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Abstract— We present PRVO, a probabilistic variant of
Reciprocal Velocity Obstacle (RVO) for decentralized multi-
robot navigation under uncertainty. PRVO characterizes the
space of velocities that would allow each robot to fulfill
its share in collision avoidance with a specified probability.
PRVO is modeled as chance constraints over the velocity
level constraints defined by RVO and takes into account the
uncertainty associated with both state estimation as well as
the actuation of each robot. Since chance constraints are in
general computationally intractable, we propose a series of
reformulations which when combined with time scaling based
concepts leads to a closed form characterization of solution
space of PRVO for a given probability of collision avoidance.
We validate our formulation through numerical simulations in
which we highlight the advantages of PRVO over the related
existing formulations.

I. INTRODUCTION

Computing collision free-trajectories for multiple robots
is a challenging but important problem that finds application
in robotics and, swarm and crowd simulations. Approaches
like [2], [3], which are built on the concept of velocity
obstacles (VO) [1] solves this problem in a decentralized
manner using local navigation techniques. The computa-
tional complexity of these approaches stems from the non-
convexity of the collision avoidance constraints formulated in
the velocity space of the robots. Some faster techniques use
a convex approximation of collision avoidance constraints
at the expense of working with a reduced set of collision-
free velocities [4].Most algorithms for multi-robot navigation
focus primarily on the deterministic setting, where it is
assumed that each robot can perfectly estimate the states of
the neighboring robots and execute the computed avoidance
maneuver without any errors. In reality, however, both the
actuation and the state estimation associated with a robot tend
to be imprecise and it is important to take this uncertainty
into consideration while computing avoidance maneuvers.In
this paper, we present a novel algorithm for multi-robot
collision avoidance that explicitly takes into account, the
perception, as well as the actuation uncertainty of each
robot, i.e the uncertainty associated with error between the
computed and executed avoidance maneuver. Our approach
combines ideas from velocity obstacle based multi-robot
collision avoidance and chance constraints which are used
to ensure constraint satisfaction under uncertainty [5], [6].
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These chance constraints ensure that the probability of a
constraint being satisfied is greater than a specified threshold.
Contributions and Main Results The primary contribution
of the proposed work lies in construction and efficient
solution of chance constraints defined over first order colli-
sion avoidance conditions like Reciprocal Velocity Obstacle
(RVO). We characterize the resulting set of inequalities as
Probabilistic Reciprocal Velocity Obstacle or PRVO. On the
algorithmic side, we present a novel Bayesian decomposition
to isolate and highlight the individual effects of position
and velocity level uncertainty (both resulting from state
estimation and actuation) on the distribution of PRVO. To put
it in simpler terms, we relate how much of the position and
velocity level uncertainty is avoided for a given probability
of collision avoidance. We further build on these insights and
combine it with the idea of time scaling based decomposition
of dynamic collision avoidance constraints to obtain a closed-
form characterization of solution space of PRVO for a
given probability of collision avoidance. The computational
complexity of PRVO depends on the algebraic form of the
probability distribution used to model the uncertainty. For the
Gaussian distribution model, we show that the computational
complexity of PRVO is comparable to its deterministic
counterpart and involves solving single variable quadratic
inequalities.

On the implementation side, we present simulation results
validating the proposed formulation and highlighting effect
of uncertainty parameters on PRVO. We also show that
PRVO based collision avoidance significantly outperforms
bounding volume based approaches [16], [17] in terms of arc
length (20% reduction) and traversal time (33% reduction)
of the resulting trajectories. Finally, we also empirically
evaluate how the relationship between RVO and VO which
exists in the deterministic setting gets transformed in the
probabilistic setting.
Layout The rest of the paper is organized as follows. Section
II contrasts the proposed formulation with the existing works
in terms of the uncertainty model used and the approach
followed for modeling dynamic collision avoidance under
uncertainty. Section III-A summarizes the notations used
in the paper. Section III presents the collision avoidance
conditions as modeled through Reciprocal Velocity Obstacle
(RVO) in the deterministic setting. Section IV introduces
the model of the uncertainty used in the current work
followed by the introduction of chance constraints over the
inequalities defined by RVO. Section V presents a series
of time scaling based reformulations of the computationally
intractable chance constraints. We present simulation results



in section VI, in which among other things we also highlight
the advantages of the proposed formulation over prior work.

II. RELATED WORK

Uncertainty Model: We model uncertainty in our formu-
lation as Gaussian random variables, characterized by their
mean and covariance matrices. Many existing works like [7]-
[10], [16],[17] use similar models. However among these,
[7]-[9], [16], [17] considers the effect of only state estimation
uncertainty while treating the robot as a deterministic entity.
Algorithms presented in [10] consider the effect of both
perception and motion uncertainty but only in the context
of dynamic collision avoidance of a single robot.
Dynamic Collision Avoidance: It is possible to model
dynamic collision avoidance using the methods designed for
static obstacles. The key idea is to integrate velocities of each
robot and model collision avoidance between the resulting
position level trajectories. It is possible to define chance
constraints over these class of constraints to incorporate the
effect of state-estimation as well as actuation uncertainty
[11], [12], [13]. The key point to note here is that the
resulting chance constraints would explicitly depend on only
the distribution of position level uncertainty of the robots and
consequently would be simpler than those presented in the
proposed work. However, purely position level constraints
do not appropriately capture the dynamic collision avoidance
behavior. To understand this further, consider a pair of robots
whose footprints at current position do not overlap and
thus purely position level constraints would classify them as
collision free. The fact that their current velocities might lead
them to collision in some future time horizon is irrelevant.

The above discussed limitations can be removed by mod-
eling dynamic collision avoidance as a first order constraint
like RVO [2] which explicitly depends on the both position
and velocity variables. Existing approaches to incorporate
uncertainty in such first order constraints can be found in
[17], [16] which rely on increasing the size of the robot
depending upon the covariance of the position and velocity
uncertainty. An alternative approach is presented in [7]
where, chance constraints defined over velocity obstacle is
solved through discretization of the reachable velocity space
of all the robots and subsequent exhaustive search. The
proposed work differs from [7] in terms of technical ap-
proach followed which leads to a more efficient closed-form
characterization of collision free velocities. The proposed
work is also a major improvement over our earlier work
[15] which only considered the effect of state estimation
uncertainty and thus entailed a much simpler formulation.

III. BACKGROUND

A. Symbols and Notations

We used bold-faced small case letters with superscripts
to describe vectors associated with a particular robot. For
example, the position and velocity of robot i is represented as
pi = (px, py) and vi = (vx, vy), respectively. We use fRV O

i
j

to represent the collision avoidance conditions computed
using the RVO formulations over the velocity space of
each robots. The symbol virvo represents collision avoiding

velocities modeled through deterministic RVO. We use µ
and Σ with suitable subscripts and superscripts to represent
mean and variance of a distribution. We use E[.] and V ar[.]
to define expectation and variance of a function with respect
to random variable arguments. In section III-C and V, we use
an additional superscript ”s” to denote time scaled variants
of vectors, functions or constraints.
B. Reciprocal Velocity Obstacle

In this section, we briefly review the concept of Reciprocal
Velocity Obstacle (RVO). We do not go into detail, but
rather just present the general algebraic form for the collision
avoidance constraints defined by RVO, which is sufficient
for understanding the ideas presented in this paper. For
details, refer to [2].We consider disc- shaped robots each
modeled as following single integrator system, ẋi = vix, ẏ

i =
viy .Consider a collision scenario in which two robots with
radii Ri and Rj are moving with constant velocities vi and
vj . RVO allows each robot to independently compute an
avoidance maneuver by inferring the other robot’s current
position and velocity. There are two quintessential features
of RVO. First, each robot employs same kind of rotation
to avoid collisions, i.e each robot either employs clockwise
or anticlockwise rotation. The exact amount of rotation
or in other words the exact collision avoiding velocity is
defined by the following inequality, where, virvo represents
the velocity which allow robot i to come out of RVO with
respect to current trajectory of robot j.

fRV Oi
j (pi, pj , vi, vj , vi

rvo) ≥ 0.

(1a)

fRV Oi
j (.) = ‖rij‖2 − ((rij)T (2vi

rvo − vi − vj))2

‖2vi
rvo − vi − vj‖2 − (Rij)2.

(1b)

rij = (xi − xj , yi − yj)T , Rij = Ri +Rj .
(1c)

It is easy to see that (1a) is a non-convex quadratic with
respect to virvo and thus, computing a characterization of
its solution space and consequently collision free velocities
automatically becomes an expensive problem. In the next
section, we describe how time scaling based concepts can
be used to significantly reduce the computational burden.
C. Time Scaled Based Simplification of RVO Constraints

1) Time Scaling Definition: Time scaling allows one to
compute different velocity profiles for a given geometric
path. To put it formally, suppose, a robot i chooses a velocity
vi which takes it along a trajectory Xi, in some time interval
(t0 tc). Let the position at time tc while moving along this
trajectory be pi. Now, changing the velocity to svi for some
s > 0, will ensure that the robot moves along the same
path as that associated with the trajectory Xi, but now in a
different time scale. In other words, the same point pi will
now be reached by the robot at a different time say tc1. Refer
[19] for further reading on time scaling.

2) Solving RVO constraints with Time Scaling Concepts:
The central idea is to let each robot guess a necessary
collision avoiding velocity. We then compute how much this
velocity needs to be modified through time scaling to satisfy



collision avoidance constraints 1. Let this guess velocity for
the ith robot be represented as vig . Then we can represent
virvo as

vi
rvo = sivi

g. (2)

Further, let vig lead to a position pi over a short future time
horizon. Then, the time scaled variant of RVO for the ith

robot can be represented in the following manner.

sfRV Oi
j (.) = ‖rij‖2−

((rij)T (2sivi
g − vi − vj))2

‖2sivi
g − vi − vj‖2 −(Rij)2. (3)

Note that since, vig and consequently pi are known, the only
variable in (3) is the scale factor si. Inequality (3) defines
the space of collision avoiding velocities which are scaled
version of guess velocity vig . It is clear from (2) and (3) that
the solution space of (3) is a subset of the solution space of
RVO constraints (1a).

It should be noted that (3) is a single variable quadratic
inequality whose solution space can be characterized in
closed-form [19]. It is possible to generate a lot of possible
choices for vig and solve (3) for each of them to obtain a
characterization of the complete space of collision avoiding
velocities virvo. Each choice of vig characterizes a path that a
robot can follow to avoid collisions with a suitable velocity
profile.

IV. RVOS IN THE PROBABILISTIC DOMAIN:PRVO

Let us start by representing the current trajectory of a pair
of robots as the following random variables. with Gaussian
distributions.

pi ≈ N(µi
p, (Σ

i
p)), pj ≈ N(µj

p, (Σ
j
p)). (4)

vi ≈ N(µi
v, (Σ

i
v)), vj ≈ N(µj

v , (Σ
j
v)). (5)

Where µip, (Σ
i
p), µiv, (Σ

i
v) and others represent position and

velocity level mean and covariances, respectively. In the
context of the two-robot collision scenario considered in the
previous section, equations (4) and (5) model the fact that
robot i has some uncertainty in the estimate of its current
state and the state of the robot j. Although, we have assumed
a Gaussian representation of the uncertainty, the framework
presented here can also be easily extended to incorporate
other representations.

Similarly, let us assume that each robot has an imperfect
actuation and that there is an inherent noise between the
commanded and actual velocity. This noise would result in
some error between the computed and executed avoidance
maneuver. Moreover, this error itself would be a random
variable. In the context of RVO, we account for this uncer-
tainty associated with the avoidance maneuver by assuming
that virvo is drawn from a distribution. In other words, it
is modeled as the following Gaussian random variable. The
equation below models the fact that when the robot com-
mands a velocity virvo, the executed velocity can correspond
to any sample drawn from a Gaussian distribution whose

1The concept of guess velocity can be thought to be similar to the notion of initial
guess used to solve non-convex constraints

mean is the commanded velocity and the whose covariance
is some constant Σivrvo

vi
rvo ≈ N(vi

rvo, (Σ
i
vrvo

)). (6)

In light of definitions (4)-(6), fRV O
i
j (.) becomes a mul-

tivariate function of random variables and, consequently, a
random variable itself. Thus, mathematically, constraint (1a)
does not make sense. Instead, a better defined alternative
would be to consider the following inequality

P (fRV Oi
j (pi, pj , vi, vj , vi

rvo) ≥ 0) ≥ η. (7)

Where, P (.) represents probability. Constraint (7) ensures
that the probability of RVO based collision avoidance con-
dition (1a) being satisfied is greater than some lower bound
η. In fact (7) defines the space of velocities virvo for robot
i which ensures satisfaction of RVO constraints with atleast
probability η for the given robot j’s trajectory parameters pj
and vj .

Constraints having the general form as that of (7) are
popularly known as ”chance constraints” and in general, are
computationally intractable [5]. The primary difficulty lies
in computing the analytical form for the chance constraints.
One notable exception exists in the case in which the random
variables under consideration have Gaussian distribution and
the chance constraints are defined over affine inequalities
[6]. In such cases, efficient convex approximations for the
chance constraints can be derived. However, as stated earlier,
fRV O

i
j (.) is a non-convex quadratic in terms of random

variables and thus the techniques proposed in [6] are not
applicable in our case. In the next section, we present a novel
solution methodology for (7) that exploits the time scaling
based reformulations discussed in the previous section.
A. Overview of PRVO

Because RVO depends explicitly on both position and
velocity variables, chance constraints defined over them, (7)
pose unique challenges. In particular, the probability with
which PRVO is satisfied depends on a complex interaction
between the uncertainty associated with position and velocity
variables. To elaborate this further, let us for the moment
assume that there is no actuation uncertainty, i.e, each robot
can perfectly execute its motion. With this assumption, let
us consider figure 1(a), which shows two uncertainty region
corresponding to the positions of a pair of robots at some
specific time instant. Each robot’s actual position can be
anywhere in the uncertainty region with some probability.
Moreover, each robot can have a distribution of velocities
corresponding to any position sampled from their position
level uncertainty region. Now, let us consider the collision
scenario shown in figure 1(b) and assume that the actual
position of each robot is given by a particle close to the
mean. For each of these particles, let us consider two samples
(shown in red and cyan) from the distribution of their current
velocities. It is clear that collision avoidance is easier for the
velocities shown in cyan as these are divergent velocities.
In contrast, the velocities shown in red results in a difficult
collision configuration. Thus, collision avoidance would be



more likely if the more probable current velocities of the
robots corresponds to the ones shown in cyan.

Based on the above example, we can conclude that, for a
given position of a pair of robots, the probability of collision
avoidance between them is conditioned over the distribution
of their current velocities, i.e the set of probable current
velocities of each robot. The effect of actuation uncertainty
can be naturally appended to this insight if we model it as a
distribution over commanded velocities. In other words, with
actuation uncertainty, the probability of collision avoidance
would be conditioned over the distribution of current and
commanded velocities.

The insights deduced above are meaningful only for the
given fixed position of a pair of robots. To have a complete
and correct picture of the probability of collision avoidance,
one needs to extend the reasoning to numerous particles
sampled from the position uncertainty ellipses. Further, we
also need to consider the fact that these particles themselves
have a probability distribution. Nevertheless, we show that
this simple idea of fixing robots positions and computing the
probability of collision avoidance with respect to uncertainty
in velocity variables is the main idea behind solving the
chance constraints defined over RVO in an efficient manner.

V. TIME SCALING BASED SOLUTION OF PRVO
In this section, we first describe the motivation behind

adopting a time scaling based approach and then present
a detailed explanation of the solution process. To this end,
recall the state and actuation uncertainty model described in
(4)-(5) and (6) respectively. While both of the uncertainties
have a Gaussian form, the latter i.e motion uncertainty has an
added complexity. At any given instant, the state estimation
uncertainty can be completely characterized (e.g. through
some localization mechanism). In contrast, the mean of the
motion uncertainty is unknown and can only be ascertained
after one has solved some sort of collision avoidance con-
straints. This is a direct consequence of the fact that we
have taken the unknown variable in (7) itself as a random
variable to take into account the uncertainty associated with
the error between the computed and the executed avoidance
maneuvers.

A possible solution to the computational challenge de-
scribed above, lies in the time scaling based reformulations
described in previous section. Recall (3) from III-C and
discussions therein which described how the solution space
of fRV O

i
j (.) can be approximated by first choosing a guess

velocity, vig and then solving (3) which is the time scaled
variant of (1a), with respect to the guess velocity. We extend
a similar reasoning to the probabilistic domain.

It is clear that in the probabilistic domain, the guess
velocity would not be a deterministic entity. Rather, we use
the description of (6) to represent guess velocity as the
following distribution.In in contrast to (6), the distribution
represented by (8) is completely known because, the mean i.e
vig is the velocity that the robot chooses even before solving
any collision avoidance constraints.

vi
g ≈ N(vi

g, (Σ
i
vg )). (8)

Now, with respect to (8), we define the following chance
constraints defined over the time scaled variant of RVO, (3).

P (sfRV Oi
j (pi, pj , vi, vj , sivi

g) ≥ 0) ≥ η. (9)

We will refer to (9) as time scaled PRVO constraints. It can
be noted that the feasible set of (9) is a subset of feasible set
of constraints, (7). To be more precise, (9) defines the space
of velocities that satisfy (7), but at the same time are a scaled
version of the guess velocity. Similar, to the deterministic
case, solving (9) for various choices for vig can give an
approximate characterization of the space of velocities which
satisfy (7).

In the subsequent sections, we describe an efficient solu-
tion process for (9).

A. Solution Space of PRVO constraints

1) Bayesian Decomposition: We start by computing the
following Bayesian decomposition of the left hand side of
(9)

P (sfRV Oi
j (pi, pj , vi, vj , sivi

g) ≥ 0) =

∫
pj∈Cj

∫
pi∈Ci

P (sfRV Oi
j (.) ≥ 0|pi ∈ Ci, pj ∈ Cj)P (pj |pi)P (pi)dpidpj

. (10)

The first term under the integral represents
P (sfRV O

i
j (pi,pj , vi, vj , sivig) ≥ 0) when the position

variables, (pi,pj) are treated as deterministic samples
belonging to set Ci and Cj respectively. As we show later,
the set Ci, Cj can be thought as a contour in the position
uncertainty region of the robots. The second term P (pj |pi)
represents the distribution of position of robot j as estimated
by robot i, while P (pi) represents the position distribution
of robot i. Clearly, the first term can be taken out of the
integral since it is no longer a function of the position
variables (pi,pj are fixed and assume values from sets Ci

and Cj respectively). Doing so, we obtain the following
simplification

P (sfRV Oi
j (pi, pj , vi, vj , sivi

g)) ≥ 0) =

P (sfRV Oi
j (.) ≥ 0|piεCi, pjεCj)Ci

j . (11)

Where, Ci
j =

∫
pj∈Cj

∫
pi∈Ci

P (pj |pi)P (pi)dpidpj . (12)

Because the position distribution are known completely, the
right hand side of (12) evaluates to a fixed positive constants.
Now, substituting left hand side of (11) in (9), we get

P (sfRV Oi
j (pi, pj , vi, vj , sivi

g) ≥ 0) ≥ η.

⇒ P (sfRV Oi
j (.) ≥ 0|pi ∈ Ci, pj ∈ Cj) ≥ η

Ci
j

. (13)

In contrast to (9), inequality (13) depends only on the
velocity level random variables, while the position variables
are fixed at specific values. As is evident, satisfaction of (13)
ensures satisfaction of (9) and consequently original PRVO
constraints (7) with atleast probability η

Ci
j
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Fig. 1. A conceptual description of the PRVO. Figure (a) shows a collision scenario involving two robots. The actual position of the robots can be
anywhere in their respective uncertainty region (grey circles) with a particular probability. Moreover, corresponding to each position in the uncertainty
region, the robots can have any velocity from a given distribution. Figure (b) shows a collision scenario where we assume that the actual position of the
robots is given by particles close to the mean. Corresponding to these positions, we draw two samples (shown in red and cyan) from the distribution of the
current velocities of the robots. It can be clearly seen that collision avoidance is more likely if the velocities shown in cyan represent the more probable
samples. In general, the probability of collision avoidance for a fixed position is conditioned over the distribution of current and commanded velocities.

2) Surrogate Constraints: Up to this point, we have
proposed a series of reformulations to convert the PRVO
constraints (7) into the form given by (13). However, (13)
still represents chance constraints over non-linear and non-
convex inequality and is thus still challenging to solve. Thus
we now, present our final reformulation which eventually
leads to a closed-form characterization of the solution space
of (13). The reformulation is based upon the following
lemma derived from [15].
Theorem 1.

If, E
pi∈Ci,pj∈Cj

[sfRV Oi
j
]− k

√
V ar[sfRV Oi

j
]

pi∈Ci,pj∈Cj

≥ 0. (14)

then, η ≥
Ci

jk
2

1 + k2
. (15)

Where, E
pi∈Ci,pj∈Cj

[.] and V ar[.]
pi∈Ci,pj∈Cj

represents expectation

and variance of the sfRV Oi
j

with respect to random variables
(vi, vj , vig), while the position variables are fixed and assume
values from the set Ci and Cj . Theorem 1 essentially
states that satisfaction of (14) leads to satisfaction of (9)
and consequently, PRVO constraints with a lower bound
probability given by 15.

Proof. From Cantelli’s inequality, we have

P (sfRV Oi
j (.) ≥ 0|pi ∈ Ci, pj ∈ Cj ≥ γi

j) ≥
k2

1 + k2
. (16)

Where, γi
j = E

pi∈Ci,pj∈Cj
[sfRV Oi

j
]− k

√
V ar[sfRV Oi

j
]

pi∈Ci,pj∈Cj

Thus, if (14) holds, we have

P (sfRV O
i
j (.) ≥ 0|pi ∈ Ci,pj ∈ Cj ≥ 0) ≥ k2

1 + k2
. (17)

Comparing (17) with (13), we get (15).

Algebraic Form and Solution of Surrogate Constraints:
We can compute the left hand side of (13) using symbolic
packages like MATHEMATICA [18]. Now, sfRV O

i
j (.) for

fixed pi,pj depends on a single variable si (refer (3)) that
represents the scale factor by which the guess velocity vig
needs to be scaled. Thus, the surrogate constraint, (13)
simplifies to following single variable quadratic inequality.

aij(s
i)2 + bijs

i + cij ≥ 0. (18)

Where, aij , b
i
j , c

i
j are constants which depend on position,

velocity variables, pi,pj , vi, vj , vig and Cij and k. Clearly,
(18) represents a single variable quadratic inequality whose
solution space can be characterized in closed-form.
Summary: Thus, to summarize the discussions till now,
the solution space of surrogate constraints (18) can be
characterized in closed and it corresponds to that of (9)
and consequently (7) for η ≥ Cij

k2

1+k2 . Off course, (18)
characterizes only a very small subset of collision free
velocities. Nevertheless, we can always construct (18) for
various choices of guess velocities vig to obtain a good
characterization of the complete space of probabilistically
safe collision free velocities. Subsequently, choosing one
solution from this space which optimizes some user defined
metric is then straightforward.

VI. RESULTS

A. Two Robot Benchmark

Here we validate the formulation described to this point. To
this end consider figures 2(a)-2(b) and 2(c)-2(d) which show
a two-robot collision scenario. For the ease of exposition,
we will refer to the robots as ”robot 1” and ”robot 2”.
In the simulations presented here, each robot chooses their
respective sets C1 and C2 to represent the 68% confidence
contours from their respective uncertainty region. The value
of k used to construct the inequality (14) was taken as 0.1
for the results shown in figures 2(a)-2(b), while it was fixed
at 1.0 for the results shown in figures 2(c)-2(d).Let us start
by analyzing figures 2(a)-2(b). In these figures, we extract
samples from the distribution of the computed velocities of
each robot and then evaluate how many of these samples
satisfy the RVO constraints (1a) with respect to the current
velocity distribution of the other robot when the position
values are drawn from the set C1 and C2. In other words,
”robot 1” evaluates how effective is its computed avoidance
maneuver with respect to current velocity distribution of
”robot 2” when both its and ”robot 2” position is given by
the samples in set C1 and C2 (figure 2(a)). A similar analysis
is done for ”robot 2” for the current velocity distribution of
”robot 1” (figure 2(b)). The velocity samples shown in green
correspond to the ones that satisfy the RVO constraints, (1a),
while those shown in black lead to the violation of (1a). We
would obtain a different evaluation for each combination
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Fig. 2. Figures (a)-(d) validates the derivations presented in section V for a two robot collision scenario. The solution process starts by first fixing the
position sets C1 and C2 for the robots. In the current case both the sets represent the 68% contour (shown in cyan) of the position uncertainty region of the
robots (shown in grey). Thereafter each robots constructs inequality (14) for k = 0.1. To validate the effectiveness of the computed avoidance maneuver,
we extract samples from the distribution of the computed velocities of each robot and evaluate how many of these samples satisfy the RVO constraints
with respect to the current velocity distribution of the other robot when the position values are fixed at samples from set C1 and C2. The samples shown
in green lead to satisfaction of RVO constraints, while those shown in black results in violation of the constraints. Now, in line of the theory presented in
section V-A.2, solving (14) with increasing value of k should result in increase in probability with which RVO constraints are satisfied. This is validated
in figures (c) and (d). As evident the number of samples from the distribution which leads to violation of RVO constraints has significantly reduced as
compared to (a) and (b).

of position samples drawn from set C1 and C2. Thus, in
figures 2(a)-2(b), we show the worst case result, for the
position samples which gives maximum violation of the RVO
constraints.

Now, in line with the theory presented in section V-A.2,
solving (14) with higher values of k should lead to an
increase in probability of satisfying RVO constraints, (1a).
This is validated in figures 2(c)-2(d) which shows similar
results as figure 2(a)-2(b), but for k = 1.0. An increase in
probability of satisfying RVO constraints is evident by the
reduction in the number of samples that lead to the violation
of RVO constraints (shown in black) as compared to figure
2(a)-(2(b)).

B. Comparison with Bounding Volume Based Approaches

One of the possible approaches to account for uncertainty in
a first order constraint like RVO is by constructing bounding
volumes obtained by increasing the footprint of the robot
by the size of the covariance of the position and velocity
uncertainty. The technique has been used in several works
like [17], [16]. In this section, we show that the proposed
formulation is less conservative than the bounding volume
based approaches. To this end, we generated 20 different
problem instances with 8 robots each and compared the
average arc length observed for each robot for both the
proposed formulation and the bounding volume based ap-
proach. The results are summarized in figure 3(a)-3(c). From
benchmarking perspective, we also present the arc lengths
observed for the deterministic RVO computed using just the

mean position and velocity of the robots.The figures presents
several interesting insights. Firstly, from figure 3(a), it can
be seen that if only position level uncertainty is considered,
then both the proposed formulation and the bounding volume
based approach results in similar arc-lengths. To understand
the mathematical reasoning behind this, recall the right hand
side of equation (11) which under zero velocity uncertainty
reduces to just Cij . Moreover, it can be seen from (12) that
Cij is nothing but a contour in the position uncertainty ellipse
and thus very similar to a bounding volume.However, as
velocity uncertainty (from both state estimation and actua-
tion) is taken into account, our proposed formulation, PRVO
outperforms bounding volume based approach (figures 3(b),
3(c)). On an average, we observe PRVO leads to 20% shorter
paths. The variation of traversal time show similar trends.
This is quantified in figure 3(d) which compares the total
time required for all the robots to reach the goal position.
As can be seen, PRVO takes around 33% less time. The
mathematical reasoning for the this trend is as follows. The
bounding volume based approach is equivalent to drawing
a lot of samples from position and velocity uncertainty
ellipses and writing RVO constraints with respect to each
of them. However, the probability of samples play no part in
shaping of the constraints. In other words, within a bounding
volume, a sample close to the mean is given same importance
as a sample away from the mean. This in turn leads to
conservative maneuvers.
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Fig. 3. Figures (a)-(c) show arc length comparison observed across 20 problem instances with 8 robots for the proposed formulation, PRVO and the
bounding volume based approach. Figure (c) presents the comparison for the total time taken for all the robots to reach the goal.
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Fig. 4. (a): Effect of level of uncertainty on collision avoidance trajectories. (b) Comparison of deterministic RVO with PRVO for a given uncertainty.
Note that while RVO trajectories are smooth, those obtained with PRVO show occasional oscillations induced by actuation uncertainty. Figure (d) shows
the effect of probability of avoidance, η on collision avoidance trajectories. As can be seen, η and level of uncertainty affects collision avoidance in similar
manner.

C. Effect of Uncertainty and η

Figure 4(a) shows the collision avoidance trajectories ob-
tained from PRVO for two different uncertainty levels. The
uncertainty parameters were kept same for all the robots.
The low uncertainty level was characterized by Σip =
diag(0.003, 0.003),Σiv = Σivg = diag(0.005, 0.005), while
the high uncertainty level was characterized by Σip =
diag(0.005, 0.005),Σiv = Σivg = diag(0.01, 0.01). For
benchmarking purpose, we also present the comparison
between PRVO and deterministic RVO in figure 4(b). The
uncertainty parameters used for this figure were same as
that used in figure 4(a) for trajectories corresponding to low
uncertainty level. Following points are noteworthy. Firstly,
increase in uncertainty level was generally accompanied by
increased deviation from straight line paths which leads each
robot directly towards their goal. Moreover, increased devia-
tion from original forward velocity profile was also observed.
Secondly, note that while RVO trajectories are smooth, those
obtained through PRVO show some oscillations. This is a
direct consequence of actuation uncertainty which makes
robot’s motion imprecise and thus, a smooth transition out
from the collision course cannot always be ensured.The
probability of avoidance η has a similar effect on collision
avoidance as the level of uncertainty. As an example, figure
4(c) shows the trajectory plots for two different η. Further
simulations that highlight the difference between RVO and
PRVO can be found in the accompanying video of this paper.

D. Velocity Obstacle

In a deterministic setting, it has been shown that satisfac-
tion of RVO constraints guarantees satisfaction of constraints
defined by Velocity Obstacle (VO), [1] [2]. To be more
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precise, in a two-robot collision scenario, if each each robot
solves RVO constraints independently with respect to the
current trajectory of the other robot, then the computed
avoidance maneuvers are guaranteed to satisfy the VO con-
straints with respect to the new trajectory of both the robots.

Here, we empirically evaluate the validity of this mapping
between RVO and VO in the probabilistic setting. We start by
writing the Bayesian decomposition (10) at the VO level, for
a pair of robots, (19). Note, how sfV O

i
j depends on both si

and sj , which reiterates the fact that we are now computing
probability of avoidance with respect to new trajectories of
both the robots. In contrast, the RVO level constraints had
only one variable (si in (10)).

P (sfV Oi
j (pi, pj , sivi

g, s
jvj

g)) =

∫
pj∈Cj

∫
pi∈Ci

P (sfV Oi
j (.) ≥ 0|pj ∈ Cj , pi ∈ Ci)P (pj |pi)P (pi)dpidpj (19)

We evaluated right hand side of (19) through sampling
with respect to si and sj obtained from solving the surrogate
constraints (14) for both the robots. The sets Ci and Cj

was chosen to represent 80% of the position uncertainty
region of the robots. Different values of k were chosen to
obtain different η. For each value of k, 20 different collision
configurations were considered and right hand side of (19)

bharath g
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was evaluated for the all the computed avoidance maneuvers.
The average comparative results are summarized in figure 5
which shows the variation of P (sfV O

i
j(.) ≥ 0) with respect

to P (sfRV O
i
j(.) ≥ 0). As can be seen, we observe an almost

linear relationship between the two. This points to a strong
correlation between probability of satisfaction of RVO and
VO constraints.
E. Computation Time

As explained in section V, the solution process requires each
robot to first choose a guess velocity vig . Then, surrogate
constraints (14) are constructed with respect to the guess
velocities and solved to obtain the scale factor si. Thus, com-
putation time of our proposed algorithm can be represented
by the following expression

Tcomp = Nvig
Tsurrogate. (20)

Where, Nvig represents the number of possible values of
vig that the robot needs to evaluate to obtain a solution space,
while, Tsurrogate represents the computation time required
to solve (14) with respect to the neighboring robots. Figure
6(a) shows the plot of Nvig as a function of the number
of neighboring robots. The plot of total computation time
Tcomp is shown in figure. The value of Tsurrogate can be
obtained from the plot following (20). It should be noted
that computation times are provided for an unoptimized
Matlab implementation on a laptop with i7 processor and
8GB of RAM,. Since, (14) is a single variable quadratic
inequality, its solution space with respect to n neighboring
robots can be computed by a simple sorting algorithm. A
C++ implementation of our algorithm is expected to be
much faster.
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Fig. 6. (a): Number of possible values of vig that the robot needs to evaluate
to obtain a solution space (b): Total computation time.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this paper, we used the concept of chance constraints
to derive PRVO, a probabilistic variant of RVO. The ex-
tremely difficult chance constraints were made computation-
ally tractable by a series of novel reformulations based on
Bayesian decomposition and time scaling concepts. Eventu-
ally, a closed-form characterization of collision free veloci-
ties for a specified lower bound probability was obtained.We
validated our formulations through extensive numerical sim-
ulations highlighting the effect of uncertainty and at the time
showing an improvement over the existing bounding volume
based approaches in terms of arc lengths and traversal times.

The current work was designed for simple single integrator
systems. The future efforts will thus be focused towards
relaxing this limitation and extending the algorithm to higher
order as well non-holonomic kino-dynamic systems. A part

of the efficiency of our approach is due to the Gaussian
representation of uncertainty. In particular, the algebraic form
of surrogate constraints depends critically on it. Thus, it
would be interesting to analyze the proposed approach with
respect to different representations of uncertainty.

REFERENCES

[1] Fiorini, Paolo, and Zvi Shiller. ”Motion planning in dynamic environ-
ments using velocity obstacles.” The International Journal of Robotics
Research 17, no. 7 (1998): 760-772.

[2] Van den Berg, Jur, Ming Lin, and Dinesh Manocha. ”Reciprocal
velocity obstacles for real-time multi-agent navigation.” In Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference
on, pp. 1928-1935. IEEE, 2008.

[3] Alonso-Mora, Javier, Andreas Breitenmoser, Martin Rufli, Paul Beard-
sley, and Roland Siegwart. ”Optimal reciprocal collision avoidance for
multiple non-holonomic robots.” In Distributed Autonomous Robotic
Systems, pp. 203-216. Springer Berlin Heidelberg, 2013.

[4] Van Den Berg, Jur, Stephen J. Guy, Ming Lin, and Dinesh Manocha.
”Reciprocal n-body collision avoidance.” In Robotics research, pp. 3-
19. Springer Berlin Heidelberg, 2011.

[5] Nemirovski, Arkadi. ”On safe tractable approximations of chance
constraints.” European Journal of Operational Research 219, no. 3
(2012): 707-718.

[6] Boyd, Stephen. ”Chance-constrained optimization.” (2015).
[7] Kluge, B., and Prassler, E. (2006, January). Recursive probabilistic

velocity obstacles for reflective navigation. In Field and Service
Robotics (pp. 71-79). Springer Berlin Heidelberg.

[8] Fulgenzi, C., Tay, C., Spalanzani, A., and Laugier, C. (2008, Septem-
ber). Probabilistic navigation in dynamic environment using rapidly-
exploring random trees and gaussian processes. In Proc. IEEE IROS
2008 (pp. 1056-1062).

[9] Kushleyev, A., and Likhachev, M. Time-bounded lattice for efficient
planning in dynamic environments. In Proc. of IEEE ICRA 2009 (pp.
1662-1668).

[10] Luders, Brandon, Mangal Kothari, and Jonathan P. How. ”Chance
constrained RRT for probabilistic robustness to environmental uncer-
tainty.” In AIAA guidance, navigation, and control conference (GNC),
Toronto, Canada. 2010.

[11] Du Toit, Noel E., and Joel W. Burdick. ”Robot motion planning in
dynamic, uncertain environments.” IEEE Transactions on Robotics 28,
no. 1 (2012): 101-115.

[12] Van Den Berg, Jur, Pieter Abbeel, and Ken Goldberg. ”LQG-MP:
Optimized path planning for robots with motion uncertainty and
imperfect state information.” The International Journal of Robotics
Research 30, no. 7 (2011): 895-913.

[13] Lyons, Daniel, Jan-P. Calliess, and Uwe D. Hanebeck. ”Chance
constrained model predictive control for multi-agent systems with
coupling constraints.” In American Control Conference (ACC), 2012,
pp. 1223-1230. IEEE, 2012.

[14] Fiorini, Paolo, and Zvi Shiller. ”Motion planning in dynamic environ-
ments using velocity obstacles.” The International Journal of Robotics
Research 17, no. 7 (1998): 760-772.

[15] Gopalakrishnan, Bharath, Arun Kumar Singh, and K. Madhava Kr-
ishna. ”closed-form characterization of collision free velocities and
confidence bounds for non-holonomic robots in uncertain dynamic
environments.” In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pp. 4961-4968. IEEE, 2015.

[16] Snape, J., van den Berg, J., Guy, S. J., and Manocha, D. (2011). The
hybrid reciprocal velocity obstacle. Robotics, IEEE Transactions on,
27(4), 696-706.

[17] Claes, Daniel, Daniel Hennes, Karl Tuyls, and Wim Meeussen. ”Col-
lision avoidance under bounded localization uncertainty.” In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1192-1198. IEEE, 2012.

[18] Wolfram, S. (2009). Mathematica. Wolfram Research, Champaign.
[19] Gopalakrishnan, Bharath, Arun Kumar Singh, and K. Madhava Kr-

ishna. ”Time scaled collision cone based trajectory optimization
approach for reactive planning in dynamic environments.” In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4169-4176. IEEE, 2014.


	Introduction
	Related Work
	Background 
	Symbols and Notations
	Reciprocal Velocity Obstacle
	Time Scaled Based Simplification of RVO Constraints
	Time Scaling Definition
	Solving RVO constraints with Time Scaling Concepts


	RVOs in the Probabilistic Domain:PRVO
	Overview of PRVO

	Time Scaling Based Solution of PRVO
	Solution Space of PRVO constraints
	Bayesian Decomposition
	Surrogate Constraints


	Results
	Two Robot Benchmark
	Comparison with Bounding Volume Based Approaches
	Effect of Uncertainty and 
	Velocity Obstacle
	Computation Time

	Conclusions, Limitations and Future Work
	References

