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Abstract— Motion segmentation or segmentation of moving
objects is an inevitable component for mobile robotic systems
such as the case with robots performing SLAM and collision
avoidance in dynamic worlds. This paper proposes an incre-
mental motion segmentation system that efficiently segments
multiple moving objects and simultaneously build the map of
the environment using visual SLAM modules. Multiple cues
based on optical flow and two view geometry are integrated
to achieve this segmentation. A dense optical flow algorithm
provides for dense tracking of features. Motion potentials based
on geometry are computed for each of these dense tracks. These
geometric potentials along with optical flow potentials are used
to form a graph like structure. A graph based segmentation
algorithm then clusters together nodes of similar potentials
to form the eventual motion segments. Experimental results
of high quality segmentation on different publicly available
datasets demonstrate the effectiveness of our method.

I. INTRODUCTION

Understanding dynamic scenes from moving cameras or
cameras mounted on mobile robots is an inevitable com-
ponent in many applications. For example large city scale
mapping with outdoor vehicles, robotic aids in supermarkets,
robotic assistance at home and office require moving cameras
and sensors interacting with other moving objects, vehicles
and people. Often an unavoidable component of such ap-
plications is the ability of the moving camera to segment
moving objects. A robust system capable of doing so can
also go a large way in solving the popular Vision based
Simultaneous Localization and Mapping (VSLAM) problem
in dynamic environments.

VSLAM involves simultaneously estimating locations of
newly perceived landmarks and the location of the moving
camera itself while incrementally building a map of an
unknown environment. The last decade has seen a significant
shift towards vision based SLAM systems [1], [2], [3] from
range sensor based systems. However almost all these SLAM
approaches assume a static environment, containing only
rigid, non-moving objects. The solution to the moving object
segmentation and extraction problem will act as a bridge
between the static SLAM and its counterpart for dynamic
environments.

The moving camera causes every pixel to appear moving.
The apparent pixel motion of points is a combined effect
of the camera motion, independent object motion, scene
structure and camera perspective effects. Different views
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Fig. 1. This Figure shows a result of our algorithm on 3 men sequence. (a)
An image from 3 men sequence, in this image the 3 persons are moving.
(b) The motion segmentation results from our segmentation algorithm.

resulting from the camera motion are connected by a number
of multi view geometric constraints. These constraints can be
used for the motion detection task. Those inconsistent with
the constraints can be labelled as moving regions or outliers.
However the multi view geometric constraints by themselves
are unable to segment moving objects completely and the
boundaries do not get formed sharp enough.

In lieu of this we propose a graph based framework for
motion segmentation where geometric constraints are further
supported by optical flow vectors. The optical flow enhances
the segmentation in two ways. Firstly it provides for dense
tracking of features and hence a dense segmentation of
motion. Secondly it provides motion cues through 2D optical
flow values that supplements the two view geometric con-
straints for a sharper segmentation especially at boundaries.
Even with dense tracking, geometric constraints need a wider
baseline for their accuracy, which invariably introduces cer-
tain sparseness in the segmentation. The optical flow’s ability
to operate at smaller baselines enables a denser detection
apart from segmentation providing for a interpolatory effect
over geometric cues.

The algorithm proposed is an incremental motion seg-
mentation algorithm with the aid of an online visual SLAM
algorithm. The motion segmentation is robust and is capa-
ble of segmenting difficult degenerate motions, where the
moving objects is followed by a moving camera in the same
direction. We use efficient geometric constraints that helps
in segmenting these degenerate motions.

The segmentation algorithm relies on dense point trajecto-
ries [4] calculated using the optical flow from Classic+NL
algorithm [5] and is not truly real-time due to processing
time for computing the optical flow. The reason for using
this optical flow algorithm is its high accuracy.

Geometric motion potentials are computed and assigned to
the tracks based on geometric constraints. These potentials



along with optical flow potentials are then fed to the graph
based segmentation algorithm. The segmentation algorithm
is able to reliably segment entire moving objects from the
stationary world.

One of the essential contributions of this paper is the
use of motion cues to formulate the motion potentials that
characterize the node potentials for a graph based motion
clustering algorithm. The other essential contributions of this
paper is in its judicious integration of multi view geometric
and 2D optical flow cues to achieve dense segmentation.
The segmentation results are shown for highly challenging
outdoor scenes where the area corresponding to moving
objects in the image are segmented to very high accuracy.
Its ability to work with complex outdoor scenes over large
time span is one of the unique features of this work. Many
previous efforts such as [6], [7] do not report such results.
The closest to this effort is the work on motion cuts [8],
[9]. However the results portrayed show only moving object
in the foreground. In contrast the current effort is able
to segment multiple moving objects from background on
more complex outdoor scenes with highly degenerate motion
of moving objects. Another difference is that the current
algorithm is incremental. Unlike [8], [9] it does not use future
images in the pipeline to achieve segmentation of the current.

II. RELATED WORKS

The task of moving object segmentation and extraction,
is much easier if a stereo sensor is available, which allows
additional constraints to be used for detecting independent
motion [10], [11], [12], [13]. However the problem is lot
more difficult for monocular systems. The problem of motion
detection and segmentation from a moving camera has been
a very active research area in computer vision community.
Literature in this area can be loosely divided into four
categories. The first category of methods rely on estimating
a global parametric motion model of the background. These
methods [14], [15], [7] compensate camera motion by 2D
homography or affine motion model. Pixels consistent with
the estimated model are assumed to be background. Outliers
to the model are defined as moving regions. However,
these models are approximations which only holds for the
restricted cases of camera motion and scene structure.

The problems with 2D homography methods led to plane-
parallax [16], [17] based constraints, which forms the sec-
ond category of approaches. The planar-parallax constraints,
represents the scene structure by a residual displacement
field termed parallax with respect to a 3D reference plane
in the scene. The plane-parallax constraint was designed to
detect residual motion as an after-step of 2D homography
methods. Also they are designed to detect motion regions
when dense correspondences between small baseline camera
motions are available. Also, all the planar-parallax methods
are ineffective when the scene cannot be approximated by a
plane.

Though the “planar-parallax” decomposition can be used
for ego motion and structure estimation, the traditional multi-
view geometry constrains like epipolar constraint in 2 views

or trilinear constraints in 3 views and their extension to
N views have proved to be much more effective in scene
understanding as in structure from motion (SFM) and visual
SLAM. These constraints are well understood and are now
textbook materials [18]. The methods that use such 2-view
geometry constraints can be considered as the third category.
In this work we use such multi-view geometric cues such as
the epipolar constraints and flow vector bound constraint [19]
for motion segmentation through formulation of recursive
geometric motion potentials.

The fourth category of approaches either use pixel level
motion cues such as various forms of optical flows as [20],
[21] or appearance cues like color, texture or a combination
of both [22]. The methods that use pixel level motion
clues inherently tend to suffer from edge effects resulting in
various false positives. The approaches that use robust two
view geometric constraints for motion potential computations
seem rare. The results depicted in these approaches do
not show motion segmentation in the presence of highly
degenerate motions. In that regard the current work differs
in using such multi view geometric constraints to assign
motion potentials as well as segmenting multiple moving
objects which possess severe degenerate motions over several
frames of difficult outdoor sequences. Motion potentials are
formed both due to optical flow and geometric constraints.
The graph clustering algorithm suitably integrates them to
achieve final segmentation. In our earlier works we have
detailed independent motion detection of sparse features
where camera motion was compensated through odometry
in [23], a multibdoy VSLAM framework that enhanced the
sparse motion detection in [19]. Whereas in [24] the focus
was on motion reconstruction of moving objects through
the multibody framework. The current work is different
as it achieves dense segmentation through a graph based
framework integrating both geometry and optical flow cues.

III. SYSTEM OVERVIEW

Fig. 2 gives an overview of our system. From an im-
age sequence we calculate optical flow and dense feature
tracks while simultaneously running a VSLAM system in
the background. This VSLAM provides camera ego-motion
parameters which are then used to calculate multi-view
geometric constraints. These geometric constraints are used
to calculate motion potentials due to geometry and these
along with the optical flow based motion potentials are given
to a graph based clustering algorithm to achieve motion
segmentation.

A. Dense Tracking for Segmentation

The dense tracking is a vital part of dense motion seg-
mentation. The requirement for dense correspondence and
its subsequent tracking stems from the observation that an
accurate segmentation that captures most of the image area
underlying the moving object would require such tracks.
Dense tracking provides for assignment of edge potentials
for edges that connect adjacent nodes or nodes that are
spatially proximal. A graph based clustering algorithm can



Fig. 2. An overview of our system. Here we calculate dense optical flow over a sequence of images and find dense feature tracks over this dense optical
flow. Feedback from VSLAM gives camera motion parameters which are than used to calculate dense geometric motion potentials. These potentials along
with optical flow potentials are given to graph based motion clustering algorithm to achieve dense segmentation.

then use such edge potentials to partition the graph into
motion clusters.

In this effort we make use of the optical flow implemen-
tation provided by [5]. A dense point trajectory tracking
scheme from [4] over this optical flow have been used to
get dense tracks. This algorithm reasons consistency check
for occlusions using forward and backward flow for getting
accurate tracks. As mentioned by the authors resulting tech-
nique tracks up to three orders of magnitude more points and
is 46% more accurate than the KLT tracker. It also provides
a tracking density of 48% and has an occlusion error of 3%
compared to a density of 0.1% and occlusion error of 8%
for the KLT tracker.

B. Visual SLAM

The segmentation algorithm proposed is independent of
the SLAM algorithm used. However, we chose the bundle
adjustment visual SLAM [25], [3], [26] framework over
the filter based approaches [1], [27] because of the accuracy
benefits [28]. Our Visual SLAM implementation closely
follows to that of [25], [3]. In brief, a 5-point algorithm [29]
with RANSAC is used to estimate the initial epipolar ge-
ometry, and subsequent pose is determined with 3-point
resection [30]. Some of the frames are selected as key-
frames, which are then used to triangulate 3D points. The set
of 3D points and the corresponding key frames are used in
by the bundle adjustment process to iteratively minimize re-
projection error. The bundle adjustment is initially performed
over the most recent key frames, before attempting a global
optimization. The whole algorithm is implemented as two-
threaded process, where one thread performs tasks like
camera pose estimation, key-frame decision and addition,
another back-end thread optimizes this estimate by bundle
adjustment. The most important application of this VSLAM
module is to provide camera ego-motion parameters which
are used to calculate efficient geometric constraint. The ego-
motion parameter can be computed based on principle of two
view geometry alone. However the benefits of the bundle
adjustment optimization procedure are provided through ac-
curate description of camera ego-motion parameters entailed
for robust segmentation. Thus VSLAM is an integral part of
the segmentation pipeline.

C. Geometric Constraints

For segmenting/detecting highly difficult degenerate mo-
tions we need to use strong geometric constraint. For this
purpose we have used a combination of commonly used
epipolar constraint along with Flow Vector Bound constraint
introduced by us in [19], [23] . Epipolar constraint alone
is not able to handle degenerate motions, for example if a
point moves in the epipolar plane then epipolar constraint
will fail to work. In this case Flow vector bound works well.
Flow vector bound can take care of the highly degenerate
cases where moving object is closely followed by the camera.
These geometric constraints are explained in detail in [19],
[23]. The section on motion potential that follows makes use
of these geometric constraints.

D. Assigning Motion Potentials

Computing Epipolar Potentials Let pn and pn+1 be the
images of a same 3D point, X in two views or images In
and In+1. Let the epipolar line in In+1, corresponding to
pn be ln+1. If the 3D point is stationary then pn+1 should
ideally lie on ln+1 and hence ln+1 ·pn+1 = 0. But if a point
is not stationary, the dot product ln+1 · pn+1 is a measure
of the deviation of the point from the line. Thus higher the
dot product larger is the potential that the point is moving.
Similarly if ln is the epipolar line corresponding to pn+1 in
In the epipolar potential for frame n is computed as eppn =
ln+1·pn+1+ln·pn

2k1
, where k1 > 1 is a scaling constant, which is

useful in providing spatial smoothness to Epipolar potentials.
A very small value of k1 does not provide any smoothness,
where as a very large value of k1 makes the contribution
of Epipolar potential in graph based clustering insignificant.
We have used a value of k1 = 10, throughout all of our
experiments.

Computing Flow Vector Bound Potentials
For calculating Flow vector bound potentials we compute

for a pair of corresponding points pn and pn+1 the maximum
and minimum flow possible, dmax and dmin corresponding
to minimum and maximum possible depth of the world point.
If the actual flow vector fv computed as the pixel distance
between pn and pn+1 lies in the interval bound [dmin, dmax]
the flow vector potential is computed as fvbp = fv

c1
. This is



a case when the point is not moving and contribution of its
flow vector in graph based clustering should be minuscule;
because of this a very high value of c1 = 100 has been used
throughout all the experiments.

If the flow vector fv does not lie in the interval
[dmin, dmax] then the potential is computed as fvbp =
fv
c2

+ c3. This is the case when the point is moving. Similar
to k1, c2 provides for spatial smoothness and a value of
c2 = 10 has been used in all experiments. The purpose of
c3 is to make a clear distinction between a fvbp of moving
point and fvbp of a non-moving point to the graph based
clustering. A value of c3 = 5 has been used throughout all
the experiments.

E. Recursive Potential Estimation

Recursive potential estimation seeks to factor in the tem-
poral dimension of the geometric potentials in the eventual
potential calculation. If over multiple views the epipolar
potential is observed to be high for a track then the potential
that it is a moving object is higher than if a track acquires
such a potential for the first time. By the same token if
the epipolar or flow vector potential turns out lower over
multiple instances the potential that the object is moving is
much lower than if such a low potential is observed on the
track first time.

The following recursive definition was found to work well
for the eventual motion potential, due to Epipolar potential,
Mepn

Mepn =



Mepn−1 + θ eppn > λ,Mepn−1 > λ,

Mepn−1 < M

Mepn−1 − θ eppn < η&Mepn−1 < η,

Mepn−1 > 0∑n
i−k eppi

k otherwise

(1)

The above recursive definition adds to the motion potential
due to epipolar constraint if the current epipolar potential
and previous motion potential are above a certain threshold,
λ, and less than a maximum threshold value M . Similarly
potentials are subtracted by a value θ if both current epipolar
potential and previous motion potentials are less than a
threshold η and greater than zero. In all other cases a moving
average over the last k instances constitutes the motion
potential due to epipolar potential.

Similar recursive definitions characterize the motion po-
tential due to flow vector bound potential denoted by Mfvp.

The utility of such a recursive definition of motion poten-
tials can be seen in a Fig. 3. Here regions of low motion
potentials (indicating stationary areas) become regions of
high motion potentials as color changes from shades of blue
to brown with time. The scenario corresponds to complex
case of two cars moving in front of the moving camera
through a highly degenerative motion sequence. At first
instance very few parts of the car have a high motion
potential. With time most areas of the car are covered as
a consequences of recursive estimation of potentials.

Fig. 3. In this figure we have shown intermediate results of recursive
motion potentials due to flow vector bound. (a) An Image from Versailles
Rond dataset. (b), (c), (d) and (e) shows that regions of low motion potentials
become regions of high motion potentials as color changes from shades of
blue to brown with time. (f) is just a 3D version of the (e) showing that
all the points which are in shades of brown have probability values greater
than .5(multiplied by 100) and the points which are in shades of blue have
probability less than .5.

F. Optical Flow Potentials

The optical flow potentials are a transformation of optical
flow vectors to a color space. This transformation is the Flow
field color coding given at [31].

G. Graph-Based Recursive Clustering

Our graph based clustering algorithm has its base in
Efficient graph based image segmentation algorithm [32]
but modified suitably for segmentation in videos as well as
in the manner in which it integrates multiple cues; in this
case the geometry and optical flow cues. Let G = (V,E) be
an undirected graph with vertices vi ∈ V , the set of elements
to be segmented, and edges (vi, vj) ∈ E corresponding to
pairs of neighbouring vertices. Each edge (vi, vj) ∈ E has
corresponding weights wp((vi, vj))∀p ∈ U where U is the
set of different properties(epipolar potentials, fvb potentials
and optical flow potentials) used for segmentation. Each
of these weights is a non-negative measure of some kind
of dissimilarity between neighbouring elements vi, vj . In
the case of motion segmentation elements in V are pixels
and weights are Wgeo and Wof , where Wgeo measures the
dissimilarity due to geometric motion potentials and Wof is
the measure of dissimilarity in optical flow potentials.

In our graph based clustering algorithm we want results
of our algorithm to be a set of connected components (or
regions) in the graph G = (V,E) such that each connected
component has similar nodes (nodes with similar properties)



grouped together and this set of connected components forms
a partition of the V.

1) We sort E into t = (ogeo1 , ....., ogeom), by non-
decreasing geometric edge weights, where each geo-
metric edge weight is defined as

Wgeo((vi, vj)) =
√
wepi((vi, vj))

2
+ wfvb((vi, vj))

2

where
wfvb((vi, vj)) = |fvbpotential(vi)-fvbpotential(vj)|
wepi((vi, vj)) = |epipotential(vi)-epipotential(vj)|

2) Initially each vertex vi ∈ V is a cluster in it self.
3) New clusters are formed from previous clusters if ver-

tices vi and vj connected by the qth edge in ordering
i.e. ogeoq = (vi, vj) is such that vi and vj are in two
different clusters than,
if (w(ogeoq ) <internal difference of both clusters)
group the clusters
else
if (wof(oq) < αk)
group the clusters
else
do nothing.
Internal difference of the clusters is defined to be
the maximum edge weight in the minimum spanning
tree of the cluster, MST (C,E). That is Int(C) =

max
e∈MST (C,E)

w(e).

More formally, let C1 and C2 are two different clusters
including vi and vj the clusters will be merged if
w(ogeoq ) ≤ Int(C1, C2) or w(oofq ) ≤ αk (αk is
threshold for difference in optical flow potential be-
tween two pixels).

4) To enforce temporal consistency the following is done.
The algorithm considers a node, vi(t), at time instant
t and records the cluster Cj(t) with which it is asso-
ciated at that instant. The clusters to which the same
node vi was associated in previous n instances are also
looked at. If there is an uninterrupted sequence of at-
least k instances where the node belonged to the same
cluster, Ck, and if the last instant of that uninterrupted
sequence is no earlier than three instances before the
current instant, t, then vi(t) is still associated with Ck.
This is done to ensure continuity with the past. Else
vi(t) is associated to Cj . A more formal procedure
invoking a decaying term in the edge potential due to
optical flow was tried that did not give as effective
results as above. So it was decided to continue to
maintain temporal consistency in the above fashion.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results

We validate our algorithm using our own Lab dataset and
several other publicly available datasets.

3 Men Sequence: This dataset was created using a Point
Grey firewire camera. This outdoor dataset has 3 moving
people in some part of IIIT-Hyderabad campus. Fig. 4 shows
that our method can efficiently segment multiple moving
objects. Fig. 4(a) shows an image from 3 men sequence.

Fig. 4. These are the results on the 3 men sequence. This dataset
was collected from a Point Grey firewire Camera.(a) An image of 3
men sequence. (b) Sparse map of the scene. (c) optical flow map. (d)
Recursive geometric motion potentials map. (e) Results from only geometry
potentials. (f) Final results calculated from geometry potentials and optical
flow potentials. (g) Extracted moving people.

Fig. 4(b) shows the sparse map of the scene generated by
Visual SLAM module. Fig. 4(c) shows optical flow map and
Fig. 4(d) shows the estimated recursive geometric motion
potentials. Fig. 4(e) shows the segmentation due to only these
motion potentials. Fig. 4(f) shows the motion segmentation
results from the coherence of the optical flow potentials
and geometric potentials. This figure clearly explains that
segmentation results from coherence of optical flow and
geometric are better than the segmentation results due to only
geometry. Fig. 4(g) shows us the extracted moving objects.

Fig. 5. Results on Rotation sequence. TOP LEFT: A scene involving
a moving person from Rotation sequence. TOP RIGHT: The map of the
scene generated by VSLAM. BOTTOM LEFT: Optical flow map. BOTTOM
RIGHT: The extracted moving person.

Motion-Cut dataset: This is the same dataset which
was used in [8]. We have shown our results on 2 different
sequences namely Rotation Sequence and Cube Sequence
out of many sequences in this dataset. Fig. 5 shows results
on the Rotation sequence. Fig. 6 shows the results on the
cube sequence.

Versailles Rond Dataset: This is an urban outdoor se-
quence taken from a fast moving car, with multiple number
of moving objects appearing and leaving the scene. Some
parts of this dataset have upto 4 moving cars and we are
able to segment all of them to a robust accuracy. Only left
of the stereo image pairs has been used. Fig. 7 shows the
motion segmentation and reconstruction results.

CamVid Dataset: We tested our system on some dynamic



Fig. 6. Results on Cube sequence. This sequence has a moving cube.
TOP LEFT: A scene involving a moving object from Cube sequence.TOP
RIGHT: The map of the scene generated by VSLAM. BOTTOM LEFT:
Optical flow map. BOTTOM RIGHT: The extracted moving object.

Fig. 7. Results on a dynamic part of Versailles Rond Dataset. This image
has 3 moving cars. TOP LEFT: A scene involving 3 moving cars. TOP
RIGHT: The map generated by VSLAM. BOTTOM LEFT: Optical flow
map. BOTTOM RIGHT: The three extracted moving cars.

parts of the publicly available CamVid dataset [33], [34].
This a road sequence involving a camera mounted on a
moving car. The results on this sequence is highlighted in
Fig. 8. Fig. 8(a) shows an image of the scene. Fig. 8(b) is
the recovered optical flow map. Fig. 8(c) is the result of
clustering over geometric motion potentials only. Fig. 8(d)
is the final segmentation result due to integration of optical
flow potentials and geometric potentials. Fig. 8(e) is the final
extracted moving object. It should be noted that in the current
result some part of the moving car is occluded by a pole
and we are able to successfully recover both parts of the
car, whereas the part corresponding to the pole is correctly
classified as the non moving background.

B. Analysis

In this section we describe how by judiciously integrating
geometry and 2D optical flow cues we are able to over-
come both larger errors and smaller inaccuracies in motion
segmentation. The integration process essentially exploits
the coherence of optical flow and geometry cues as well
as temporal coherence to provide for a more consistent
segmentation closer to ground truth.

Preservation of Motion Coherence: Fig. 4(e) shows the
clusters formed by the graph based clustering algorithm
purely based on geometric cues. The degenerate motion of

Fig. 8. Results on a some dynamic part of CamVid Dataset. (a) An
image from CamVid dataset. This image has 1 moving car and some part
of that car is being occluded by a pole. (b) Recovered optical flow Map. (c)
Zoomed version of result from geometry only. (d) Zoomed version of final
segmentation result. (e) Zoomed version of final extracted moving object.

pixels between the head and neck of the person on the left
results in parts of these pixels having a potential similar to the
static background. This results in the moving person getting
segmented into more than one object. On the other hand
the optical flow map is shown in Fig. 4(c). The coherence
in optical flow potentials result in a single cluster formed
across the face. The integration step explained in step 3 of the
algorithm in III-G results in an eventual segmentation shown
in figure Fig. 4(f), wherein clusters separated by geometric
cues are merged together if the 2D motion cues from optical
flow indicate a large degree of coherence amongst them.

Fig. 9. This figure shows an explanation of decreasing no. of tracks over
wider baseline. (a), (b) are two images from 3 men sequence separated by 4
images in between. (c) most recent optical flow map. (d), (e), (f) corresponds
to tracks on the 4th image, 5th image and 6th and final image. (g) is result
due to geometric cues only. (h) results from coherence of geometry and
optical flow and (i) is the final extracted moving objects.

Maintaining Segmentation at Narrow Baselines: The
geometric cues entail a wider baseline for their efficacy.
Despite the denseness of segmentation the tracks obtained
over wider baselines tend to be less dense than those obtained
over narrow baselines. As a result there is an ambiguity



to cluster separated pixels together; one such segmentation
result is shown in Fig. 9. Fig. 9(a), (b) shows 2 images from 3
men sequences separated by 4 images in between. (c) shows
the very recent optical flow map. Fig. 9(d), (e), (f) shows that
number of tracks decreases as baseline becomes wider. This
can be seen through increased appearance of background
pixels (black) onto the foreground objects. Here tracks only
on the moving objects have been shown. The ambiguity
regarding whether or not to merge the various separated
clusters resembling salt and pepper noise is resolved through
motion coherence cues from optical flow. Fig. 9(g) shows
result of clustering on geometric motion potentials only. Fig.
9(h) shows the eventually segmented motion clusters. Fig.
9(i) shows the extracted moving objects.

Fig. 10. This figure gives an explanation geometric coherence. (a) An
image from the Versailles Rond dataset. (b) Optical flow map. (c) Motion
segmentation result from the geometric potentials only. (d) clustering over
the recovered optical flow map. Cluster only on two moving cars have been
shown here. (e) This image shows the result of geometric coherence along
with optical flow. (f) Final extracted moving cars.

Geometric Coherence: As much as optical flow cues
provide for coherence of 2D motion, geometric cues can
provide coherence where optical flow need not. For example
Fig.10(d) shows clustering over optical flow map of the
image 10(a). Clusters formed only on two moving cars have
been shown here. It should be noted that multiple clusters are
formed on the two cars due to lack of coherence in 2D flow
vectors. However the geometric potentials are similar across
both the cars as they primarily portray the satisfaction or
not of the geometric constraints. Thus the clusters formed
by geometry are as shown in Fig.10(c), while the overall
segmented motion clusters are shown in Fig.10(e) as a result
of the integration proposed in step 3 of the segmentation
algorithm III-G.

Temporal Coherence: The temporal coherence is por-
trayed by Fig. 11. In this result Fig. 11(a) is an image from
CamVid dataset. (b) is the recovered optical flow map. (c),
(d) and (e) are three consecutive results for frames previous
to current frame shown in Fig. 11(a). (f) is the intermediate
result of motion segmentation algorithm without temporal
coherence. (g) is the result of recursive clustering III-G step
4. In this result the violet clusters are supposed to be part of
non-moving background. (h) is the final result of recursive
clustering and (i) shows the final extracted moving cars. Parts
of non moving background (white) in 11(c), 11(d), 11(e) gets

Fig. 11. This figure shows an explanation of temporal coherence. (a) An
image from CamVid dataset. (b) Recovered optical flow map. (c), (d) and
(e) are motion segmentation results on last three frames. (f) clustering on the
current optical flow. (g) is the result from step 4 of the recursive clustering
algorithm III-G . In this result the clusters which are in violet are supposed
to be the part of non moving background. (h) gives the final result from the
temporal recursive clustering. (i) shows the final extracted foreground.

classified as moving in 11(f). Enforcing temporal consistency
as described in step 4 of algorithm mentioned in section III-
G results in parts of the background correctly classified in
figure 11(h).

C. Datasets used:

The datasets used in this paper are complex in various
ways. For example the three men dataset has at various places
parts of the moving foreground merge with the background if
one would use state of the art grabcut algorithms to segment
foreground based on color. Figure 12 shows a grabcut result
on figure 4(a), where the persons in the middle and left are
not segmented accurately as the foreground, indicating how
the foreground blends with the background in this dataset.
Such a situation is not to be found for example in the dataset
over which results were shown in [8], where grabcut results
match the results portrayed in [8]. These experiments are not
shown here for brevity of space. Also the results shown for
Versailles Rond which is a grayscale dataset portray a very
difficult degenerate case of the camera tailing the moving
cars. The motion cues used in this paper is able to segment
such objects with significant accuracy. The CamVid dataset
consists of pedestrians moving slowly at very far distances
from the camera, which are difficult to detect and segment
at narrow baselines. The uploaded video shows segmentation
of such moving objects at far distances.

V. SYSTEM DETAILS

The system is implemented in MATLAB with the aid of
C++ and OpenCV. We have used the Classic+NL version
of the optical flow mentioned in [5]. We tested our im-
plementation on standard laptop (Intel Core i7) and in our
implementation the total computational time is 7 minutes for
each frame averagely. The computational cost is mostly in



Fig. 12. This figure shows an explanation of how grabcut (color con-
sistency) fails on our 3 men dataset.(a) Rectangle in green is the bounding
box for grabcut algorithm. Blue shows stroke for background and red shows
stroke for foreground. (b) Result from grabcut. (c) shows result for grabcut
on the left most person.

the optical flow calculation step which itself takes around
6.5 minutes. We also tested our system using other optical
flow algorithms which are real time. Even with these optical
flows, we are able to get very high quality segmentation.
The reason for using Classic+NL optical flow is its use of
median filtering and preservation of motion information even
at boundaries of object.

VI. CONCLUSIONS

This paper presented a method for dense segmentation of
multiple moving objects from a moving monocular camera.
The method integrates optical flow and geometry cues to
provide for a dense segmentation through a graph based
clustering algorithm that has been modified to work on
videos as well as to aptly integrate multiple cues. The paper
describes how both these cues are able to complement each
other to segment moving objects performing difficult degen-
erate motions. The results have been shown on five different
outdoor datasets, where accurate segmentations showcase the
efficacy of the method. The authors opine that this is the
first such result to show dense motion segmentation with
a single moving camera on various outdoor datasets with
multiple moving objects. A fully perspective model of the
camera has been used and there are no restrictions on the
kind of motion to be professed either by the camera or the
objects. Such a segmentation method goes hand in hand with
VSLAM systems that reconstruct not only the stationary
world but also the dynamic objects thereby providing for
a robust scene interpretation and mapping. Such systems
would find immense use in outdoor autonomous navigation
and collision avoidance.
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