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Abstract—In this paper, we tackle the problem of multibody
SLAM from a monocular camera. The term multibody, implies
that we track the motion of the camera, as well as that of other
dynamic participants in the scene. The quintessential challenge
in dynamic scenes is unobservability: it is not possible to unam-
biguously triangulate a moving object from a moving monocular
camera. Existing approaches solve restricted variants of the
problem, but the solutions suffer relative scale ambiguity (i.e.,
a family of infinitely many solutions exist for each pair of
motions in the scene). We solve this rather intractable problem
by leveraging single-view metrology, advances in deep learning,
and category-level shape estimation. We propose a multi pose-
graph optimization formulation, to resolve the relative and
absolute scale factor ambiguities involved. This optimization
helps us reduce the average error in trajectories of multiple
bodies over real-world datasets, such as KITTI [1]. To the best
of our knowledge, our method is the first practical monocular
multi-body SLAM system to perform dynamic multi-object and
ego localization in a unified framework in metric scale.

I. INTRODUCTION

Monocular SLAM research has significantly matured over
the last few decades, resulting in very stable off-the-shelf
solutions [2]-[4]. However, dynamic scenes still pose unique
challenges for even the best such solutions. In this work,
we tackle a more general version of the monocular SLAM
problem in dynamic environments: multi-body visual SLAM.
While monocular SLAM methods traditionally track the ego-
motion of a camera and discard dynamic objects in the scene,
multi-body SLAM deals with the explicit pose estimation
of multiple dynamic objects (dynamic bodies), which finds
important applications in the context of autonomous driving.

Despite being an extremely useful problem, multibody vi-
sual SLAM has not received comparable attention to its uni-
body counterpart (i.e., SLAM using stationary landmarks).
This can primarily be attributed to the ill-posedness of
monocular multibody Structure-from-Motion [5]. While the
scale factor ambiguity of monocular SLAM is well-known
[2]-[4], [6], the lesser-known-yet-well-studied relative scale
problem persists with multibody monocular SLAM [5], [7]-
[12]. In a nutshell, relative-scale ambiguity refers to the
phenomenon where the estimated trajectory is ambiguous,
and is recovered as a one-parameter family of trajecto-
ries relative to the ego-camera. Each dynamic body has
a different, uncorrelated relative-scale, which renders the
problem unobservable [S5] and degeneracy-laden [7], [9],
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Fig. 1: We propose a monocular multibody SLAM pipeline
which accurately recovers motion of dynamic participants in
the scene in metric scale. Illustrated explanation of proposed
approach and the results can be found here.

[12]. This incites us to explore the usage of static feature
correspondences in the environment for ego and dynamic
vehicle motion estimation in metric scale'.

We propose a multi pose-graph optimization framework
for dynamic objects in a scene, and demonstrate its ability
to solve for multiple object motions including ego vehicle
unambiguously, in a unified global frame in metric scale.
To the best of our knowledge, this is the first monocular
multibody SLAM to represent moving obstacle trajectories
in a unified global metric frame, on long real-world dynamic
trajectories. The quantitative results presented in Sec. VI
demonstrate the efficacy of the proposed formulation.

In the remainder of this paper, we elaborate upon the
following key contributions:

1) Leveraging single-view metrology for scale-
unambiguous static feature correspondence estimation

2) A multi pose-graph formulation that recovers a metric
scale solution to the multibody SLAM problem.

3) Practicality: Evaluation of our approach on challeng-
ing sequences from the KITTI driving dataset [1]

II. RELATED WORK

The earliest approaches to monocular multibody
SLAM [9], [13]-[16] were based on motion segmentation:
segmenting multiple motions from a set of triangulated
points. Extending epipolar geometry to multiple objects,
multibody fundamental matrices were used in [9]-[11], [16].

Trajectory triangulation methods [8], [17], on the other
hand, derive a set of constraints for trajectories of objects,

IWe use the term metric scale to denote a coordinate frame in which all
distances are expressed in units of metres.
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and solve the multi-body SLAM problem under these con-
straints. Ozden et al. [5] extend the multi-body Structure-
from-Motion framework [14] to cope with practical issues,
such as a varying number of independently moving objects,
track failure, etc. Another class of approaches applies model
selection methods to segment independently moving objects
in a scene, and then explicitly solve for relative scale
solutions [10], [13], [14]. It is worth noting that the above
approaches operate offline, and extending them for online
operation is non-trivial.

Kundu et al. [7] proposed a fast, incremental multi-body
SLAM system that leverages motion segmentation to assign
feature tracks to dynamic bodies, and then independently
for relative-scale for the segmented motions. Critical to their
success is the underlying assumption of smooth camera mo-
tions. Later Namdev et al. [12] provided analytical solutions
for a restricted set of vehicle motions, (linear, planar, and
nonholonomic).

More recently, Ranftl er al. [18] presented a dense monoc-
ular depth estimation pipeline targeted at dynamic scenes,
and resolve relative scale ambiguity. CubeSLAM [19] pro-
poses an object SLAM framework for road scenes. However,
it only estimates a per-frame relative pose for each object,
and does not unify it to construct a trajectory (to avoid
relative-scale-ambiguity).

With the advent of deep learning, improvements to object
detection [20]-[23] and motion segmentation have resulted in
such methods directly being employed in multi-body SLAM.
Reddy et al. [24] and Li et al. [25] present approaches
to multi-body SLAM using a stereo camera. In this case,
however, the problem is observable, while we handle the
harder, unobservable case of monocular cameras.

III. OVERVIEW OF THE PROPOSED PIPELINE

With traffic scene frames as input, we estimate:

1) Ego-motion in metres in static global system for each
input frame with SE(3) formulation.

2) Trajectory estimates to each object in the traffic scene
being captured by the camera in metres in static global
frame for each input frame with an SE(3) formulation.

We obtain the above estimates with a pipeline summarized
in the following manner:

1) We take a stream of monocular images as input to our
pipeline.

2) We exploit 3D depth estimation to ground plane points
as a source of vehicle localizations in ego-camera
frame as explained in Sec. IV-A.

3) Alternatively, as explained in Sec. IV-C, we fit a base
shape prior to each vehicle instance uniquely to obtain
refined vehicle localizations in ego-camera frame.

4) To obtain accurate odometry estimations, we exploit
depth-estimates to unique point-correspondences to
scale ORB-SLAM?2 [26] (we use ORB-SLAM2 and
ORB interchangeably unless otherwise specified) ini-
tialization to metric units as explained in Sec. IV-B.

5) Finally, we resolve cyclic-consistencies (cf. Sec. V) in
our pose-graph optimization formulation.

6) This provides accurate multi-body localizations in a
static global frame and consistent metric scale.

IV. VEHICLE LOCALIZATION AND ODOMETRY
ESTIMATION

A. Depth Estimation for Points on Ground Plane

We use known camera intrinsic parameters K, ground
plane normal n, 2D bounding boxes [27] and camera height
h in metres to estimate the depth of any point on the ground
plane®. Given the 2D homogeneous coordinates to the point
in image space to be z;, we estimate the 3D depth to them
using the following method as shown in Song et al. [28]:

2Flat-earth assumption: For the scope of this paper, we assume that the
autonomous vehicle is operating within a bounded geographic area of the
size of a typical city, and that all roads in consideration are somewhat planar,
i.e., no steep/graded roads on mountains.
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B. Odometry Estimations

The initializations to our odometry pipeline (c¢f. Fig. 2)
come from the ORB trajectory [26] in a static-global frame
but in an ambiguous ORB scale as opposed to our require-
ment of metric scale. We scale the ego-motion from the
ORB-SLAM?2 [26] input by minimizing the re-projection
error of the ground point correspondences between each pair
of consecutive frames. Given frames ¢ — 1 and ¢, we have
odometry initializations in 3D in ORB scale from ORB-
SLAM?2 as T;_; and T; respectively. We obtain the relative
odometry between the two frames as follows?:

T = (T) ' x T )

We now obtain ORB features to match point correspon-
dences between the frames t—1 and ¢ and use state-of-the-art
semantic segmentation network [20] to retrieve points x;_1
and z; that lie on the ground plane. We obtain corresponding
points X; 1 and X; in 3D, given the camera height, via Eqn.
1 as explained in Sec. IV-A. To reduce noise incorporated by
the above method, we only consider points within a threshold
in depth of T = 12 metres from the camera. Further, we obtain
the required scale-factor « that scales odometry from Eqn. 2
via a minimization problem as shown in Eqn. 4, the objective
function to which is elaborated as Eqn. 3:

F(a) = (Xe—1 — (R X X¢ + atry ™)) 3)

min F(a)" x F(a) “)

Here, R!™" and tr!~' represent the relative rotation matrix

and translation vector respectively. After solving the above

minimization problem, we finalize our scale factor « as the
mean of solutions obtained from the following:
X, 1 — (R % XN x tri—!

a = ( t—1 ( t X t)) X ry (5)

(tri 7T x tri™!

C. Pose and Shape Adjustments Pipeline

We obtain object localizations through a method inspired
from Murthy et al. [29]. Our object representation follows
from [29]-[31], based on shape prior consisting of k ordered
keypoints which represent specific visually distinguishable
features on objects. Here, we stick with 36 keypoints struc-
ture from Ansari ef al. [31]. We obtain the keypoint local-
izations in 2D image space using a CNN based on stacked
hourglass architecture [32] and use the same model trained
on over 2.4 million rendered images for Ansari et al. [31].

Borrowing the notations from Murthy et al. [29], we begin
with a basis shape prior for the object used as a mean
shape X € R3F. Let B basis vectors be VV € R3#*B
and the corresponding deformation coefficients be A € RE.
Assuming that a particular object instance has a rotation of
R € SO(3) and translation of tr € R? with respect to the

3We use X to denote matrix multiplication for the scope of this paper.

camera, its instance X € R3* in the scene can be shown
mathematically using the following shape prior model:

X=Rx(X+VxA)+tr (6)
Here, R = diag(|[R,R,R,...,R]) € R?”“Xi”iand
tr = (trT trT tr?, . trT)T € R3*. Also, X =

(Y?,YQT,Y?)T, ...,Yf() € R3* represents the basis shape
prior and the resultant shape for the object instance is
X = (xT, X7, XT .., XI') € R3 where each X; rep-
resents one of the k = 36 keypoints in 3D coordinate
system from camera’s perspective. Now, Let the ordered
collection of keypoint localizations in 2D image space be
&= (2T,27,27,..,2T,) € R?*. Given that 7, represents
the function to project 3D coordinates onto 2D image space
using the camera intrinsics 1 = (fz, fy, ¢z, ¢y), fairly accu-
rate estimates for the pose parameters (R, tr) and the shape
parameter (A) for the object instance can be obtained using
the following objective function:

2
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Minimizing the objective function (cf. Eqn 7) separately
for pose parameters (R, tr) and shape parameters (A) pro-
vides us with an optimal fitting of the shape prior over the
dynamic object. We obtain the object orientation as R after
pose parameter adjustments. The object’s 3D coordinates
from the camera tr’ is obtained from the mean of wheel
centres.

V. MULTI-OBJECT POSE GRAPH OPTIMIZER
A. Pose-Graph Components

Fig. 3 illustrates a simple pose-graph structure containing
two nodes A and B and a binary-edge between them. Using
the terminologies from g2o [33], any node A in the pose
graph is characterized by a pose T € SE(3) called the
estimate which defines its pose with respect to the static-
global frame of reference W. Meanwhile, a binary-edge from
A to B is represented with a relative pose T4 € SE(3) called
the measurement which defines the pose of node B from node
A’s perspective. Mathematically, the constraint introduced by
the binary-edge is given as:

Yap = (T5)"" x (TX) "' x T§ ©)

Assuming relative correctness between each term in Eqn.
9, it results in an identity matrix Iy € SE(3) irrepective of
the order of transformation. Thus, Eqn. 9 reduces to:

TExTHE xTY =1L (10)

Clearly, the order in which the transformations are applied
do not change the consistency of the respective cycle in the
pose-graph. Thus, Eqn. 10 can also be written as:

TY xT® x T = Iy

(1)



Fig. 3: Illustration of a simple pose-graph defined by a
constraint defined from nodes A to B by a binary edge.

B. Pose-Graph Formulation

Fig. 4 illustrates the pose graph structure between every
consecutive set of frames ¢ — 1 and ¢ containing four nodes
and four edges between them. We obtain the estimates for
camera nodes ¢(t — 1) and ¢(t) (i.e., Tc(t 1) and Tvé;)) and

c(t—1
measurement for the camera-camera edge (i.e. T, ( ) from

our odometry estimation (cf. Sec. IV-B). We use thlS odome-
try to register dynamic object localizations from pose-shape
adjustment pipeline as explained in Sec. IV-C to provide for
the estimates T%—l) and T%) to vehicle nodes v(t — 1)
and v(t). We obtain measurement for the camera-vehicle
edge (i.e., T t 1) , ”(t)) from shape and pose adjustment
(cf. Sec. IV ). Moreover we use depth estimation from
ground plane using Song et al. [28] as explained in Sec. I'V-
A as a source of vehicle localization that is unique from the
localizations obtained from Sec. IV-C. This registered with
our odometry estimations provides for our vehicle-vehicle
edge measurement i.e., T;’((tt_l). Now, from Eqn. 10, the cost
function for the above binary-edges, Yece, Tevr—1)» Yeo(r)
and Y,,, can be defined mathematically as:

Y., =W e(t—1)

w
c(t=1) X Teyy
Yevt—1) = T(it 11> X Tyt ™ x Toli1)
Yewry = T x ToY x Thlyy

(t)
Yoo =T | x TR

x Ty
(12)

w
(t 1) X Tty

Cumulatively, the above cost functions for a single loop
illustrated in Fig. 4 can be represented as:

T= ch X ch(t) X (’r'uv)71 X (’rcv(t—l))71

On substituting Eqn. 12 in Eqn. 13, and on further simpli-
fication, we obtain the resultant function for cumulative cost
which clearly defines the cyclic consistency within the loop
defined by the four binary edges:

13)

x T'U(t 1) _ 14

c(t—1) c(t) v(t)
T=T x T xT (t—1) =

e(t) o(t) v(t—1) (14)

C. Confidence Parameterization

In addition to relative pose between participating graph
nodes, the parameterization for each edge includes a positive
semi-definite inverse covariance matrix or information matrix
Qp € RV*N where E represents the edge in pose graph and
N represents the dimension of the Lie group in which poses
are defined. Here, all poses and transformations are defined
in SE(3). We can thus take N = 6 for information matrix Qg
for each edge. We use this as confidence parameterization

Pose Graph for
Ego-Camera

Pose Graph for
Dynamic Object

Fig. 4: Illustration of our multi-body pose-graph structure
defined between a pair of consecutive frames. Nodes in blue
correspond to the primary pose-graph for the ego-motion
while those in correspond to the secondary pose-graph
for the dynamic objects in the scene.

for sources of input-data in pose-graph. To make the most
of this, we scale the information matrix for an edge E by
scale factor A\ € R to get effective information matrix Qp
that is finally sent as a parameter:

Qr = Mg (15)

We categorize all edges in our pose-graph formulation
into three types namely camera-camera, camera-vehicle, and
vehicle-vehicle. Each type corresponds to a unique source
of input data for the constraint. This formulation coupled
with the corresponding confidence parameter A, enables us
to scale the effects of the respective categories of edges ap-
propriately. Given that odometry estimates are fairly reliable,
we assign a relatively high constant scaling to its information
matrix for our experiments on all sequences.

Given that we obtain dynamic vehicle localizations in
camera frame from two different sources as explained in Sec.
V-A, we make intelligent use of the confidence parameter A,
to scale the information matrix corresponding to the camera-
vehicle and the vehicle-vehicle edges in our pose graph.
It has been observed over a large number of vehicles that
localizations obtained from Sec. IV-C performs better than
the those obtained from Sec. IV-A for vehicles closer to the
camera (up to about 45 metres). This can be attributed to the
keypoint localizations being inaccurate for far away objects.
However, estimates from Sec. IV-A are more accurate at
depths far away from the camera (over 45 metres). Factors
like visible features on vehicles do not affect these estimates.

VI. EXPERIMENTS AND RESULTS
A. Dataset

We test our procedure over a wide range of KITTI-
Tracking training sequences [1], spanning over rural and
urban scenarios with a number of dynamic objects in the
scene. We perform localizations on objects primarily consist-
ing of cars and mini-vans. Our localization pipeline provides
accurate results over objects irrespective of their direction of
motion and maneuvers undertaken by them as well as the
ego-car. The labels provided in the dataset are used as ground
truth for getting the depth to the vehicle’s center from the
camera. The corresponding ground truth for odometry comes
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Fig. 5: Qualitative results on various sequences. Col I shows input images with bounding boxes for vehicles mapped in Col
2 and Col 3. While Row I and Row 3 illustrate our performance on multi-vehicle traffic scenarios, Row 2 shows results for
a far away vehicle over a long sequence. Ego-vehicle is shown in black whereas the red, blue and green plots show unique
vehicles in the scene with corresponding dotted plots showing the ground truths. Note that entire ground truth trajectory is
shown at once in the figures whereas our results are up to the instance frame shown in Col 1. More detailed results can be

found here.

from GPS/IMU data, which is compiled using the OXTS data
provided for all the KITTI-Tracking training sequences.

B. Qualitative Results

1) Pose and Shape Adjustments: We obtain accurate
localizations in ego-camera frame by fitting base shape
priors to each non-occluded and non-truncated vehicle in the
scene with respect to the ego-camera. While the pipeline is
dependent on the keypoint localizations on these vehicles,
factors like large depth from camera are bound to affect
the accuracies with respect to ground truth. However, this
approach ensures fairly accurate vehicle localizations for the
pose-graph optimizer to apply its edge constraints. Fig. 6
illustrates wireframe fitting and subsequent mapping in ego-
frame for a traffic scenario consisting of multiple vehicles.

2) Odometry Estimation: For accurate visual odometry,
we exploit distinguishable static ORB [2], [26] features
on the road plane from entities like curbs, lane markers
and any irregularities on the road to obtain quality point
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Fig. 6: Localizations in ego-camera frame after pose and
shape estimations for a dynamic multi-vehicle scenario.

correspondences. While the approach is dependent on factors
like reasonable visibility, we obtain robust performance over
a diverse range of sequences many of which are over a 100
frames long. Fig. 7 illustrates how our method achieves a
fairly accurate scaling of odometry to provide an initializa-
tion that competes well with the corresponding ground truth.



Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq No. 3 4 18
Car ID 0 1 Ego-car 2 Ego-car 1 2 3 Ego-car | Avg Error
Frame Tength 41 92 123 149 149 62 83 141 141
Namdev et al. [12] | 13.81 | 11.58 11.49 11.18 11.12 3.77 | 5.93 3.72 3.69 8.47
Ours 1.61 4.99 1.96 2.14 6.49 1.29 | 3.45 | 2.40 2.27 2.96

TABLE I: Comparative performance based on ATE of our pipeline.

Absolute Translation Error (ATE) (Root Mean Square) in Global Frame (metres)
Seq number 3 4 18
Car ID 0 1 Ego-car 2 Ego-car 1 2 3 Ego-car | Avg Error

Frame length 41 92 123 149 149 62 83 141 141
Initialization 1.62 4.99 1.96 13.65 6.43 1.33 3.47 3.53 2.24 4.36
Only C-C and C-V edges 1.62 5.01 1.98 13.65 6.43 1.32 3.48 3.24 2.24 4.33
Only C-C and V-V edges 2.88 5.22 1.96 2.14 6.43 1.29 4.00 2.80 2.24 3.22
Only C-V and V-V edges 1.61 5.68 3.54 2.24 6.41 1.65 3.03 2.24 2.76 3.23
With C-C, C-V and V-V edges 1.61 4.99 1.96 2.14 6.49 1.29 3.45 2.40 2.27 3.01
Percentage Errors 6.60% | 2.07% — 1.23% — 3.36% | 3.39% | 2.02% — 3.11%

TABLE II: ATE for all vehicles in a static-global frame recognized by the formulation across various sequences. The
percentage error (with all edges) with respect to ground-truth depth explains the drift experienced by the vehicles in the
scene with respect to both its total distance traveled and its initial depth from the static global frame. The same is not shown

for Ego-Car as the denominator for this metric becomes very

Sequence 3, Frame 10-132, RMSE 2.385932
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—Ground Truth
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Fig. 7: Odometry estimations in metric scale in blue.
GPS/IMU trajectory is in red and ORB trajectory in its
scale is in . The figure illustrates that our odometry
estimation is proficient on sharp turns and long sequences.

3) Pose-Graph Optimization: We resolve each cyclic-
loop for the ego-camera with each vehicle (¢f. Eqn. 14) in
the scene in our optimization formulation. The optimization
problem runs for a maximum of 100 iterations and performs
consistently well on a wide range of sequences irrespective
of sequence length, number of objects in scene and object in-
stance lengths. A unique pose-graph structure for all vehicles
including ego-motion at each time instance ensures effective
error re-distribution across all trajectories based on efficient
confidence parameterization (¢f Eqn. 15). Fig. 5 illustrates
ego-motion as well as the motion of various vehicles over
many sequences from the KITTI Tracking dataset [1].

C. Quantitative Results

1) Odometry Estimations: To improve odometry estima-
tions, we place a threshold 7' on depth from camera upto
which we consider point correspondences. This is set based
on our observation that the accuracy of the 3D depth to the
point correspondences lowers with depth from the camera.
Table III summarizes our experiments with various threshold
values before we finalize our threshold at T = 12 metres.

While T = 12 meters delivers best results for most se-

small since the ego-motion begins from the global origin.

Seq no. | Seq length ) Thrf;h(’ld (nllgtres) 50

1 41 4.39 | 5.63 5.61 5.18
3 123 1.65 | 2.45 1.91 2.57
4 149 7.64 | 884 | 9.59 | 10.96
6 51 5.90 | 2.37 | 2.38 2.82
9 80 552 | 1.35 | 1.44 1.44
18 141 1.98 | 3.31 2.98 3.36

Average ATE 4.51 3.99 | 3.98 4.39

TABLE III: Analysis between various threshold settings for
odometry estimations by computing Absolute Translation
Error (ATE) in metres. (cf. Sec. IV-B)

quences mentioned in Table III, we see that T = 15 metres
performs better for sequences 6 and 9, both of which involve
the ego-vehicle taking a sharp turn at an intersection. This
is because we rely on ground plane features including and
largely contributed to by the lane markers on the road plane.
Given that the segment of road plane in the scene at an
intersection is devoid of any road/lane markers, we do not
get enough feature correspondences from closer segments of
the road. Meanwhile, increasing the threshold enables us to
pick up points from the road plane continuing beyond the
intersection which contains better scope for quality feature
correspondences in the form of lane markers. Consequently,
a relatively larger threshold performs better.

2) Pose-Graph Optimization: Our pose-graph formulation
consists of three types of edges namely camera-camera(C-
C) edges, camera-vehicle(C-V) edges and Vehicle-Vehicle(V-
V). Each of these are accompanied by a unique confidence
parameter A. To understand the contribution category of
edges to our pose-graph optimization, we analyse the results
on removing these constraints. Table II summarizes our
observations. It can be noted that few vehicles in sequence
3 and the ego-vehicle in sequence 4 perform better when
C-C constraints are relaxed. This is because, the optimizer
generally utilizes reliable edges in each loop of the pose-
graph to improve the relatively less reliable edges, provided



their information matrices are scaled appropriately. Given
that the C-C edges are less reliable in these sequences,
relaxing its constraints enables other edges to improve upon
the overall error. A similar explanation can be given for
the errors for ego-motion in sequence 18. Since C-C edges
of the ego-motion in sequence 18 are more accurate than
the corresponding C-V edges of other vehicles, we obtain a
better result for the same when the C-V edge constraint is
relaxed. Both C-C and V-V edges are generated using the
odometry estimations and are influenced by its accuracy too.
Table I compares our performance with Namdev et al.
[12]. Since ATE is not reported in their literature, we calcu-
late the ATE after running the available implementation. As
is evident from Table I, we showcase superior performance
in all sequences when compared with Namdev et al. [12].

D. Summary of Results

While Fig. 5 illustrates how our trajectories perform with
respect to the ground truth, Table II shows how our pose-
graph formulation successfully redistributes errors about
constraints with high confidence parameter. Table 1 reports
our performance with respect to Namdev ef al. [12]. Tables
II and I vindicate the efficacy of the proposed pipeline as the
absolute translation error(ATE) are typically around 3m for
sequences more than 100m in length. The last row of Table II
denotes the percentage error, which is significantly low for
fairly long sequences at an average of 3.11%, considering
that the original problem is intractable and hard to solve.

VII. CONCLUSION

Monocular Multi-body SLAM is ill-posed as it is im-
possible to triangulate a moving vehicle from a moving
monocular camera. This observability problem manifests in
the form of relative scale when posed into the Multibody
framework. With the arrival of single view reconstruction
methods based on Deep Learning, some of these difficulties
are alleviated, but one is still entailed to represent the
camera motion and the vehicles in the same scale. This
paper solves for this scale by making use of the ground
plane features thereby initializing the ego vehicle and other
dynamic participants with respect to a unified frame in metric
scale. Further, a pose graph optimization over vehicle poses
between successive frames mediated by the camera motion
formalizes the Multibody SLAM framework.

We show trajectories of dynamic objects and ego vehicle
over sequences of more than a hundred frames in length with
high fidelity ATE (Absolute Translation Error). To the best
of our knowledge, this is the first such method to represent
trajectories in the global frame over long sequences. The
pipeline accurately maps trajectories of dynamic participants
far away from ego camera and its scalability to map multi-
vehicle trajectories is another salient aspect of this work.
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