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Abstract— Conventionally, planning frameworks for au-
tonomous vehicles consider large safety margins and pre-
defined paths for performing the merge maneuvers. These
considerations often increase the wait time at the intersec-
tions leading to traffic disruption. In this paper, we present
a motion planning framework for autonomous vehicles to
perform merge maneuver in dense traffic. Our framework is
divided into a two-layer structure, Lane Selection layer and
Scale Optimization layer. The Lane Selection layer computes
the likelihood of collision along the lanes. This likelihood
represents the collision risk associated with each lane and is
used for lane selection. Subsequently, the Scale Optimization
layer solves the time scaled collision cone (TSCC) constraint re-
actively for collision-free velocities. Our framework guarantees
a collision-free merging even in dense traffic with minimum
disruption. Furthermore, we show the simulation results in
different merging scenarios to demonstrate the efficacy of our
framework.

Keywords: lane merging, motion planning, time scaling,
collision cone, probability, autonomous vehicles.

I. INTRODUCTION

While driving, merging onto the traffic is one of the
most difficult but frequent scenarios. Majority of accidents
tend to happen during these situations due to an error in
judgment that one makes while merging onto the traffic.
In such cases, the driver analyzes these dynamic situations
and trusts his intuition to predict the speed and the course
of the oncoming vehicles for making the maneuver. Now
if this problem is presented in the domain of Autonomous
Driving, it becomes more convoluted. To handle such
scenarios we propose a novel framework for merging with
a unique lane selection technique.

The previous works on lane merging [2], [3] consider the
innermost lane with large margins of safety as the feasible
path. Our work extends beyond this by considering all
the lanes as potential paths for merging. The principal
contributions of this work includes a novel lane selection
mechanism that selects the lane which has the least
collision risk along its path. This is achieved by modeling
the time scaling function as a probability distribution
and solving for the likelihood of collision using the TSCC
constraint. The collision-free velocities along the selected
lane are computed by solving the TSCC constraint.

Moreover, we show that our framework reduces the wait
time at the intersection significantly, leading to minimal
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(a) Highway Merging (b) T-junction Merging

Fig. 1: Common Merge Scenarios. 1a shows a general Highway

Merging scenario where the autonomous vehicle (robot with

position Xr and velocity Vr ) merges onto the highway from

the tapper road. 1b shows a T-junction Merging scenario where

the autonomous vehicle merges onto the highway from a T-

junction. (Xon ,Von ) represents the positions and the velocities

of the other vehicles. The blue circle represents the autonomous

vehicle’s perception range which ensures that there are no blind

spots due to building and road infrastructure. This is achieved

by integrating sensors like LiDAR and V2V (Vehicle-to-Vehicle)

communication systems [1]. P (Ri ), wher e i = 1,2,3 represents

the probabilistic risk associated with each of the lanes.

disruption in traffic flow. Further, the framework is tested
extensively in dynamic traffic conditions for the two merg-
ing scenarios as shown in Fig.1. The empirical analysis of
the same is performed considering the velocities bounds,
acceleration bounds, time of merging and inter-vehicle
gap. It is also shown that the proposed framework is
computationally efficient with run time less than 20ms
in Section VII.

II. RELATED WORK

There have been quite a few approaches for au-
tonomous driving that focus on motion planning for
dynamic maneuvers [4], lane changing [5], overtaking [2]
and other approaches like cooperative vehicle merging [6]
and vehicle merging on Automated Highway systems [7].
They span from classical trajectory planning formulations
[8], [9] to modern learning-based approaches [10], [11].
However, the literature from lane merging point of view is
quite sparse. [3] presents a work for lane merging, which
incorporates a selection of minimal-jerk trajectory in every
planning cycle, based on the cost functions for risk and
comfort. The planning time is 5Hz and merging is shown



in the presence of a minimal number of obstacles in a
lane.

An MPC framework with velocity decomposition is pre-
sented for autonomous driving [2]. Wherein, the merging
behavior is achieved by considering large safety margins.
A cost function based trajectory planning with intention
integrated predictions is proposed in [12]. However, this
model assumes high jerk value to switch between accel-
erations.

In [13] an optimal control based merging behavior is
realized by generating the trajectories in a semi-reactive
model. But this method requires high computational
power, as a large set of candidate trajectories needs
to be generated to handle dynamic street scenarios. A
Lyapunov-based control scheme is developed to generate
the merging strategy from multiple lanes to a single lane
[14].

All the approaches presented above are modeled to
merge onto the innermost lane of a highway. Also, none of
them present an approach to accelerate ahead of a pack
of cars, provided a feasible gap is available for merging.
Our approach is novel in its characterization of lane-
risk and presents a unique adaptation of time scaled
collision cone [2], [15] to derive a closed-form analytical
solution for velocities that enable merging. A variety of
maneuvers such as slowing down before a pack of vehicles
or accelerating ahead of them along with merging into
tight gaps, can be achieved. This is based on the inter-
vehicle gap available to the autonomous vehicle while
merging. In this way, the presented method contrasts
from the earlier works by its ability to handle complex
scenarios.

III. OVERVIEW OF THE PROPOSED APPROACH

To achieve a collision-free merge maneuver, our frame-
work is divided into a two-layer structure namely lane
selection layer and scale optimization layer. In the lane
selection layer, first a global path is generated from the
sampled way-points. Using this, a set of minimal-jerk
trajectories are generated onto each lane on the high-
way. This is described in Section IV. The collision-risk
associated with each lane is evaluated by modeling the
scaling function of the TSCC constraint as a probability
distribution is introduced in Section V. Then the lane with
least collision risk is selected and followed.

In the scale optimization layer as described in Section
VI, the TSCC constraint is posed as an optimization
problem to reactively solve for the collision-free veloci-
ties along the selected path. The overall pipeline of our
framework is summarized in Fig.2.

IV. MOTION PLANNING IN MERGE SCENARIO

A. Map Generation and Global Path Planning

The proposed framework uses a map database system
called OpenStreetMap (OSM) [16] and a GPS system for
the localization of the autonomous vehicle on the lanes.
A set of way-points are sampled from the start point to

Fig. 2: Overall Pipeline of the Proposed Work

the goal point using this map to generate a global plan.
This plan is generated using a 2D cubic Bézier curve
which satisfies both curvature continuity and maximum
curvature constraint. The control points required for the
2D Bézier curve are obtained by tailoring the formulation
proposed in [8] for the merging scenario.

B. Trajectory Generation

By using the global path, a set of candidate trajectories
are generated onto the available lanes. The generated tra-
jectories are of fifth-order, in order to maintain minimal-
jerk [17] along the path. A similar method is used in
[9] which adapts an optimal control model for reactive
autonomous navigation.

The coefficients of the quintic polynomial are obtained
by considering the known initial (xo , ẋo , ẍo) and the final
state (x f , ẋ f , ẍ f ) and solving the following equation(1)

xo
ẋo
ẍo
x f
ẋ f
ẍ f
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where an , n = {0,1,2,3,4,5} are the coefficients of the
quintic polynomial.

V. LANE SELECTION BASED ON PROBABILISTIC COLLISION

RISK

In this section, we introduce the concept of time scaling
and give a brief preview of our previous work on time
scaled collision cone (TSCC) [13], [18]. Then we present
a novel lane selection mechanism by modeling the time
scaling function of the TSCC constraint as a probability
distribution( fṠ (ṡ)). The scaling function is characterized
by its preferred scale and velocity-acceleration bounds.

A. Time Scaling

The time scaling transformation does not alter the
actual path of the trajectory X(t ), but changes the time
scale from t to τ which changes the motion profiles of the
autonomous vehicle, defined by the following equations

Ẋ (τ) = Ẋ (t )
d t

dτ
, Ẍ (τ) = Ẍ (t )(

d t

dτ
)2 + Ẋ (t )

d2t

dτ2
(2)



d t

dτ
= ṡ,

d2t

dτ2
= s̈ (3)

where, d t
dτ is the scaling function that transforms time

scale from t to τ.
We approximate d t

dτ as a linear function for an arbitrary
time interval [ti ti+1]. From equation(2) we transform this
arbitrary time interval to [τi τi+1] in the new scale τ, given
by the following relation [19].

τi+1 −τi =
2(ti+1 − ti )

ṡ(ti )+ ṡ(ti+1)
(4)

The gradient of the scaling function d 2t
dτ2 is derived by using

equation(4)
d2t

dτ2
≈ ṡ(ti+1)2 − ṡ(ti )2

2∆t
(5)

Since the scaling function(ṡ) is being approximated to be
a monotonically linear function, d 2t

dτ2 is constant in the time

interval [ti ti+1]

B. Time Scaled Collision Cone

The space of velocities that the vehicle can attain at
time ti+1 and position X (ti+1) is obtained by applying
the scaling transformation and is given by

Ẋ (τi+1) = ṡ(ti+1)Ẋ (ti+1) (6)

Applying the scaling transformation(6) in the collision
cone constraint [20], leads to the following time scaled
variant of collision cone constraint [15].

((r j )T v j )2

||v j ||2
−||r j ||2 +R2

j < 0 (7)

where,

r j =
[

x(ti+1)−x j (ti+1)
y(ti+1)− y j (ti+1)

]
,V j =

[
ṡ(ti+1)ẋ(ti+1)− ẋ j (ti+1)
ṡ(ti+1)ẏ(ti+1)− ẏ j (ti+1)

]
(8)

In equation(8), x(ti+1), ẋ(ti+1), y(ti+1), ẏ(ti+1)...etc. are
known as the trajectory X (t ) and scale are given. This time
scaled collision cone constraint (TSCC) inequality(7) can
be represented as a single variable quadratic inequality of
the form

a j ṡ(ti+1)2 +b j ṡ(ti+1)+ c j ≤ 0 (9)

where a j ,b j ,c j are functions of x(ti+1), y(ti+1), ẋ(ti+1),
ẏ(ti+1). Solving the TSCC constraint will result in a solu-
tion space of velocities that avoids the obstacles.

C. Probabilistic Collision Risk Computation

The autonomous vehicle is collision free if it satisfies the
TSCC constraint(9). By modeling the time scaling function
as a probability distribution fṠ (ṡ) we define the collision
risk as the likelihood that satisfies the TSCC constraint.

Since, the TSCC constraint(9) is a continuous function
with no flat spots(having a constant value for a finite
interval), the probability distribution fY (y) associated with
it can be determined by applying the concept of transfor-
mation of random variable [21].

From equation(9)

Y = a j ṡ(ti+1)2 +b j ṡ(ti+1)+ c j ≤ 0 (10)

The probability distribution of Y, fY (y) is given by the
following equation by using the concept of transformation
of a random variable

fY (y) = ∑
ṡi∈§

fṠ (ṡi )

|dY
d ṡ (ṡi )|

(11)

where § is the set of all real solutions of Y = a j ṡ(ti+1)2 +
b j ṡ(ti+1)+ c j = 0. The probability distribution of the time
scaling function(ṡ) is characterized as a Normal distribu-
tion (12) with the mean at the preferred time scale of the
vehicle and a standard deviation based on the scale limits
that the vehicle can achieve. These limits are determined
by the velocity and acceleration limits of the vehicle as
shown in Section VI.

ṡ(ti ) = N (µṡ
i ,σṡ

i ) (12)

In(12) µṡ
i ,σṡ

i are the mean and standard deviation of
the Normal distribution at the time instant ti+1, which
are given by

µṡ
i = ṡpr e f , σṡ

i = (ṡmax − ṡmi n )/2 (13)

ṡ1 =
−b −

√
b2 −4a(c − y)

2a
, ṡ2 =

−b +
√

b2 −4a(c − y)

2a
(14)

are the roots of the equation(10). Now using these roots,
the probability density function of Y can be derived by
using the equation(11) as

fY (y) = fṠ (ṡ1)

|dY
d ṡ (ṡ1)|

+ fṠ (ṡ2)

|dY
d ṡ (ṡ2)|

(15)

Solving the equation(15),by characterizing ṡ as
N (µṡ

i ,σṡ
i ), the probability density function of collision

cone constraint(10) is derived to be (here µ = µṡ
i and

σ=σṡ
i ) )

fY (y) =
exp

(
− 2abµ+2a

(
aµ2−c+y

)+b2

2a2σ2

) (
exp

(
(−

p
K+p)2

8a2σ2

)
+exp

(
(
p

K+p)2

8a2σ2

)
p

2πKσ2
,

i f K > 0

0, el sewher e
(16)

where, K =−4ac +4ay +b2 and p = 2aµ+b

From the concept of collision cone, if the autonomous
vehicle is collision-free, then it should satisfy the equa-
tion(9). This leads to the following

P (Y < 0/Oi ) i = {1,2,3, ...n} (17)

where Oi , i = {1,2,3, ....n} are the obstacles(vehicles) sur-
rounding the autonomous vehicle.
Thus, the risk associated with each individual vehicle is
computed as following.

P (Y < 0/Oi ) =
∫ 0

− inf
( fY (y))d y i = {1,2,3, ...n} (18)

The overall risk associated with a lane ψ is then eval-
uated by calculating the individual risks of the vehicles,
that the autonomous vehicle is probable to interact while



performing the merge maneuver. The overall risk ψ j for
lane j is given by

ψ j = 1−
(
P (Y < 0/O1) P (Y < 0/O2)

P (Y < 0/O3)......P (Y < 0/Ok )

) (19)

where O1,O2, ....Ok are the vehicles that the au-
tonomous vehicle is probable to interact while performing
the merge maneuver onto a particular lane j .

This overall risk ψ j , where j = 1,2,3...m is evaluated
for each lane when the vehicle enters the merge zone.
Where ’m’ is the number of lanes that are available for
the autonomous vehicle for merging. The lane with the
least risk is then selected to perform the merge maneuver.
By characterizing the scaling function (ṡ) as described in
equations(11),(12),(13), the risk associated with each lane
is evaluated by considering the velocity and accelerations
limits. As a result, the driving conditions are improved
while merging onto dense traffic.

VI. SCALE OPTIMIZATION FOR COLLISION-FREE VELOCITIES

The collision-free velocities along the path X (t ) are
computed by solving for the scaling function(ṡ) as an
optimization problem. A similar approach is presented in
[2].

arg min
ṡ(t )

J2 = ṡ(ti+1)− ṡpr e f (20a)

vmi n ≤ ṡ(ti+1)
√

ẋ(ti+1)2 + ẏ(ti+1)2) ≤ vmax (20b)

al on
mi np

2
≤ ṡ(ti )2 ẍ(ti )+ s̈(ti )ẋ(ti ) ≤ alon

maxp
2

(20c)

al at
mi np

2
≤ ṡ(ti )2 ÿ(ti )+ s̈(ti )ẏ(ti ) ≤ al at

maxp
2

(20d)

a j ṡi (ti+1)+b j ṡ(ti+1)+ c j ≤ 0∀ j = 1,2,3, ...,n (20e)

Where,

ṡpr e f =
vpr e f√

ẋ(ti+1)2 + ẏ(ti+1)2
(21)

The equation(20a) is the cost function designed to
compute the scaling function with minimum deviation
from the preferred scale. The inequality (20b) enforces
the velocity bounds and vmi n is always non-negative
taking in the fact that the autonomous vehicle should
not go in reverse as it may cause disrupt the traffic
flow. The inequalities (20c), (20d) enforces the longitudinal
and lateral acceleration bounds respectively. The preferred
scale ṡpr e f is determined from the preferred velocity vpr e f .
The vpr e f for performing the merging maneuver onto the
available lanes is obtained by selecting the appropriate
trajectory from the candidate trajectories generated in
Section IV-B. These constraints are formulated and solved
as a quadratic programming (QP) problem.

VII. EXPERIMENTAL RESULTS

A. Simulation Framework and Computational time

To evaluate the performance of the proposed frame-
work, we simulated the two merge scenarios: T-merge
and Highway merge in Gazebo [22]. The positions and

velocities of the other vehicles are estimated by using
a LiDAR which is mounted on the car and has range
limited to 50m. This sensor range is reasonable enough
for merging and lane-changing scenarios with speeds less
than 20m/s. The speed limits of the highway vehicles are
varied and the behavior of our framework is evaluated
by simulating different scenarios varying from sparse to
dense traffic. This variation in traffic density is achieved
by varying the inter-vehicle gap(gi v ). The optimization
problem for collision-free velocities is solved using CvxOpt
[23].

The simulations are performed on Intel i7 processor @
3.5 GHz clock speed. The average execution time for each
cycle including the optimization is around 20ms and all
the experimental results shown in this paper are executed
at 50Hz.

B. Results

We present the results, from simulations of both T-
junction merge and Highway merge to evaluate the
performance of our framework. Furthermore, a through
empirical analysis of the framework in common traffic
scenarios with different velocities and acceleration limits
is provided. Additionally, a statistical comparison of the
framework with the lane selection layer and without the
lane selection layer is done to demonstrate enhancement
in the performance of the framework while merging.

The performance of the framework in a highway
merge scenario with dense traffic is first evaluated. The
velocity(Vav ) of the autonomous vehicle before entering
the merge zone is 10m/s and the acceleration constraints
are set to al on

l i mi t = ±4m/s2 and al at
l i mi t = ±1m/s2. The

minimum highway vehicle speed limit(Vhv ) is set to 5m/s.
The snapshots of the simulation at different instances
are shown in Fig.3 along with the velocity profile of
the autonomous vehicle. The probability density of the
collision cone (10) associated with each lane are shown
in Fig.5a-5c from the innermost to the outermost lane.
The collision risk evaluated by the framework is minimal
for the middle lane in this scenario. Fig.3a-3c shows the
merging of the autonomous vehicle onto the middle lane.
The vehicle slows down smoothly to merge in between
the vehicles and then maintains the speed limit of the
highway to blend in the traffic flow, as shown in Fig.3d.

We then evaluate our framework in a T-junction merge
scenario with the same velocities and acceleration limit
settings. The snapshots of the simulation at different
instances are presented in Fig.4 along with the velocity
profile of the autonomous vehicle. The probability density
of the collision cone equation(10) associated with each
lane are shown in Fig5d-5f from the innermost lane to
the outermost lane. The collision risk evaluated by the
framework is minimal for the middle lane and Fig.4a-
4c show the merging onto that lane. In this scenario,
the autonomous vehicle accelerated smoothly to merge in
between the vehicles and then slowed down smoothly to
blend in the moving traffic maintaining the safe distance,



(a) (b) (c)

(d)

Fig. 3: Simulation for Highway Merging

shown in Fig.4d. The simulations of the same can be
found in (https://youtu.be/QJjfxyfFT5g).

(a) (b) (c)

(d) (e) (f)

Fig. 5: Probability distributions of the time scaled collision
cone constraint evaluated for each lane. Fig.5a-5c show the
distributions from the innermost to the outermost lanes for the
scenario shown in Fig.3 and Fig.5d-5f show the distributions
from innermost lane to the outermost lanes for the scenario
shown in Fig.4

1) Empirical evaluation: To get a deeper insight of the
performance, we simulated our framework thoroughly in
common traffic scenarios with different velocity and accel-
eration limits for the autonomous vehicle. The two merge
cases are simulated multiple times for each parameter
settings.

In TableI we present the average minimal inter-vehicle
gap(gi v ) that the autonomous vehicle was able to merge
for different highway speed limits. This scenario is simu-
lated with the longitudinal and lateral acceleration limits
of the autonomous vehicle set to alon

l i mi t = ±4m/s2 and
al at

l i mi t =±1m/s2.

(a) (b) (c)

(d)

Fig. 4: Simulation for T-junction Merging

TABLE I: Average minimal inter vehicle gap (gi v ) that the

autonomous vehicle was able to merge

Velocity(m/s)

T-junction merge Highway merge

gi v (m) gi v (m)

5 8.1 8.1
10 8.3 8.4
15 10.4 10.6
20 12.1 12.5

In Table II, the average time taken to complete the merge
maneuver for different longitudinal acceleration limits is
presented for both the scenarios. The results presented
are obtained by simulating the scenario multiple times
for each acceleration limit of the vehicle.

TABLE II: Average time taken at both the merge zones for

different longitudinal acceleration limits

acc.(m/s2) 1 2 3 4
Highway merge(sec) 15.2 12.2 8.66 6.5
T junction merge(sec) 16.1 13.2 10.7 8.2

The minimum inter-vehicle gap that the autonomous
vehicle was able to merge and the time taken to complete
the maneuver highlights the ability of the proposed frame-
work to handle a dense traffic scenarios without causing
any traffic bottlenecks.

2) Statistical Comparison: To analyze the lane selection
method proposed in this framework a statistical com-
parison between the average time taken to merge with
and without lane selection(LS) is done multiple times
over different traffic densities and is reported in TableIII.
For this the longitudinal and lateral acceleration limits
of the autonomous vehicle are set to al on

l i mi t = ±4m/s2,



al at
l i mi t = ±1m/s2 and the comparison is made for same

parameter settings and traffic scenarios.

TABLE III: Qualitative analysis of the average time to merge

onto different traffic scenarios with different average inter-

vehicle gap(gi v ) for both T-junction and Highway merge with

and without lane selection(LS)

Avg gi v (m)

T-junction merge Highway merge

without
LS(sec)

with
LS(sec)

without
LS(sec)

with
LS(sec)

25 16.3 15.1 12.7 12.1
20 17.9 16.2 16.2 15.2
15 20.6 20.1 22.1 20.4
10 27.9 25.1 21.9 21.2

These results show that the average time taken to com-
plete the merge maneuver is significantly less with lane se-
lection compared to without lane selection, which is prone
to cause the traffic bottlenecks more frequently. Thus the
proposed framework is not only better at selecting the lane
having least risk of collision but also reduces the traffic
disruptions.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel lane merging frame-
work for autonomous vehicles that is capable of handling
dense traffic. In contrast to previous works, we have
incorporated a novel lane selection layer which would
select a lane with least collision risk. This collision risk
is evaluated by solving a probabilistic variant of time
scaled collision cone(TSCC) constraint, modeled by a nor-
mally distributed scaling function. We have shown that
by following the selected lane, less chaos is created in the
intent displayed to the other drivers. For the collision-free
velocities along the path we solved the TSCC constraint
as a Scale Optimization problem. The closed form nature
of this optimization problem improves the efficacy of the
framework and we are able to get the update rates of
about 50Hz. This aides the framework to realize realistic
scenarios at high velocities in congested environments.
Our future work includes extending the proposed frame-
work to position and velocity uncertainties of the au-
tonomous vehicle. Along with that we explore the per-
formance of the framework in the presence of sensor
uncertainties.
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