and an ultrasonic sensor. GPS: Global Positioning System;

IMU: inertial measurement unit; MAV: Micro Aerial Vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 14 Qualitative results for complete autonomous part inspection pipeline with the Bayesian fusion in the outdoor experiment. This
figure showcases the results of the entire pipeline for five cars. The first row shows the images captured from a random initial pose. The images
captured by the MAV from *s� , for all sides are shown in the second, third, and fourth rows. The subsequent rows show the images captured for

every part and the corresponding part‐segmentation masks predicted by our network. Note that despite the different shapes of cars and
starting MAV at random poses, our approach aligns the MAV for visual inspection. The figure also shows some failure cases of our approach
where the parts are out of MAV’s field‐of‐view or segmentation mask is not correct. We evaluated our approach in challenging illumination

environments, such as shadows and heavy sunlight [Color figure can be viewed at wileyonlinelibrary.com]
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coordinates and area of the part segmentation; therefore, both of

them are jointly reduced while performing Part‐IBVS. It can be seen

from Figure 15c that the error in visual features decreases

exponentially. However, it is not strictly decreasing. There are two

reasons for this observation: (i) Since both of the visual features are

jointly reduced, it may happen that the error in one feature increases,

whereas the other feature is optimized in this iterative procedure of

Part‐IBVS. (ii) Segmentation mask is computed using deep learning,

which views every image as a separate sample, thus despite the

Bayesian fusion, there are variations in segmentation, which affects

the servoing performance. However, the overall error decreases

exponentially and the servoing converges to the desired pose. For

this vehicle, MAV was unable to attain the desired pose for the right

mirror, as segmentation was not accurate; therefore, the visual

feature error is unable to converge.

The velocity profile is smooth for the PBVS (refer Figure 15d) and

reverse‐PBVS steps, whereas it is jittery for the Part‐IBVS step (refer

Figure 15e) due to the forward pass delay resulted by our networks.

The trajectory visualized from bird‐eye view highlights the motion of

the MAV toward all the parts and to‐and‐fro vantage point. Note that

the trajectory plotted in Figure 15f is using the inaccurate odometry

of the MAV, which is the reason of discontinuity in the trajectory.

This also highlights the requirement for IBVS‐refinement step. Also,

the oscillations due to incorrect gains could be seen as the MAV

overshoots and returns to the desired pose. From the results

presented, it could be seen that our approach is able to attain the

correct areas for all the parts despite such inaccurate odometry and

illumination variations. More experimental trials and visualization

can be found in the supplementary video in the online version of the

paper (refer to the Appendix).

F IGURE 15 Performance of visual servoing for an outdoor run for inspection of the actual car using a Bebop MAV. The performance of both
PBVS and Part‐IBVS on visual servoing measures are presented here. (a) The error in camera pose (∥ ∥− *c s� � ) representing translation and yaw
for the PBVS. (b) The camera transformation error (∥ ∥− *c i� � ) for reverse‐PBVS to every part. (c) Presents the error in visual features (image

moments for the part‐segmentation mask) over time for every part using Part‐IBVS. The norm error between the current and the desired area
of part segmentation −A Aabs( *) in the percentage of the area of image ×M N( ) and centroids current and desired segmentation mask in the
pixel∥ ∥− − −x x y y A A[ *, *, *]g g g g is plotted. (d, e) The norm of camera velocities for PBVS and Part‐IBVS, respectively. (f) The camera trajectory

for inspection to every part combining our hierarchical PBVS and IBVS approach. The improvement due to IBVS refinement could be clearly
seen in (f). The legend for figures (c, e) is the same as (b) and is not shown for clarity. Note that the visual feature errors are not very smooth.
This is due to the optical flow errors, which result in incorrect warping when exposed to harsh illumination conditions; however, they

exponentially decay to their desired values. Also, note that the trajectory is plotted using the visual odometry provided by the MAV, which is
highly inaccurate. Despite such noisy odometry, our approach is able to accomplish the task of visual inspection with complete autonomy. F:
front; IBVS: Image‐Based Visual Servoing; L: left; LB: left-back; LF: left-front; MAV: Micro Aerial Vehicle; PBVS: Position‐Based Visual Servoing
R: right; RB: right-back; RF: right‐front. [Color figure can be viewed at wileyonlinelibrary.com]
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9 | DISCUSSIONS AND CONCLUSIONS

9.1 | Lessons learned

It is a known issue with deep learning approaches that for novel

data, incorrect predictions are performed with high confidence.

Therefore, even though the deep networks showcase superior

results on public data sets, employing them for visual servoing or

navigation could result in a collision. In this paper, we proposed

refinements that reinforce our deep networks through multiview

data augmentation and the Bayesian fusion to tackle this

challenge. Selecting the step size is crucial for visual serving

approaches as smaller step size increases the time required for

servoing, whereas larger step size could lead to oscillatory

behavior. In the field experiments, selecting proper step size is

even more important as, on the one hand, it is required to minimize

the servoing time as the MAV has limited battery resources and on

the other hand overshooting the trajectory due to larger step size

could result in a collision with the vehicle. We empirically select a

step size that minimizes the time taken for servoing and prevents

overshooting the trajectory by MAV.

The time duration for performing a Part‐IBVS iteration is 800 ms,

this results in a jittery velocity profile and trajectory. The potential

solution to this issue includes employing better hardware for the

base station or compressing the network so that the speed increases

without affecting the performance. As an example, we compare

benchmark the performance of our segmentation network on a few

graphics processing unit (GPU) models and show the results in

Table 8. It can be seen that by using a better GPU, such as Titan‐x,
can easily give four times boost to the segmentation speed.

9.2 | Failure cases

Our failure cases belong to two categories: First alignment errors,

which occur when the deformation in shape of the given instance is

large as compared with the template instance. In such cases, not only

there are chances of MAV going out of the filed of view of the vehicle

but also the overall error in the resultant area of part increases. One

TABLE 7 Quantitative results for complete autonomous part inspection pipeline with the Bayesian fusion in outdoor experiments

Car name RB‐wheel RF‐wheel R‐mirror R‐head L‐head L‐mirror LF‐wheel LB‐wheel

Final area (A) of parts achieved with Bayesian on real cars

Accent 1 10.6 7.6 0.8 3.9 1.4 0.4 10.8 12.0

Accent 2 9.5 7.8 – – 1.9 0.5 6.1 8.7

Indigo 1 6.9 12.5 0.9 – 4.6 2.0 9.6 10.0

Indigo 2 – 7.9 4.6 1.0 3.3 1.6 6.7 9.8

Alto 1 11.0 7.7 0.4 2.4 1.4 1.3 7.9 8.3

Alto 2 10.3 6.4 1.3 2.7 1.1 1.3 13.8 11.5

Alto 3 11.8 6.8 0.8 2.5 1.4 – 7.5 12.4

E2O 1 9.8 11.8 0.4 1.5 4.3 0.4 7.3 7.8

E2O 2 6.2 18.6 1.2 2.7 1.5 1.0 6.4 5.8

E2O 3 12.0 12.0 0.6 3.4 1.9 – 6.1 8.7

Creta 1 7.1 4.0 – 1.5 1.6 1.0 8.9 12.8

Creta 2 6.6 3.1 – 2.2 1.4 1.2 6.8 6.0

Scorpio 1 11.9 8.0 – 2.9 2.5 – 5.4 9.1

Scorpio 2 6.7 10.8 – 1.1 6.9 – 6.3 6.2

Van 1 9.9 9.4 – 5.0 2.5 1.6 10.0 7.0

Van 2 7.6 12.3 – 4.0 1.9 – 10.2 6.5

Mean area 9.2 9.2 1.2 2.6 2.5 1.1 8.1 8.9

Desired area (A*) 10 10 1 2 2 1 10 10

Note. Here, we evaluate our visual inspection pipeline on outdoor experiments for 16 runs on seven cars by measuring the final area (A) of a part captured

by MAV in percent of the image area as compared with the desired area (A*) for that part. The A* (10% for wheels, 1% for lights, and 2% for mirrors) is a

tuning parameter that decides zoom level for images. It can be seen that by using the Bayesian fusion both the failure cases reduce as well as the resultant

segmentation error abs( −A A*) decrease, that is, the final area is closer to the desired area. The failure cases where the MAV is not correctly aligned with

the vehicle are reported as ‘–.’ The areas reported in the above table are computed using the ground truth labels of the corresponding parts in the

resultant image. L: left; LB: left‐back; LF: left‐front; R: right; RB: right‐back; RF: right‐front.

TABLE 8 Processing time for our part‐segmentation network on
different GPUs

GPU model

(Nvidia)

Quadro

K2200

GTX

Titan‐x
GTX

960M

GTX

1080Ti

Processing

time (s)

0.5580 0.1354 0.5145 0.1771

Note. It can be seen that using a high‐end GPU significantly improves the

processing speed.

Note. GPU: graphics processing unit.
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potential solution to this problem proposed in our previous work

(Pandya et al., 2015) used a linear combination of 3D models of that

category. Second, the majority of our failure cases occur when the

part‐segmentation module is unable to correctly segment the given

part. It can be observed from Table 7 that out of 15 failure cases 11

alone are due to incorrect segmentation of mirror by our network.

We observed that the segmentation network faces challenges while

discriminating small parts with color similar to the vehicle’s body.

9.3 | Conclusion

In this study, we have introduced a novel pose‐induction framework

for visual servoing across instances of an object category. We have

used this approach to build a novel framework that systematically

embeds semantics into classical controllers. Our approach is able to

achieve complete autonomy for visual servoing across instances and

is able to tackle appearance variations, shape variations, and even

noisy odometry, which is a challenging task for existing controllers.

The complete framework has been deployed and rigorously

evaluated on real MAV in the Gazebo simulation environment as

well as unstructured outdoor scenarios. In contrast to previous visual

servoing approaches, our approach is capable of servoing between

large camera transformations, especially between nonoverlapping

scenes. Although we have presented the results of our approach only

for vehicles, instance invariant visual servoing can be easily extended

to other object categories as well. We have further proposed a two‐
stage cascading‐based network architecture, which is able to achieve

superior performance for part segmentation over existing ap-

proaches. Generalization to novel viewpoints is one of the challenges

faced by a majority of deep learning‐based frameworks. This

becomes even more crucial when the navigation framework relies

on deep learning‐based perception. We have also proposed refine-

ments hinged upon synthetic data augmentation and the Bayesian

fusion to cater for such issues and improve the performance of deep

networks from oblique viewpoints.

Finally, we utilize our instance invariant visual servoing framework

for the part‐based visual inspection of vehicles using a low‐cost off‐the‐
shelf MAV. There is a pressing requirement for such application in the

automotive industry for vehicle health monitoring, damage assessment,

and merchandising. Accomplishing the inspection task autonomously

requires understanding the part‐based semantics, unlike existing

approaches that only provide a 3D reconstruction. The MAV starts with

zero prior knowledge about the scene and still it is able to inspect every

part of the vehicle using only a monocular camera and noisy odometry.

Although, in this paper, we restrict ourselves to the inspection of cars,

however, our approach could easily be extended to other objects, such as

airplanes and trains and even to humans for search and rescue missions.
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APPENDIX

A.1. Index of multimedia extensions

A video presenting further experiments is available as Supporting

Information in the online version of this article.

Extension Media type Description

1 Video It presents a visualization of the

pipeline and additional experimental

trails on MAV

Note. MAV: Micro Aerial Vehicle.
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A.2. Additional qualitative results

F IGURE A1 More qualitative results for complete autonomous part inspection pipeline in outdoor environments [Color figure can be
viewed at wileyonlinelibrary.com]
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