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Abstract— This paper strives to answer the following ques-
tion: Is it possible to recognize an intersection when seen
from different road segments that constitute the intersection?
An intersection or a junction typically is a meeting point
of three or four road segments. Its recognition from a road
segment that is transverse to or 180 degrees apart from its
previous sighting is an extremely challenging and yet a very
relevant problem to be addressed from the point of view of
both autonomous driving as well as loop detection. This paper
formulates this as a problem of video recognition and proposes
a novel LSTM based Siamese style deep network for video
recognition. For what is indeed a challenging problem and the
limited annotated dataset available we show competitive results
of recognizing intersections when approached from diverse
viewpoints or road segments. Specifically, we tabulate effective
recognition accuracy even as the approaches to the intersection
being compared are disparate both in terms of viewpoints and
weather/illumination conditions. We show competitive results on
both synthetic yet highly realistic data mined from the gaming
platform GTA as well as on real world data made available
through Mapillary.

I. INTRODUCTION
Recognizing an intersection from a different approach

sequence or a sequence of viewpoints different from those
seen before can be pivotal in various applications that in-
clude autonomous driving, driver assistance systems, loop
detection for SLAM including multi-robot and multi-session
SLAM frameworks. Retrieving previously seen intersections
can also be advantageous from the point of view of large-
scale outdoor topological mapping frameworks. Also, inter-
section recognition closely follows intersection detection [1],
wherein the immediate question to answer upon detecting
an intersection is if the detected intersection is the same
as one seen previously. Intersection recognition from dis-
parate video streams or image sequences is an extremely
challenging problem that stems from the large variations
in viewpoint, weather and appearance accross traversals.
Complexity also emanates from varying levels of traffic and
chaos at a junction, as well as due to changing levels of
occlusion, illumination between two video sequences of a
specific junction. Lack of annotated datasets on intersections
also poses a challenge.

Within the robotics community, loop detection methods
have used diverse image recognition and retrieval tech-
niques [2], [3], [4] that have not attempted to detect loops
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from very diverse viewpoints, though they perform admirably
in the presence of weather changes [5] or under the duress
of varying traffic [6]. In the vision community, CNN [7]
features have been used to efficiently compare scenes or
structures which are viewed from varying distances, which
give a zoom-in vis-a-vis zoom-out effect with minor changes
in viewing angles.

Intersections being critical points in road based navigation,
are likely to be points of crossover between trajectories
of multiple agents/cars. Owing to their four-way structure,
imagery captured in different traversals of junctions depicts
very different views and alignment of common landmarks
unlike what is observed in place recognition datasets(e.g.,
[8]). Therefore we believe that the problem needs attention
and treatment of its own.

We take videos or image sequneces as the input to perform
the recogntion task. The temporal information present inher-
ently in such ordered image sequences leverages neighbor-
hood information between frames, establishing relationships
among objects in the scene. This also helps to mitigate the
problem of perceptual aliasing to some extent, a problem
that often plagues image-based recognition/relocalization ap-
proaches.

We propose a novel stacked deep network ensemble
architecture that combines state-of-the-art CNN, Bidirec-
tional LSTM and Siamese style distance function learning
for the task of view-invariant intersection recognition in
videos. While the CNN component of the ensemble primarily
deals with image-level feature representation, the bidirec-
tional LSTM is the key recurrent network component that
enables learning of temporal evolution of visual features
in videos followed by the Siamese network-based distance
metric learning for comparing two input video streams. Our
proposed network is conceptualized in Figure 2.

We contribute in the following ways:
1) Firstly, we propose a novel and pertinent problem

of recognizing intersections when approached from
highly disparate viewpoints

2) We propose an original deep network ensemble. The
proposed architecture can handle videos of varying
length and compare videos capturing reverse trajec-
tories. This kind of Siamese network with recurrent
LSTM component has been largely unexplored in the
video domain. Furthermore, we use the hidden state
of LSTM cells, instead of the traditionally used output
state, for video representation, which has largely been
unexplored too.
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Fig. 1. An example sequence pair from Mapillary IV-B.2 dataset. First row show frames (arranged in the temporal order) from the two trajectories
respectively where we highlight the overlapping structural content (green and cyan). Second row zooms in for overlapping structures in the sequences.
Rightmost figure in the row shows trajectory of both the videos in an intersection-map which acts as a top-view of the intersection. We color encode the
trajectories and overlapping content in the intersection-map. (Best seen in color)

3) We showcase the efficacy of the proposed architecture
through competitive results on challenging sequences
while showing decent improvements from the image
based baselines. We collect and annotate synthetic yet
highly realistic data from the GTA [9] gaming platform
and actual real world data of Mapillary [10] for this
purpose.

To the best of our knowledge, this is the first attempt in
this direction using the ensemble of state-of-the-art CNN,
bidirectional LSTM and Siamese network architecture for
recognizing intersection in input video pairs.

Figure 1 shows a sample sequence pair from Mapil-
lary dataset (see Section IV-B.2) where both trajectories
pass through same intersection. The pair of trajectories are
depicted using two sequences of frames. We zoom into
regions from both the trajectories to show corresponding
common structures. We also show an intersection-map which
represent the top-view of the trajectories on the intersection.
The trajectories are perpendicular and hence minimal view
overlap exists between them. In such cases, temporal infor-
mation from a sequence of frames captures and reinforces the
relationship between observed intersection landmarks during
the traversal.

II. LITERATURE REVIEW

In existing literature around robotic perception, there are
limited efforts towards intersection detection and recognition.
Some of these use sensors other than cameras such as laser
and virtual cylindrical scanners [11], [12].

Recently, a framework for detecting intersections from
videos was proposed in [1]. They used LSTM based
architecture to observe the relative change in outdoor features
to detect intersection. Nevertheless, their work did not focus
on the recognition task. On the other hand, visual loop
closure detection techniques in the literature [13], [2], [3]
mainly focused on image level comparison of scenes. These
techniques try to find re-occurring scene during the driving
session based on fast KD tree based comparison of image
features. Although these methods achieve admirable accuracy

for loop detection they cannot be improvised for view-
invariant recognition over videos.

In recent years, gaming environments have been created
and/or used for generating and annotating datasets. [14] used
Grand Theft Auto V (GTA) gaming-engine to create large-
scale pixel-accurate ground truth data for training semantic
segmentation systems. SYNTHIA [15] is a virtual world
environment which was created to automatically generate
realistic synthetic images with pixel-level annotations for the
task of semantic segmentation. [14] and [15] show the added
improvement in the real-world setting by using synthetic-
datasets for training deep-network models. CARLA [16] is
another open-source simulator developed to facilitate learn-
ing and testing of Autonomous Driving algorithms. GTA
environment is more visually realistic than SYNTHIA and
CARLA environments.

Real-world datasets such as [17], [18] are designed with
the idea of visual place recognition using images. These
datasets are limited in the pathways covered and the number
of intersections. Another real world street-level imagery
platform [10] consist of images and image-sequences with
variability in the pathways and intersections and thus enables
sequence learning for intersection recognition. Concurrent
works have used this platform to create Mapillary Vistas
Dataset [19] which is a semantic segmentation dataset con-
sisting of 25k images. We have used Mapillary dataset to
showcase our result on real world scenarios.

Recently [20] and [21] have attempted visual localization
under drastic viewpoint changes. [20] needs various modes
of data including: semantic segmentations, RGBD images
and camera parameters. Its a computationally expensive
pipeline focused on relocalization, involving 3D voxel grid
constructions of the entire previous traversal sequence and
of the query sequence, followed by a matching and pose
estimation procedure. Due to key differences in problem
context and usage of multimodal inputs, we omit a quanti-
taive comparison with [20]. [21] proposes graph construction
from semantically segmented input data with graph matching
using random walk descriptors. We implement and compare
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Fig. 2. Proposed model is shown with video pairs as input and binary-classification as the output. Features from pretrained CNN network are fed into
bidirectional LSTM with shared-weights as shown with hidden units in green (unfolded in time).

against this method in a limited setup in our baseline
experiments in Section IV-A.

Specifically there has been no prior effort towards rec-
ognizing intersections when approached from different road
segments that constitute the intersection.

III. METHOD

In order to achieve view-invariant intersection recognition
from video sequences, our overall approach follows the
recent successes of deep network models in learning useful
representations of visual data [22]. Our overall strategy
comprises of three specific sub-objectives: (i) capture repre-
sentations of individual video frames that can help identify
the intersection in a view-invariant manner; (ii) leverage the
temporal correlations between video frames to better capture
the unique identity of an intersection across different views;
and (iii) use an appropriate distance metric to compare the
thus learned spatiotemporal representations of intersection
video sequences. We use a stacked deep network ensemble
architecture to realize the above strategy.

Our stacked ensemble consists of a state-of-the-art Con-
volutional Neural Network (CNN) to learn video frame
representations, a Bidirectional Long Short-Term Memory
(LSTM) Network (a variant of Recurrent Neural Networks,
that addresses the vanishing gradient problem) that captures
temporal correlations across video frames, and a Siamese
Network that learns a suitable distance metric that can
uniquely identify an intersection from these video sequences
across views. Figure 2 summarizes the proposed ensemble
strategy.

A. Convolutional Neural Networks (CNNs)

CNN based models have shown tremendous success in a
variety of tasks like [23], [24], etc. and it has been shown
that representations learned by the CNN can be used as off-
the-shelf features for other tasks [25], [26].

From a plethora of CNN pretrained models, we choose the
model most relevant to our tasks which provide invariance
in lighting and pose. In particular, we employ AmosNet [27]
as our CNN architecture. AmosNet is a variation of Caf-
feNet [23] trained for Visual Places Recognition under
varying weather conditions. We use pooled outputs from last
convolution layer of AmosNet as the CNN features.

B. Bidirectional LSTM

Long Short-Term Memory Network (LSTM) [28], is a
variant of Recurrent Neural Network (RNN) with the ability
to capture long-term dependencies [29]. It has a hidden
representation which is updated at each time step, and
also consists of a memory state which holds the relevant
information at each time step. The information entering and
exiting out of cell states is controlled by gating mechanisms
(sigmoid, and tanh functions).

Bidirectional LSTMs [30] incorporate future and past
context by running the inverse of the input through a separate
LSTM. The proposed model employed Bidirectional LSTMs
capture the temporal correlations between video frames.
This enables our model to identify the intersection uniquely
whether a vehicle approaches it in the forward or opposite
direction. Instead of using averaged/fused output of unfolded
LSTM units or output from last unit we use the hidden-
representation from the last unfolded time step as a feature
vector for the videos as shown in Figure 2.

C. Siamese Network

The third component of our deep network ensemble is a
Siamese network, which is used to learn data-driven distance
metrics. A Siamese Network [31] consists of two indepen-
dent networks with same architecture and shared weights.
Both these networks are merged to learn a distance metric, d,
between the two inputs provided to the respective networks.

During training, Siamese networks work on triplets (x1,
x2, y) where y is the ground truth similarity between x1 and



x2, i.e., y = 1 if the videos denote the same intersection, else
y= 0. The networks’ weights are then updated by minimizing
the loss function described below.

Contrastive Loss: The total loss function over a dataset
X = {(xi

1,x
i
2,y

i),∀i = 1, · · · ,n} is given by:

LW(X) =
n

∑
i=1

Li
W((φ(xi

1),φ(x
i
2)),y

i) (1)

where W are the weights/parameters of the network, φ(x)
denotes the output of the last layer of the shared network
architecture for each individual input x, and Li

W is

Li
W = yiLpos(φ(xi

1),φ(x
i
2))+(1− yi)Lneg(φ(xi

1),φ(x
i
2)) (2)

where
Lpos(φ(xi

1),φ(x
i
2)) = d(φ(x1),φ(x2))

2 (3)

Lneg(φ(xi
1),φ(x

i
2)) = max(1−d(φ(x1),φ(x2)),0)

2 (4)

At test time, the learned distance function is used to predict
the similarity in the videos using the expression in Eq. 5.

ŷ =
{

0: d(φ(x1),φ(x2))> θ

1: d(φ(x1),φ(x2))≤ θ
(5)

We set the value of θ to be 0.5 in our experiments. Since
the number of possible negative pairs can be very high as
compared to positive pairs, we scale the loss function for
each positive by a constant factor (> 1), given by the ratio
of negative pairs to positive pairs in the dataset.

D. Training and Network Parameters

Although our model can be trained in an end to end
manner we train it in a greedy way due to negligible effect
on performance as compared to end-to-end training. We
use pretrained weights from previous state-of-the-art CNN
models which provide a meaningful weight-initialization to
our model and reduces training time. We use the contrastive
loss described in Eq. 1 to train the Bidirectional LSTM, as
shown in Figure 2. The proposed model is trained using the
ADAM optimizer which is a variant of Stochastic Gradient
Descent (SGD).

In our initial experiments, we varied the number of Bidi-
rectional LSTM-layers (upto 3), but the performance gain
was negligible. Similarly, we experimented with different
values for hidden-unit dimensions in the LSTM cell. Em-
pirical results found 250 to be the best performing after
which the performance saturates. Thus, we fix the number
of Bidirectional layer to one and hidden layer dimension to
be 250 in all further experiments.

IV. EXPERIMENTS & RESULTS

In this section, we first define the baselines used for
comparison with our proposed method. Next, we proceed
to provide description about synthetically generated and real
datasets for various experiments. Subsequently we describe
the various experimental scenarios which is followed by the
explanation of the quantitative and qualitative results.

A. Baselines / Evaluation Settings

In this subsection, we discuss two different baselines for
comparisons with our proposed method.
Siamese-CNN: We define a deep learning approach void
of extrinsic temporal modeling using Siamese Network on
CNN. Prior work on Siamese-CNN have included application
for face-verification [32], one shot recognition [33] etc.
First, we train a Siamese-CNN using positive and negative
pairs of images depicting same and different intersections
respectively. Then, given two videos (x1, x2) comprising
of n and m frames respectively, we use learned Siamese-
CNN for prediction (using Eq. 5) for all possible frame
comparisons (nm scores) and combine these predictions into
a single score by computing their sum. We then learn a
threshold maximizing the accuracy. During testing we then
use this threshold in Eq. 5 to predict similarity in videos. For
fair comparison the Siamese-CNN is initialized with same
pretrained weights.
X-View: For the purpose of comparison with recent works
on drastic-viewpoint changes we focus on [21]. Since [21]
uses multiple data-modalities, for a fairer comparison, we
limit the data-modalities to those strictly necessary for the
model, using robot odometry (GPS coordinates and heading
changes) and semantic-segmentation on RGB images. We
ignore the backend needed in [21] as we do not focus on
localization task, instead replacing it with a match pruning
procedure. Each node in the query graph votes for k frames
in the memory graph, based on matches with component
nodes of these frames. Windows of frames in the memory
sequence covering a threshold of votes from the distinct
nodes/frames from the query graph, are taken as candidate
matches corresponding to the query sequence.

We found this method to be prone to semantic perceptual
aliasing, as semantic blobs of the same class are non-
discriminative as their neighboring nodes’ relations are their
only descriptors. Thus, a direct comparison of [21] in the
same context as ours (one shot recognition, instead of
relocalization within a previous traversal sequence) wouldn’t
be meaningful.

B. Dataset Description

Dataset Collection: Each video/sequence consist of a series
of frames collected around junction points. Each junction can
be traversed in multiple pathways. We refer to the set of all
such possible traversals as trajectories.

1) GTA: Here, we collected videos in two different sce-
narios. Firstly, we choose a set of intersections in the game-
environment and then sample them in a dense manner, i.e.,
each possible trajectory in the junction is traversed. Secondly,
we traversed a car from one point to another via means of
an AI-car driving mod [34]. From such traversals, we break
the captured video into small chunks involving intersections
and non-intersections. We discard video chunks without
intersections.

In the first scenario, we selected 27 unique junctions where
9 of them had arbitrary lighting conditions and the rest
were in normal daylight condition. In the second scenario,



Fig. 3. Data Visualization: Random snapshots from GTA environment [9] (Row 1) and Mapillary [10] (Row 2). Images show different weather and
day/night conditions as well as various outdoor scenes for urban scenarios. The game-environment snapshots look visibly similar to that of real world
images and have significantly higher variations in weather and lighting. (Best seen in color)

TABLE I
NUMBER OF VIDEO PAIRS IN TRAINING, TESTING AND THE VALIDATION SET FOR THE DIFFERENT EXPERIMENTAL SCENARIOS

Dataset Lighting Setting Trajectory Relation Training Validation Testing
Positive Negative Positive Negative Positive Negative

GTA day and night All combinations 1509 1440 459 612 106 104
Overlap in view and

trajectory 640 1440 168 212 62 104

day All combinations 864 1166 300 653 72 82

Mapillary day
Overlap in view and

trajectory 3080 3328 421 428 400 400

All combinations 6409 6976 350 318 425 420

we captured 12 traversals in two arbitrary different lighting
variations.

2) Mapillary: We download images from [10], which is
a community-led service with more than 200 million street-
level images. These images are captured in various modes
including walking, riding (either a bike or car), panorama and
photo-spheres. We use mapillary’s API to download images
and construct trajectories. We first query for all the images in
a bounding box defined by the longitudes and latitudes. For
every image in the bounding box, the API provides a tuple
consisting of image-key, latitude, longitude, orientation and
the (video-)sequence it belongs to along with other metadata
information. These images can be then downloaded using the
image-key. Using two orthogonally overlapping sequences
we get a location in the map which is used to identify
the intersection. Subsequently, this is used to download all
sequences ( a set of continuous images) passing through
that intersection. We mined around 300,000 images which
consisted of around 1700 usable sequences from around 500
junctions.

Figure 3 shows random snapshots captured from GTA
environment (Row 1) and Mapillary (Row 2). One can infer
from the figure that the snapshots from GTA environment are
visually realistic as well as similar to real-world data from
Mapillary and contain the key challenges associated with
real environments (as listed in Section I). However, the GTA
environment offers more complexity in terms of weather and
lighting variations as compared to Mapillary.
Dataset Annotation: From the extracted dataset, we first
annotate positive and negative video pairs. Positive (videos
involving the same intersection) pairs are mined from the
above datasets exhaustively, i.e., we select all possible pos-
itive pairs. Negative pairs generated from the datasets can
be very high as any two trajectories from different junction

are treated as a negative pair. Hence we limit the number of
negative pairs by randomly fixing a subset. We keep the test,
train and validation sets mutually exclusive by sampling them
from different junction and/or non-overlapping traversals.

C. Experimental Setup

For a pair of videos involving the same junction there
exists a trajectory-relation between them, which can be
categorized in terms of overlap in view and/or trajectory.
Overlap in trajectory refers to the proximal relation in the
two trajectories while overlap in view refers to trajectories,
viewing the larger part of the same area. For example
trajectories moving in opposite direction can be proximal
in distance but can have minimal view overlap.

For the purpose of our experiments we categorize the
trajectory-relations into two primary setups: Overlap in view
and trajectory and All combinations. The former refers to
parallel and overlapping trajectory-relations while the latter
refers to all the possible trajectory-relations. Similarly, we
categorize the lighting setting into two categories: day vs
day and night. The names are self-explanatory.

We test the robustness and generalizing capability of
our model under various trajectory-relation and lighting
(day/night) settings. The details of the experiment-wise dis-
tribution of samples can be found in Table I.
Evaluation Metric: We report percentage accuracy and
F1 as the metric in our experiments. Accuracy is defined
as the ratio of the number of correctly classified samples
(both positive and negative pairs combined) to the total
predictions made. F1 is defined as the harmonic mean of
precision and recall. We note that while accuracy focuses on
both positive and negative predictions, F1 is focused toward
positive predictions (as precision and recall focuses on true-
positives).



TABLE II
ACCURACY, PRECISION, RECALL AND F1 SCORE (F1) OF OUR METHOD ON DIFFERENT DATASETS FOR THE DIFFERENT EXPERIMENTAL SCENARIOS

Metrics Dataset → GTA Mapillary
Lighting Setting → day and night day day

↓ Trajectory Relation→ All
combinations

Overlap in View
and Trajectory

All
combinations

All
combinations

Overlap in View
and Trajectory

Accuracy Our Method 70.95 78.2 76.72 72.1 81.0
Siamese-CNN 65.3 65.3 68.0 63.0 71.6

F1 Our Method 62.3 60.0 72.7 61.9 82.4
Siamese-CNN 47.9 52.8 51.1 59.0 73.8

D. Quantitative Results
Table II shows performance on various metrics on GTA

and Mapillary dataset under varying scenarios using our pro-
posed model and baseline Siamese-CNN. We show different
comparisons based on lighting setting, trajectory relation and
baseline approach.
GTA: We observe that our proposed method performs better
than the Siamese-CNN baseline on both Accuracy and F1.
Additionally, among different models in the proposed ap-
proach (for different lighting conditions) we observe that the
model improves on accuracy (by 5.76%) and F1 (by 10.4%)
in day scenario as compared to day and night scenario.
Similar trend of values is also observed in the Siamese-CNN
baseline. This trend of results can be attributed to the reduced
complexity in lighting variations.

Interestingly, under the day and night condition, the model
performs better at accuracy (7.25% increase) when video-
pairs have an Overlap in view and trajectory as compared to
All combinations. However we observed an inverse trend for
F1 measure. This anomalous behavior can be explained based
on the performance on negative samples in this scenario. In
this case we found that the true negative rates performance
for Overlap in view and trajectory is 83.0% as compared to
All combinations at 52.8% (30% increase). Nevertheless, the
performance of proposed model is still significantly higher
than baseline method.
Mapillary: Similar to GTA, we observe that our proposed
method performs better than the Siamese-CNN baseline on
both accuracy and F1. Among models in our proposed
method, the performance is better on all metrics (accu-
racy: 8.9%increase, F1:20.5%increase) when the trajectory-
relations are limited to Overlap in view and trajectory as
compared to All combinations. Similar change in values can
be observed in the Siamese-CNN baseline.
GTA vs Mapillary (for proposed method): In the common
scenario of day and All combinations, we notice that the
performance on GTA is better than Mapillary for accuracy
(4.62% increase) and F1 (10.8% increase). This can be
explained due to complexity of data annotation in real-world
where visually dis-similar videos can be annotated as same
based on their GPS coordinates.

Table III shows experimental results of X-view on Map-
illary in relocalisation scenarios. We used 12 relevant and
reliably segmented semantic categories. Localisation Thresh-
old(maximum distance from Ground Truth for a match)
and Inlier Frames%(% of dictinct valid frames voting for a

TABLE III
X-VIEW RESULTS ON MAPILLARY: F1-SCORES AT DIFFERENT

EXPERIMENTAL THRESHOLD (QUERY SEQUENCE LENGTH: 15)

Localization
Threshold

Inlier Frames
% F1

20m 70 51.5
40m 70 50.9
40m 80 47.7
60m 70 43.7
60m 80 46.7

window of frames in the memory sequence) were varied to
obtain the best F1 scores. We observe that F1 scores obtained
are always lower than F1 scores for Mapillary data in
Table II. The method had high recall but low precision across
multiple thresholds. This can partly be attributed to the fact
that [21] requires 15 or more overlapping frames for reliable
localization whereas in case of orthogonal trajectories in
Mapillary only 5-7 frames have overlapping structures.

E. Qualitative Results

Figure 4 shows 3 positive samples from Mapillary that are
successfully predicted by the network. Each sample depict
a unique trajectory-relation and view-overlap as shown by
the intersection-map (bottom-most row). We color encode
(green, cyan, red, brown) the visually perceptible common
structures (using ellipses) in the trajectories. We follow the
same encoding while plotting the respective intersection-
map in the last row. In video pair 1 and video pair 3, we
observe that the overlapping part of trajectories are in the
opposite direction but our network managed to exploit the
common structures seen from different views. In video pair 2,
though the partially overlapping trajectories are in the same
direction, we can observe that shadows pose a challenge that
is successfully handled by the network. This indicate the
ability of proposed network to generalize on varying lighting
conditions. Moreover, we also observe occlusion in a few
trajectories (video pair 3 trajectory 2) due to vehicles.

Figure 5 depicts 2 positive samples from GTA that are
successfully predicted by the network. For example: video-
pair 1, capture the different view of the same structure in
rainy weather. Similarly, in video-pair 2 the model is able
to predict similar videos in presence of view and lighting
variations. Due to space constraints we only show 6 aligned
contiguous frames in these video-pairs, where we manually
crop the relevant contiguous frames for illustration purpose.
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Fig. 4. Three correctly classified samples from Mapillary. Each sample depicts unique trajectory-relation and view-overlap between trajectories as shown
in the intersection-map (bottom-most row) which represents the top-view of the intersection. We color encode the visually perceptible common structures
(cyan, green, red, brown) in the Video pairs. Video pair 2 and Video pair 3 show examples where trajectory direction and view overlap. Video pair 1 depict
cases when the overlap in trajectories and/or the view is minimal. (Best seen in color)
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Fig. 5. Two correctly classified samples from GTA. Video pair 2 show examples where trajectory direction and view overlap. Video pair 1 depict case
when the overlap in trajectories and/or the view is minimal. (Best seen in color)

Figure 6 shows some incorrect predictions made by the
network. Video pair 1 consist of trajectories from different
intersections (negative sample) but is predicted as the same
intersection. We believe this may be due to lack of unique
structures in the scene as most of it has trees. Additionally,
the variance in lighting conditions (as the network was
trained on day conditions in Mapillary) can also pose a
challenge if not trained on other conditions. In contrast,
video pair 2 are trajectories from the same-intersection but
are predicted as different intersection. In this video pair, we

observe a complete lack of visual features in the overlapping
part of trajectories. Overlapping structures are completely
occluded in the first trajectory due to the presence of truck.
Uing purely visual content for all these failure cases, even
humans might easily fail without extra context (ground truth
labels were generated using GPS coordinates).

V. CONCLUSIONS
This paper proposed a novel stacked deep network ensem-

ble architecture that combines state-of-the-art CNN, bidirec-
tional LSTM and Siamese style distance function learning for



Tr
aj

. 1
Tr

aj
. 2 V
id

eo
 P

ai
r 1

Tr
aj

. 1
Tr

aj
. 2 V
id

eo
 P

ai
r 2

Fig. 6. Failure Cases: Two wrong predictions by the network. Video pair 1 consist of trajectories from different intersections but is predicted as the
same intersection. In contrast, video pair 2 consist of trajectories from the same-intersection but are predicted as different intersection.

the task of view-invariant intersection recognition in videos.
The proposed architecture enables recognizing the same
intersection across two videos of variable length having large
view variations, inverted trajectory, lightning and weather
variations. We have collected annotated data (more than 2000
videos) from GTA [9] and Mapillary [10] and have computed
results on this data with varying parameter choices and have
reported competitive results.
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mapillary vistas dataset for semantic understanding of street scenes,”
in ICCV, 2017.

[20] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic
visual localization,” arXiv preprint arXiv:1712.05773, 2017.

[21] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-
view: Graph-based semantic multi-view localization,” arXiv preprint
arXiv:1709.09905, 2017.

[22] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” TPAMI, 2013.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[24] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
arXiv preprint arXiv:1511.00561, 2015.

[25] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
Features off-the-shelf: an astounding baseline for recognition,” in
CVPR workshops, 2014.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[27] Z. Chen, A. Jacobson, N. Sunderhauf, B. Upcroft, L. Liu, C. Shen,
I. Reid, and M. Milford, “Deep learning features at scale for visual
place recognition,” arXiv preprint arXiv:1701.05105, 2017.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[29] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understand-
ing recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

[30] M. Schuster, K. K. Paliwal, and A. General, “Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Processing, 1997.

[31] W. Yih, K. Toutanova, J. C. Platt, and C. Meek, “Learning discrimi-
native projections for text similarity measures,” in CoNLL, 2011.

[32] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf.
[33] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks

for one-shot image recognition,” in ICML-W, 2015.
[34] “Grand Theft Auto V Auto-drive Mod,” https://www.gta5-mods.com/

scripts/vautodrive.

https://en.wikipedia.org/wiki/Development_of_Grand_Theft_Auto_V
https://en.wikipedia.org/wiki/Development_of_Grand_Theft_Auto_V
https://www.mapillary.com/app
https://wiki.qut.edu.au/display/cyphy/Day+and+Night+with+Lateral+Pose+Change+Datasets
https://wiki.qut.edu.au/display/cyphy/Day+and+Night+with+Lateral+Pose+Change+Datasets
https://www.gta5-mods.com/scripts/vautodrive
https://www.gta5-mods.com/scripts/vautodrive

