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Abstract—In this paper, we present a computationally efficient
algorithm for solving a class of chance constrained optimization
under non-parametric uncertainty. Our algorithm is built on the
possibility of representing arbitrary distributions as functions
in Reproducing Kernel Hilbert Space (RKHS). We use this
foundation to formulate chance constrained optimization as one
of minimizing the distance between a desired distribution and the
distribution of the constraint functions in the RKHS. We provide
a systematic way of constructing the desired distribution based
on the notion of scenario approximation. Furthermore, we use the
kernel trick to show that the computational complexity of our
reformulated optimization problem is comparable to solving a
deterministic variant of the chance constrained optimization. We
validate our formulation on two important robotic applications:
(i) reactive collision avoidance of mobile robots in uncertain
dynamic environments and (ii) inverse dynamics based path
tracking of manipulators under perception uncertainty. In both
these applications, the underlying chance constraints are defined
over non-linear and non-convex functions of the uncertain pa-
rameters and possibly also decision variables. We also benchmark
our formulation with the existing approaches in terms of sample
complexity and the achieved optimal cost highlighting significant
improvements in both these metrics.

I. INTRODUCTION

Consider the following optimization problem in terms of a
scalar variable u.

min g(u). (1a)
pc(u) ≥ η. (1b)

u ∈ F . (1c)

pc(u) = P (f(w1,w2, u) ≤ 0), (2)

Here, g(u) is a user-defined cost function, P (.) represents
probability and f(.) is the constraint function which depends
on the decision variable u and uncertain parameters, w1,w2.
The dependence of f(.) on both w1,w2 and u could possibly
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be non-linear and non-convex. However, we assume that f(.)
is separable in u. The inequality (1b) can be generalized
to include any number of uncertain parameters and multiple
chance constraints. Nonetheless, the case with two uncertain
parameters is rich enough to encompass many common robotic
applications (see Section IV). Further, multiple optimization
variables can also be accommodated. However, for easier
exposition, we first restrict our analysis to the simple case
described above. Extensions to a more general case are
straightforward, and we discuss those later in the paper.

The set F represents the feasible space of u and is assumed
to be convex for simplicity. Optimizations such as (1a)-(1c)
are called chance constrained optimizations and are used
extensively for decision making under uncertainty. In robotics
and control applications, they form the backbone of the robust
Model Predictive Control (MPC) frameworks. For example,
see [1], [2], [3], [4].

In this paper, we consider two challenging motion plan-
ning/control applications. The first application shown in
Fig.2(a)-2(b) involves navigating a mobile robot in dynamic
and uncertain environments. Herein, we consider noise arising
from both perception and ego-motion, and the chance con-
straints are formulated to ensure that the probability of colli-
sion avoidance is above the specified threshold. The motivation
for this application stems from the fact the prediction in dy-
namic environments (e.g., neighboring vehicles in autonomous
driving) would always have some uncertainty associated with
it. Furthermore, autonomous vehicles like cars would have
noise due to lateral and longitudinal slip; quadrotors would
have wind disturbances, etc., leading to uncertainty in the
motion model.

Our second application is shown in Fig.2(c)-2(d) is a
stochastic variant of inverse dynamics based path tracking for
manipulators. We assume that the manipulator has noise-less
motions but noisy state estimation. Consequently, the manipu-
lator should compute the necessary torque commands for path
tracking while considering the state estimation uncertainty to
ensure that the probability of exerting a torque that violates the
specified bounds is under some threshold. This requirement
can be naturally put in the form of chance constraints. The
motivation for considering this example stems from cable-
driven and soft inflatable manipulators like Raven [5] and [6]
for which encoder readings do not provide a realistic estimate
of the configuration of each link. Furthermore, for inflatable
manipulators, physical properties like inertia may not also be



Fig. 1. An illustration of the observations made in Remark 1. The shape of
the distribution can be manipulated by u. An appropriate shape is one where
most of the mass lies to the left of f(.) = 0

known accurately. Our formulation can act as a building block
for complex torque control with these manipulators.

Remark 1. At an intuitive level, chance constrained opti-
mizations can be interpreted as a problem of ensuring that
a specific portion of the mass of the distribution f(w1,w2, u)
lie to the left of f(.) = 0 (refer to Fig. 1). For given uncertain
parameters w1,w2, the distribution is parameterized by the
decision variable u and therefore can be used to manipulate
the location of a specified portion of its mass. However, each
choice of u incurs a cost g(u).

Remark 2. The chance constraint probability η has a di-
rect correlation with the amount of mass of the distribution
f(w1,w2, u) lying to the left of f(.) = 0. A larger mass
amounts to a higher η.

A. Computational Challenge

Chance constrained optimizations are known to be very dif-
ficult to solve. The complexity increases further when the
uncertainty is non-parametric, that is, the analytical, functional
form of the probability distribution of w1,w2 are not known.
Chance constraints are easy to solve when w1, w2 are assumed
to have a Gaussian distribution and the constraint function f(.)
is affine with respect to u for given w1, w2 [7], [8]. However,
in general, optimization problems where chance constraints
are defined over non-linear and non-convex functions, and the
underlying uncertainty cannot be represented in any parametric
form are known to be computationally intractable. Thus,
various approximations and reformulations are proposed in the
existing literature to tackle chance constrained optimization
problems.
Scenario Approximation: A popular approximation called the
scenario approach [9], [10] starts with, drawing n samples (or
scenarios) of w1,w2 from their distribution and then replaces
(1b) with n2 constraints of the form fi(wi1,w

j
2, u) ≤ 0,∀i, j.

The scenario approach has a very interesting set of pros
and cons. On the one hand, it is conceptually simple and is
applicable even when the parametric form of the distribution
of uncertain parameters is not known, and just their samples
are given. On the other hand, the naive implementation of
the scenario approach is known to be overly conservative.

TABLE I
IMPORTANT SYMBOLS

f(.) Constraint function
η Chance constraint probability
pf (u) Distribution of the constraint function
pdesf Desired distribution
w1,w2 uncertain parameters
wi

1,wj
2 ith, jth sample of uncertain parameters

iw2 ith variant of the uncertain parameter w2.
k(., .) Kernel function
µpf

RKHS embedding of the distribution
f(w1,w2, u) or pf (u)

µ
pdes
f

RKHS embedding of the distribution pdesf

E[f(.)] Expectation of a function f(.) with respect to its
random arguments

V ar[f(.)] Expectation of a function f(.) with respect to its
random arguments

To be precise, the cost g(u) increases with n, although the
solution becomes more robust at the same time. Works like
[11] provide algorithms for rejection sampling to reduce the
conservativeness of the scenario approach.
Surrogates for Chance Constraints: [12], [13], [14], [15]
proposed to replace chance constraints with the surrogate (3).

E[f(w1,w2, u)] + ε
√
V ar[f(w1,w2, u)] ≤ 0, ε > 0, (3)

where, E[.], V ar[.] represent the mean and variance of f(.),
taken with respect to random variables w1,w2. Using Can-
telli’s inequality, it can be shown that the satisfaction of (3)
ensures that chance constraints are satisfied with η ≥ ε

1+ε2 .
However, it should be noted that this bound can be rather
loose. The attractive feature of (3) is that it is applicable for
a wide class of chance constraints. However, its efficiency is
predicated on how easy it is to compute analytical expressions
for E[.] and V ar[.]. For example, if f(.) is non-linear or/and
the parametric form of w1,w2 is not known, then computing
an accurate analytical expression for E[.] and V ar[.] becomes
a very challenging problem. A workaround has been proposed
in works like [14], [16] [17] where the analytical expressions
for E[.] and V ar[.] are approximated through Monte Carlo
sampling.
Sample Average Approximation: Another approach for re-
ducing the conservativeness of the scenario approach is to
reformulate the chance constraints as (4) using the so-called
sample average approximation (SAA) given by (5) [18].

p̃c(u). ≥ δ (4)

p̃c(u) ≈
1

n2

∑
i

∑
j

If . (5)

If =

{
1, if f(wi1,w

j
2, u) ≤ 0.

0, otherwise.

Here, wi1,w
j
2 represent the ith, jth samples of w1,w2 and If

represents an indicator function. The variable δ is similar but
not necessarily the same as the chance constraint probability
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Fig. 2. Applications of chance-constrained optimization considered in this paper. Fig. (a) shows a robot avoiding collision with a dynamic obstacle in a
deterministic noise-less setting. Fig. (b) represents the stochastic variant of the collision avoidance problem wherein the robot has noise in its motion commands
as wells its perception of the movement of the dynamic obstacle. In this setting, the chance constraints model the probability of collision avoidance. Fig. (c):
Problem set-up for inverse dynamics based path tracking for a two-link planar manipulator in a deterministic setting. Fig. (d): Inverse dynamics based path
tracking under perception uncertainty leading to noisy estimates for the joint position (grey shaded configurations) and joint velocities. The torque that the
manipulator can exert for path-tracking depends on the joint positions and velocities. Thus, noise in these entities means that the manipulator is unsure of the
maximum torque it can generate without violating the specified bounds. We formulate chance-constraints to ensure that the torque bounds are satisfied with
some specified probability.

η [18]. A strong advantage of SAA (5) is that it automatically
allows for violation of f(wi1,w

j
2, u) ≤ 0 for some appropriate

subset of samples of wi1,w
j
2 (depending on specified η or δ)

which in turn leads to solution with less conservative cost g(u).
A closer look would reveal that p̃c(u) as given by (5) is in fact
the sample approximation of pc(u) [18]. A key bottleneck in
using SAA is that reformulation of (1a)-(1c) using (4) leads
to a mixed integer optimization wherein the number of binary
variables would be the product of the number of samples of
w1,w2. Thus, even if we have 20 samples of each of them,
we would have to deal with 400 binary variables which is
computationally intensive if not practically intractable. Note
that in [18], the uncertainty is clubbed in a single parameter
which is different from the set-up considered in this paper.
B. Key Idea and Motivation for RKHS Embedding

Our main motivation is to perform distribution level reasoning
as SAA but at the same time do away with the use of
binary variables. We conjecture that this can be achieved by
working with the distribution of f(w1,w2, u) rather than the
distribution of f(w1,w2, u) ≤ 0 (as done in SAA [18]). Let,
pf (u) represent the distribution of f(w1,w2, u) parameterized
in terms of u. As mentioned, earlier, for non-parametric w1,w2

and non-linear and non-convex f(.), it is intractable to obtain
an analytical expression of pf (u). However, it is possible to
obtain a expression for the embedding of pf (u) in the Repro-
ducing Kernel Hilbert Space (RKHS). Let µpf represent the
RKHS embedding of pf (u) given by the following expression
[19]:

µpf (u) =

n∑
i=1

n∑
j=1

αiβjk(f(wi1,w
j
2, u), .), (6)

where, k(.) : <n × <N → < is a positive definite function
called the Kernel. The αi, βj are the weights associated with
w1,w2 respectively. For example, if the samples are i.i.d then,
αi, βj = 1

n . An important thing to note from (6) is that for

the given samples of w1, w2, the embedding given by (6) is
dependent on the variable u.

The expression for µpf is semi-analytic in nature in the
sense that it is not possible to evaluate the right-hand side
of (6) since the second argument of the kernel is not known.
Nevertheless, the utility of (6) stems from a different perspec-
tive. To understand this further, assume that we have a known
distribution pdesf whose RKHS embedding is given by µpdesf

.
Now, it is straightforward to obtain an analytical expression
for the distance between the two distributions in RKHS [19]
[20].

MMD︷ ︸︸ ︷
‖µpf (u)− µpdesf

‖2 = 〈µpf (u)− µpdesf
, µpf (u)− µpdesf

.〉 (7)

The left hand side of (7) is called the maximum mean
discrepancy (MMD) between the distributions pf (u) and pdesf

and can serve as the measure of similarity between the two
distributions. The right hand side (7) involves computing the
inner product of two functions embedded in RKHS and thus
can be easily computed based on so-called ”kernel trick”. In
the classic distribution matching setup of [19] [20], pf (u) and
consequently MMD is independent of u and depends only on
uncertain parameters w1,w2. In contrast, MMD as defined in
(7) is clearly parameterized by u. That is, different u leads
to different MMD measure. We exploit this precise feature in
our formulation.
C. Contribution

In this paper we present the first result which provides a
reformulation of chance constrained optimization as a problem
of minimizing the cost g(u) augmented with MMD of the
distribution pf (u) with a certain given distribution pdesf , which
we will henceforth call as the desired distribution. We achieve
this by connecting two existing results: (i) Matching the tail of



two distributions can be formulated as a moment1 matching
problem [21] and (ii) Moment matching can be formulated
as minimizing MMD constructed with polynomial kernels
[20], ([22], pp-15). As shown in Section III, the connecting
link is derived from our interpretation of chance-constrained
optimization in the form presented in Remark 1 and the way
we construct pdesf .

We show that for the class of constraint function f(.) con-
sidered in this paper, the reformulated optimization problem
takes the form of a non-linear optimization problem easily
solvable through off-the-shelf gradient based optimizers. To
be precise, if f(.) is polynomial in u of order l, then the re-
formulated optimization consists of a cost which is polynomial
of order 2l subject to convex feasibility constraints (1c). This
is computationally significantly simpler than mixed-integer
optimization encountered in SAA approach [18]. Furthermore,
we present a detailed derivation of MMD constructed over
pf (u) and pdesf and put it in a form for which analytical
gradients can be easily computed.

We benchmark our formulation with the existing approaches
on the applications showed in Fig.2(a)-2(d) based on two
metrics, namely sample complexity and obtained optimal cost.
In particular, we highlight the following results: First, we
show that our formulation significantly outperforms a baseline
scenario approximation in both the metrics. Second, our for-
mulation and the SAA approach based on reformulated chance
constraints (5) result in a similar optimal cost. However,
our formulation leads to a simpler optimization problem and
enjoy better sample complexity. Finally, our formulation also
outperforms reformulation of chance constraints based on
expectation and variance of pf (u) proposed in works like [13],
[14], [15].

II. PRELIMINARIES

In this section, we summarize the pre-requisites needed to
build our main results.

A. Moment Matching Problem

Our formulation relies on matching the tail of pf (u) with
certain desired distribution pdesf to be constructed later. Hy-
pothesis: the Theorem 1 from [21] can allow us to interpret
tail matching as a problem of matching (or making similar)
the first d moments of pf (u) and pdesf .

Theorem 1. ‖pf (u)− pdesf ‖ ≤ B(d), B(d)→ 0, d→∞.

where, B(d) ≥ 0 is a non-negative function, the algebraic
expression of which can be found in [21]. The above theorem
suggests that the difference between two distributions can be
bounded by the function B(d) that decreases with increasing
order of moment d. Authors in [21] also show that this bound
is particularly tight near the tail end of the distribution.

1Moment here is used in the context of distributions and should not be
confused with physical moment resulting from the application of force.

B. Moment Matching in the RKHS

Assume that the RKHS embedding µpf and µpdesf
are com-

puted through the following polynomial kernel

k(x1, x2) = (1 + xT1 x2)d. (8)

Then the following theorem holds.

Theorem 2. If ‖µpf (u)−µpdesf
‖ → 0, then moments of pf (u)

and pdesf upto order d become similar.

Where, µpf (u) and µpdesf
are respectively the kernel mean

embedding of pf (u) and pdesf constructed according to (6).
Note that, pf (u) and consequently µpf (u) is a function of u.
However, since the desired distribution pdesf is assumed to be
known, µpdesf

is constant.
That is, decreasing the residual of MMD distance becomes a
way of matching the first d moments of the distribution pf (u)
and pdesf . Theorem 2 suggests that the MMD distance can be
used as a measure of similarity between the first d moments
of the two distributions.

C. Reduced Set Methods

One of the strengths of RKHS embedding is that it opens
up avenues for the use of established reduced set methods
to achieve a good sample complexity. Intuitively, reduced set
method provides a systematic way of choosing a subset of
samples while still retaining as much information as possible
from the original sample size by re-weighting the importance
of those samples. In other words, the reduced set methods
allow us to compute an optimal αi, βj for use in (7). Let
ŵ1

1, ŵ
2
1..wN1 and ŵ1

2, ŵ
2
2..wN2 represent N i.i.d samples of

w1, w2 respectively. Further, let w1
1,w2

1..wn1 and w1
2,w2

2..wn2
represent a subset (reduced set) of the i.i.d samples. It is
implied that n � N . Now, intuitively, a reduced set method
would re-weight the importance of each sample from the
reduced set such that they retain as much as information of
the original i.i.d samples. The weights αi, βj associated with
wi1 and wi2 are computed through the following optimization
problems.

argmin
αi

‖ 1
N

i=N∑
i=1

k(ŵ1
i, .)− 1

n

i=n∑
i=1

αik(wi1, .)‖2,
∑

αi = 1. (9)

argmin
βj

‖ 1
N

i=N∑
j=1

k(ŵ2
i, .)− 1

n

i=n∑
j=1

βjk(wj2, .)‖2,
∑

βj = 1.

(10)

Note that the cost functions in (9) and (10) can be easily
expressed as the inner product of two kernel functions, which
eventually simplifies through kernel trick [19].

1Note that if we fix u in µpf (u), then this embedding also becomes a
constant which is exactly the trick that we use in the latter sections to construct
a constant µpdes

f



Fig. 3. Overview of our RKHS based formulation

III. MAIN RESULTS

In this section, we derive our main result, which is a re-
formulation of chance-constrained optimization (1a)-(1c) into
a much simpler minimization problem. The following are our
key assumptions:

• We assume that the uncertainty is non-parametric, which,
in our case, means that the probability distribution func-
tions associated with w1,w2 are not known. Rather, we
have access to their n discrete samples. These samples
could come from a black box simulator, which mimics a
generalized distribution with arbitrary order of moments.

• We assume that the analytical form for the constraint
function f(w1,w2, u) is known.

A. Overview

Fig. 3 gives an overview of our RKHS based formulation.
We assume access to an environment that provides samples
of uncertain parameters w1,w2. Physically, this can represent
the possible states of the robot and the obstacles in the
environment. Our algorithm begins by computing a subset
of these samples denoted by w̃1, w̃2. We use these subset
samples to estimate a certain desired distribution. Next, we
compute the RKHS embedding of the desired distribution
pdesf and pf (u) through polynomial kernels. Subsequently,
we present the minimization of the distance between the two
RKHS embedding as a tractable substitute for our robust MPC
(1a)-(1c).

B. Algebraic Form of the Constraint Function

In this paper, we consider the chance constraints defined over
the following class of constraint functions.

f(w1,w2, u) =

l∑
i=0

hi(w1,w2)u
i, (11)

where, hi(w1,w2),<n → ×<n → < is a generic possibly
non-linear function of w1,w2, while ui represents a monomial
of order i. The definition (11) is very general and has the

famous affine class of chance constraints as a special case
with l = 1 and h0(w1,w2) = w2, h1(w1,w2) = w1. It
can be seen that even if the uncertain parameters, w1, w2

are Gaussian, the chance constraints defined over f(w1,w2, u)
may still be too complex to get an analytical characterization
for the distribution of f(w1,w2, u).

For the class of constraint functions (11), the RKHS em-
bedding (7) can be simplified in the following manner

µpf (u) =

i=l∑
i=0

µhi
ui. (12)

µhi =

i=n∑
i=1

j=n∑
j=1

αiβjk(hi(wi1,w
j
2), .). (13)

C. Desired Distribution

The notion of desired distribution is derived from the obser-
vations made in Remark 1. To recap, we want to ensure that
the distribution f(w1,w2, u) achieves an appropriate shape.
To this end, desired distribution acts as a benchmark for
f(w1,w2, u); in other words, a distribution that f(w1,w2, u)
should resemble as closely as possible for an appropriately
chosen u. We formalize the notion of desired distribution with
the help of the following definitions:

Definition 1. unom refers to any solution of the optimization
(1a)-(1c) that is associated with a low optimal cost J(unom).

Definition 2. Let w̃1, w̃2 be random variables which represent
the same entity as w1,w2 but belong to some known distribu-
tions pdesw1

, P desw2
. Further, when w̃1 ∼ pdesw1

and w̃2,∼ pdesw2
,

then, f(w̃1, w̃2, unom) ∼ pdesf . In such a case, pdesf is called
the desired distribution if the following holds:

P (f(w̃1, w̃2, unom) ≤ 0) ≈ 1.0, w̃1 ∼ P desw1
, w̃2 ∼ P desw2

.
(14)

Equation (14) suggests that if the uncertain parameters
belong to the distribution pdesw1

, pdesw2
, then the entire mass

of the distribution, f(w̃1, w̃2, u) can be manipulated to lie
almost completely to the left of f(.) = 0 by choosing
u = unom. This setting represents an ideal case because we
have constructed uncertainties appropriately, so that we can
manipulate the distribution of the chance constraints while
incurring a nominal cost.
Constructing the Desired Distribution:
We now describe how distributions pdesw1

, pdesw2
and pdesf can

be constructed. While exact computations may be intractable,
in this section, we provide a simple way of constructing
an approximate estimate of these distributions. The basic
procedure is as follows.

Given n samples of w1,w2 we construct two sets Cw̃1
, Cw̃2

respectively containing nw1
samples of w1 and nw2

samples
of w2. For clarity of exposition, we choose w̃1, w̃2 to identify
samples from set Cw̃1

, Cw̃2
. Now, assume that the following

holds.



f(w̃i1, w̃
j
2, unom) ≤ 0,∀w̃j1 ∈ Cw̃1

, w̃j2 ∈ Cw̃2
. (15)

By comparing (14) and (15), it can be inferred that the sets
Cw̃1

, Cw̃2
are in fact sample approximations of the distributions

pdesw1
and pdesw2

respectively. Furthermore, a set Cf containing
nw1
∗ nw2

samples of f(w̃i1, w̃
j
2, unom) can be taken as the

sample approximation of the desired distribution pdesf .
One last piece of puzzle remains. We still do not know,

however which nw1
samples of w1 and nw2

samples of w2

should be chosen to construct sets Cw̃1
, Cw̃2

. In particular, we
need to ensure that the assumption (15) holds for the chosen
samples. To this end, we follow the following process. We
arbitrarily choose nw1

samples of w1 and nw2
samples of w2

and correspondingly obtain a suitable unom as a solution to
the following optimization problem:

unom = argmin g(u). (16a)

f(wi1,w
j
2, u) ≤ 0∀i = 1, 2..nw1 , j = 1, 2..nw2 . (16b)

u ∈ F . (16c)

Note that satisfaction of (16b) ensures that the assumption
(15) holds. Few points are worth noting about the above opti-
mization. First, it is a deterministic problem whose complexity
primarily depends on the algebraic nature of f(.). Second,
the desired distribution can always be constructed if we have
access to sets Cw̃1

, Cw̃2
. The construction of these two sets

is guaranteed as long as we can obtain a feasible solution to
(16a)-(16c). Third, the computational burden of solving the op-
timization problem can be significantly reduced by some clever
sampling. For example, in our implementation, we compute
the left hand side of (16b) for different combination of samples
and then choose the set which leads to the least violation of the
constraints (16b). Finally, (16a)-(16c) is precisely the so-called
scenario approximation for chance constrained optimization
(1a)-(1c). Conventionally, scenario approximation is solved
with a large nw1 , nw2 (typically 200 samples of each leading
to a grid of 4 ∗ 104 and as many constraints ) in order to
obtain a solution that satisfy chance constraints (1b) with a
high η (≈ 0.90). In contrast, we use (16a)-(16c) to estimate the
desired distribution and thus, for our purpose, a small sample
size in the range of nw1 = nw2 ≈ 20 proves to be sufficient
in practice.

The RKHS embedding of these distributions can be obtained
in the following manner:

µpdesf
=

i=nw1∑
i=1

j=nw2∑
j=1

λiξjk(f(w̃
i
1, w̃

j
2), .), w̃i1, w̃

j
2 ∈ Cw̃1 , Cw̃2 ,

(17)
where, λi, ξj are constants derived from the reduced set
methods described in Section II-C.
Notion of Low: As well known, the number of samples
and optimal cost have an inverse relationship in scenario
approximation. So our use of the term ”low” signifies that

we want to construct the desired distribution with as low
number of samples as possible. Although we do not have a
theoretical bound on the number of samples required, in our
implementation, we empirically evaluate various sample sizes.
All our implementation in the paper were constructed with a
sample size of 5− 20.

D. Chance Constrained Optimization as a Moment Matching
Problem

In this section, we reformulate the chance-constrained opti-
mization (1a)-(1c) as a moment matching problem. Our key
idea builds upon Theorem 1. Recall that almost the entire mass
of pdesf lies to the left of f(.) = 0. It is thus clear that as we
make the tail of pdesf and pf (u) similar by matching higher
order moments, we ensure that more and more of the mass
of pf (u) gets shifted to the left of f(.) = 0. This in turn
would lead to the satisfaction of chance constraints (1b) with a
higher η (see Remark 2). Theorem 1 lays the foundation for the
following optimization problem which can act as a substitute
for the original chance constrained optimization (1a)-(1c).

argmin ρ1Lmom(Pf (u), P
d
f , d) + ρ2g(u). (18a)

u ∈ F . (18b)

Here, Lmom(.) is a cost function that measures the similarity
between the first d moments of pf (u) and pdesf . That is, a low
value of Lmom would imply that the first d moments of pf (u)
and pdesf are very similar.
Accommodating Chance Constraint Probability η: Op-
timization (18a)-(18b), accommodates the chance constraint
probability η in an implicit manner. Thus, the process of
obtaining solutions with different level of robustness based on
η is more indirect and involved than the original optimization
(1a)-(1c). In (18a)-(18b), the similarity between the tail of
pf (u) and pdesf not only depends on the residual of Lmom(.)
but also on the moment order d used to construct Lmom(.).
Fixing weights ρ1 and ρ2 and increasing d increases the
similarity near the tail end and thus leads to the satisfaction
of chance constraints with higher η. A similar goal can be
achieved by fixing d and ρ2 and increasing ρ1.

E. Reformulating Distribution/Moment Matching through
RKHS Embedding

The optimization (18a)-(18b) is still challenging to solve
as it is not clear how to derive a suitable analytical form
for Lmom(.). To the best of our knowledge, there is no
mapping that directly quantifies the similarity between the
first d moments of two given distributions. Here, we present
a workaround based on the concept of RKHS embedding and
Theorem 2. Essentially, if we construct the RKHS embedding
of pf , pdesf through polynomial kernel, then decreasing the
residual of MMD becomes a way of matching the first d
moments of the distribution pf (u) and pdesf . In other words,
MMD with the polynomial kernel can act as a surrogate
for Lmom(.). Using this insight, we present the following



optimization problem which can act as a surrogate for (18a)-
(18b).

argmin ρ1

MMD︷ ︸︸ ︷
‖µpf (u)− µpdesf

‖2 +ρ2g(u). (19a)

u ∈ F . (19b)

F. Simplification Based on Kernel Trick
We now use the so called ”kernel trick” to obtain a simplified
form for the optimization (19a)-(19b). In particular, we put
the cost (19a) in a form for which the gradient can be easily
computed. For the ease of exposition, we consider a specific
instance from the definition of constraint function (11) with
l = 2 i.e. f(.) = h0(.) + h1(.)u+ h2(.)u

2.
We have,

‖µpf (u)− µpdesf
‖2 = 〈µpf (u)− µpdesf

, µpf (u)− µpdesf
〉

= 〈µh0 + µh1u+ µh2u
2, µh0 + µh1u+ µh2u

2〉
−2〈µh0 + µh1u+ µh2u

2, µpdesf
〉+ 〈µpdesf

, µpdesf
〉. (20)

Expanding 〈µh0
+ µh1

u + µh2
u2, µh0

+ µh1
u + µh2

u2〉, we
get

u4〈
n∑
i=1

n∑
j=1

αiβjk(h2(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h2(wi1,w
j
2), .)〉

+2u3〈
n∑
i=1

n∑
j=1

αiβjk(h2(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h1(wi1,w
j
2), .〉

+u2〈
n∑
i=1

n∑
j=1

αiβjk(h2(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h0(wi1,w
j
2), .)〉

+u2〈
n∑
i=1

n∑
j=1

αiβjk(h1(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h1(wi1,w
j
2), .)〉

+2u〈
n∑
i=1

n∑
j=1

αiβjk(h1(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h0(wi1,w
j
2), .)〉

+〈
n∑
i=1

n∑
j=1

αiβjk(h0(wi1,w
j
2), .),

n∑
i=1

n∑
j=1

αiβjk(h0(wi1,w
j
2), .)〉. (21)

Using the kernel trick [19] on (21) reduces it to the following
expression

u4cαβKh2h2cTαβ + 2u3cαβKh2h1cTαβ + 2u2cαβKh2h0cTαβ
+u2cαβKh1h1cTαβ + 2ucαβKh1h0cTαβ + cαβKh0h0cTαβ , (22)

where,
cαβ = [α1β1, α1β2, α1β3, ...αnβn]1Xn2 . (23)

Khihj
=


K11
hi,hj

K12
hi,hj

K13
hi,hj

.. .. K1n
hi,hj

K21
hi,hj

K22
hi,hj

K23
hi,hj

.. .. K2n
hi,hj

. . . .. .. .

. . . .. .. .
Kn1
hi,hj

Kn2
hi,hj

Kn3
hi,hj

.. .. Knn
hi,hj

 .

(24)

Kab
hihj

=
k(hi(wa1 ,w1

2), hj(wb1,w1
2)), ... k(hi(wa1 ,w1

2), hj(wb1,wn2 ))
k(hi(wa1 ,w2

2), hj(wb1,w1
2)), ... k(hi(wa1 ,w2

2), hj(wb1,wn2 ))
., .., ..

k(hi(wa1 ,wn2 ), hj(wb1,w1
2)), ... k(hi(wa1 ,wn2 ), hj(wb1,wn2 ))


n×n

.

Following a similar process, the second term, 2〈µh0 +µh1u+
µh2u

2, µpdesf
〉 reduces to

2(cαβKh2fcTλξu
2 + cαβKh1fcTλξu+ cαβKh0fcTλξ), (25)

where,

cαβ = [α1β1, α1β2, α1β3, ...αnβn]1X(n∗n)

cλξ = [λ1ξ1, λ1ξ2, λ1ξ3, ...λnw1
ξnw2

]1X(nw1∗nw2 )
.

Khif =


K11
hi,f

K12
hi,f

K13
hi,f

.. .. K1nw1
hi,f

K21
hi,f

K22
hi,f

K23
hi,f

.. .. K2nw1
hi,f

. . . .. .. .

. . . .. .. .
Kn1
hi,f

Kn2
hi,f

Kn3
hi,f

.. .. Knnw1
hi,f


n2×(nw1

∗nw2
)

.

(27)
Finally, the last term, 〈µpdesf

, µpdesf
〉 in (20) can be handled

in a similar manner and thus, optimization (19a)-(19b) can be
expressed as the following non-linear optimization problem

min ρ1(a1u
4 + a2u

3 + a3u
2 + a4u+ a5) + ρ2g(u). (28a)

u ∈ F . (28b)

a1 = cαβKh2h2
cTαβ , a2 = cαβKh2h1

cTαβ
a3 = 2cαβKh2h0

cTαβ + cαβKh1h1
cTαβ − 2cαβKh2fcTλξ

a4 = 2cαβKh1h0
cTαβ − 2cαβKh1fcTλξ

a5 = cαβKh0h0cTαβ − 2cαβKh0fcTλξ + cλξKffcTλξ.

Computational Complexity The computational complexity of
our proposed algorithm has two specific parts. The first part
stems from the complexity of constructing the kernel matrix-
like (24) used to formulate the cost function (28a). This in turn
depends on the number of samples of the uncertain parameters
w1, w2. In the worst case, we require n2 samples. However,
as explained in Section II-C, the value of n can be optimized
using the reduced set methods.

The second part of the complexity stems from how difficult
it is to solve the optimization (28a)-(28b). The optimization
consists of a polynomial cost and convex feasibility constraints
and thus can be solved with gradient based techniques such as
projected gradient descent, sequential quadratic programming,
etc. Furthermore, there exists a variety of software libraries
like Scipy, which implement these optimization techniques.
Contrast this with the mixed-integer optimizations obtained
with SAA approach [18], which are not amenable to gradient
based techniques. Furthermore, in [18], the number of binary
variables is equal to the number of samples of the uncertainty
parameters.



Kab
hif =


k(hi(wa1 ,w1

2), f(w̃
b
1, w̃

1
2, unom)), ... k(hi(wa1 ,w1

2), f(w̃
b
1, w̃

nw2
2 , unom))

k(hi(wa1 ,w2
2), f(w̃

b
1, w̃

1
2), unom)), ... k(hi(wa1 ,w2

2), f(w̃
b
1, w̃

nw2
2 , unom))

. . . . . . . . .

k(hi(wa1 ,wn2 ), f(w̃
b
1, w̃

1
2, unom)), ... k(hi(wa1 ,wn2 ), f(w̃

b
1, w̃

nw2
2 , unom))


n×nw2

.

IV. APPLICATIONS

In this section, we consider two robotic/control applications
and model them in the form of the chance constrained opti-
mization (1a)-(1c) and also present their RKHS reformula-
tions. The motivation for this application have already been
explained in Section I.

A. Dynamic Obstacle Avoidance along a Given Path

Here, we consider dynamic collision avoidance between a
disk-shaped robot and non-reactive moving obstacles with
similar shapes (Fig. 2(a)). Both the robot and the obstacles
are assumed to have a single integrator motion model, i.e.,
they can instantaneously change their velocities. Further, we
consider a variant of the problem where the path of the robot
is fixed, and the robot achieves collision avoidance simply by
varying the magnitude of its forward velocity. As shown in our
earlier works [23], [24], the more general collision avoidance
like [25], [26] can be conveniently built from this special case.

Let, (x, y) and (ẋ, ẏ) be the position and velocity vector
of the robot at some specific time instant when the robot
detects an imminent collision with the obstacles. Similarly, let
(xo, yo) and (ẋo, ẏo) represent similar vectors for the moving
obstacle. It is clear that if the velocity vector of the robot
is modified as (uẋ, uẏ), then it continues to move along its
current path, although the magnitude of its forward velocity
gets scaled by a factor u. For u > 1, the robot would increase
its forward velocity while for u < 1, it would slow down
to avoid collisions. Therefore the dynamic collision avoidance
constraint can be written in the following form (refer to [24]
for details).

(rT v)2

‖v‖2 − ‖r‖
2 +R2 ≤ 0. (30a)

R = R+Ro. (30b)

r =

[
x− xo
y − yo

]
, v =

[
uẋ− ẋo
uẏ − ẏo

]
. (30c)

Here, R,Ro represent the radius of the footprint of the robot
and the obstacle. Inequality (30a) can be put in the following
more compact form, which resembles (11) with l = 2.

f(w1,w2, u) : h0(w1,w2) + h1(w1,w2)u+ h2(w1,w2)u
2 ≤ 0

(31)
where, w1 = (x, y, ẋ, ẏ) and w2 = (xo, yo, ẋo, ẏo).
Uncertainty: Assume that the robot has both perception and
ego-motion uncertainty in which case w1,w2 becomes ran-
dom variables with some unknown distribution. The collision
avoidance under uncertainty can be formulated through the
following chance constrained optimization.

min g(u) = (u− 1)2 (32a)

P (f(w1,w2, u) ≤ 0) ≥ η (32b)
u ≥ 0 (32c)

The cost (32a) minimizes the deviation from the current
forward velocities. Optimization (32a)-(32c) fits in the form
described by (1a)-(1c). After solving the above optimization
problem or rather the RKHS embedding based reformulation
of it, the robot draws a sample from its current velocity
distribution ẋ, ẏ and executes it after scaling by a factor u
to avoid collisions.
Multiple moving obstacles: If there are multiple moving
obstacles in the environment, then the parameter w2 needs
to be computed specifically for each moving obstacle. That is,
we have:

iw2 = (ixo,
i yo,

i ẋo,
i ẏo)

Consequently, we will also have multiple collision avoidance
constraints:

f(w1,
i w2, u) : h0(w1,

i w2) + h1(w1,
i w2)u+ h2(w1,

i w2)u
2 ≤ 0.

(33)
The chance constrained optimization would now have multiple
chance constraints and take the following form.

min g(u) = (u− 1)2. (34a)

P (f(w1,
i w2, u) ≤ 0) ≥ η,∀, i = 1, 2..m. (34b)

u ≥ 0. (34c)

Our RKHS embedding based reformulation would now have
the following form:

min ρ1
∑
i

MMD︷ ︸︸ ︷
‖µpfi (u)− µPdes

fi

‖2 +ρ2g(u). (35a)

u ∈ F . (35b)

Here, µpfi (u) represents the KME of the ith chance con-
straints (i.e with respect to each obstacle) and µpdesfi

represents
the KME of the desired distribution corresponding to the ith

chance constraints. Note that the first term in (35a) can be
obtained using the derivations presented in Section III-F.

B. Inverse Dynamics based Path Tracking

In this application, we consider the task of tracking a reference
trajectory xd(t) by a manipulator (Fig. 2(c)), which can be
framed as the following quadratic programming (QP) problem.

argmin
q̈(t)

1

2
‖J(q(t))q̈(t) + J̇(q(t), q̈(t))q̇(t)− ẍ(t)‖22. (36a)



M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) ≤ τmax. (36b)
M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) ≥ −τmax. (36c)

|q̈(t)| ≤ q̈max.. (36d)

Here, ẍ(t) = kp(x(t)−xd(t))+2
√
kp(ẍ(t)−ẍd(t))+ẍd(t) and

kp is a constant feedback gain. q(t) and q̇(t) represents the
joint angle and velocities at time t. Let the degree of freedom
of the manipulator be m, i.e, q(t) = (q1(t), q2(t)...qm(t)). J is
the manipulator Jacobian matrix. The inequalities (36b)-(36c)
ensures that the resulting q̈(t) is achievable without violating
the torque bounds. The QP (36a)-(36d) is solved in a one-
step receding horizon setting for trajectory tracking. To be
precise,the QP is solved for the joint accelerations at each
instant considering the current joint position and velocities.
The state is evolved with the current acceleration and the
process is repeated for a specific time duration.

Constraints (36b)-(36c) represent 2m affine inequalities
each of which can be represented in the following familiar
form:

fi(w1,w2, u1, u2..un) =

j=m∑
j=1

hji (w1.w2)uj(t) + hi(w1,w2) ≤ 0

∀i = 1, 2..2m, (37)

where,w1 = (q1(t), q2(t)...qm(t)),w2 = (q̇1(t), q̇2(t)...q̇m(t))

(u1, u2..um) = (q̈1(t), q̈2(t)..q̈m(t))

Trajectory Tracking under Perception Uncertainty As
mentioned earlier, unlike industrial manipulators, the link
configuration of cable-driven [5] and inflatable manipulators
[6] cannot be precisely known by just the encoder readings. To
perform torque based path tracking for these manipulators, we
formulate a variant of inverse dynamics based path tracking
where the manipulator has perfect motion capability but im-
perfect sensing for the joint angles q(t) and velocity q̇(t) (Fig.
2(d)). In such a case, q(t), q̇(t) and functions hji (.) and hi(.)
can be modeled as random variables. With this insight, we now
formulate a stochastic variant of the inverse dynamics based
path tracking problem as the following chance constrained
optimization:

argmin
q̈(t)

1

2
‖J(q(t))q̈(t) + J̇(q(t), q̇(t))q̇(t)− ẍ(t)‖22. (38a)

P (fi(w1,w2, u1, u2..un) ≤ 0) ≥ η. (38b)
|q̈(t)| ≤ q̈max. (38c)

Here, J(q(t)) and J̇(q(t), q̇(t)) represents the Jacobian matrix
formed with the mean variables q(t) and q̇(t). The inequality
(38b) ensures that the resulting q̈(t) can be achieved without
violating the torque bounds with at least probability η. It can
be seen that, (38a)-(38c) is an extended variant of the original
chance constrained optimization (1a)-(1c). Specifically, we
now have multiple decision variables along with multiple
chance constraints.

Remark 3. There is a subtle difference between the multiple
chance constraints in optimization (34a)-(34c) and (38a)-
(38c). In the former, multiple chance constraints arise because
the parameters iw2 were different for each obstacle while
the function f(.) remained the same for each constraint. In
contrast, in the latter, the functions fi(.) were different for
each constraint but the parameters w1, w2 remained same
across different constraints.

The RKHS embedding based reformulation of (38a)-(38c)
takes the following form.

min ρ1
∑
i

MMD︷ ︸︸ ︷
‖µpfi (u1, u2..un)− µpdes

fi

‖2 +ρ2g(u1, u2, ..un).

(39a)
|q̈(t)| ≤ q̈max.

(39b)

Here, µpfi (.) represents the KME of the ith chance constraints
and µpdesfi

represents the KME of the desired distribution
corresponding to the ith chance constraint.

V. RESULTS

In this section, we present simulations obtained by ap-
plying our formulation to the examples derived in the pre-
vious section. During each application, we also separately
benchmark our formulation with some of the existing ap-
proaches for chance constrained optimization. Extra deriva-
tions and simulation videos for the results can be found in the
supplementary material http://robotics.iiit.ac.in/uploads/Main/
Publications/Bharath journal/.

A. Collision Avoidance Results

1) Three Obstacle Benchmark with Non-Gaussian Uncer-
tainty: Here we consider a benchmark where the robot needs
to avoid collisions with three obstacles under Non-Gaussian
perception and motion uncertainty. Fig.4(a) represents the
configuration of the robot and the moving obstacles. At some
specific time instant, Figs.4(b), 4(c) represent the uncertainty
in the robot’s and the obstacle’s positions and velocities.
Note the non-Gaussian nature of the position and velocity
uncertainty. As shown in Section IV-A, the uncertainty in
position and velocity can be mapped to uncertain parameters
w1,w2 and consequently to functions h0(w1,w2), h1(w1,w2)
and h2(w1,w2). We subsequently use this information to
compute the collision avoidance velocity for the robot.

The solution process and results are summarized in Fig 5(a)-
5(f). As described previously, the solution process starts with
the construction of the desired distribution pdesfi

constructed
corresponding to chance constraints formulated with respect
to each obstacle 2. Subsequently, we ensure that the tail of
the distribution of pfi(u) is similar to pdesfi

by choosing an
appropriate u and the degree of the polynomial kernel d. The

2Recall that the parametric form for the desired distribution or even
pf (u) is not known. But for illustration purposes, we can use the Kernel
Density Estimation and empirical CDF methods to graphically represent the
distribution in our plots

http://robotics.iiit.ac.in/uploads/Main/Publications/Bharath_journal/
http://robotics.iiit.ac.in/uploads/Main/Publications/Bharath_journal/
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Fig. 4. (a): Collision avoidance scenario where the robot needs to avoid collision with three moving obstacles. (b): The position samples of robot and obstacles
at some specific time instant when the robot detects an imminent collision with the obstacles. (c): The uncertainty in velocities of robot and obstacles. It is
clear from the plots that they are non-Gaussian in nature, the Gaussian approximations of these distributions are also shown. The main intent of displaying
the Gaussian distributions is to show how poorly they approximate the original non-Gaussian distributions.

following key points should be particularly noted from the
plots. Fig.5(a)-5(c). As d increases more and more mass of
pfi(u) gets shifted to the right of fi(.) = 0 leading to an
increase of η. This can be further validated through the CDF
plots. This validates our main idea of reformulating chance
constrained optimization as a moment matching problem in
RKHS (see section III-D).

The improvement in collision avoidance probability with an
increasing value of d is also presented in Figs.5(d), 5(e), 5(f)
via a comparison of the position samples from where the robot
can either collide with (black) or avoid (red) the obstacles.
Snapshots from collision avoidance simulations are shown in
Figures 6(a)-6(h). It is easy to relate these snapshots to the
position samples from figures 5(d), 5(e), 5(f). As the value of
d increases, the robot chooses a velocity that results in more
and more clearance with the obstacles. This is what results in
reduction of colliding samples in Figs.5(d), 5(e), 5(f).

2) Cost-Robustness Trade-off: As mentioned in the Section
III-D, ρ1 and ρ2 trades-off robustness with cost. For a given ρ1,
increasing ρ2 would bias the optimization towards minimizing
the primary cost g(u) and thus decreasing η. This is shown in
Fig.7(a)-7(c). Alternately, for a fixed ρ2, increasing ρ1 would
prioritize minimizing the MMD cost which in turn improve
the robustness or η value.

3) Quantitative Benchmarking on Collision Avoidance: Ta-
ble II shows a comparison of the number of samples required
by different approaches to compute an optimal solution such
that the chance constraints are satisfied with a specified η.The
following points can be noted from the table

• As expected, a naive implementation of the scenario ap-
proach shows the worst sample complexity. For η ≈ 0.7,
we required 200 samples each of w1,w2 leading to a grid
of size 4 ∗ 104. For η ≈ 0.9, we required 500 samples
each of w1,w2.

• The SAA approximation proposed in [18] required a
sample size almost half of that required by the scenario

approach. For η ≈ 0.7, we needed 100 samples each of
w1,w2. This requirement increased to 200 for η ≈ 0.9.

• The approach of [13], [14] which is based on surrogate
constraints 3 shows an interesting trend. The sample
complexity is worse than scenario approach for η ≈
0.7. However, the sample size does not vary with η.
This is because the samples of the uncertain parameters
are used to obtain an estimate of E[f(w1,w2, u)] and√
V ar[f(w1,w2, u)] and importantly, this estimation is

independent of η.
• As can be seen from Table II, our proposed formulation

based on RKHS embedding has significantly better sam-
ple complexity than all the above-discussed approaches.
It required 20 samples each of w1,w2 to construct a
reasonable estimate of the desired distribution. An ad-
ditional 20, 40 samples were required to construct the
RKHS embedding based reformulations at η ≈ 0.7 and
η ≈ 0.9 respectively.

Figs.8(a), 8(b) compare the optimal cost obtained through
different formulations. The following important observations
can be drawn from it

• Our proposed formulation results in lower cost solutions
than approaches based on scenario approximation and
surrogate constraints (3) [13], [14]. The difference is
more pronounced for non-Gaussian uncertainty and at
higher η. In fact, at a higher η, the approach based on
(3) often runs into infeasibility.

• Interestingly, the SAA approach of [18] results in very
similar costs to those of our proposed formulation for
both Gaussian and non-Gaussian uncertainty. This is not
surprising as SAA proposed in [18] is indeed a very tight
approximation of the chance constraints.

Computational time: Tables III and IV show that our
proposed formulation outperforms existing works in terms of
computation time as well. The best factor of improvement
comes with respect to the approach based on surrogate con-
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Fig. 5. Figures show the simulation results for collision avoidance with three moving obstacles shown in Fig.4(b) under non-Gaussian uncertainty. In this
example, we have multiple chance constraints P (fi(w1, iw2, u) ≤ 0) ≥ η because the uncertain parameter w2 was different for each obstacle. Thus, as
shown in Figures (a), (b), (c), we need to construct three different desired distributions pdesfi

corresponding to chance constraints formulated with respect to
each obstacle. As seen in previous examples, an increase in the degree of the polynomial kernel d leads to the increase in the portion of the mass of pfi to
the left of f(.) = 0. Figures (d), (e), (f) validate the reduction of the colliding samples with an increase in d.

TABLE II
TABLE SUMMARIZING SAMPLE COMPLEXITY FOR COLLISION AVOIDANCE APPLICATION.

Approach P (f(w1,w2, u) < 0) ≈ 0.7 P (f(w1,w2, u) < 0) ≈ 0.9
Scenario w1,w2 = 200 w1,w2 = 500
SAA [18] w1,w2 = 100 w1,w2 = 200
E[f(w1,w2, u)] +
ε
√
V ar[f(w1,w2, u)] ≤ 0

w1,w2 = 800 w1,w2 = 800

Proposed RKHS embedding w1,w2 = 20, w̃1, w̃2 = 20 w1,w2 = 40, w̃1, w̃2 = 20

straints (3). Furthermore, our formulation shows a moderate
increase, with the number of obstacles. Note, that since the
considered collision avoidance application has just one deci-
sion variable u (increase or decrease of forward speed), we
sampled u within some fixed bounds in order to solve SAA
based formulation. This allowed us to avoid the mixed-integer
optimization proposed in [18].

B. Path Tracking Results for a 2 link Manipulator

Recall that in this application, we repeatedly solve the chance
constrained optimization (38a)-(38c) or rather the reformula-
tion of it (39a)-(39b) and evolve the joint angles and veloc-
ities according to the computed acceleration control input at
each iteration. Moreover, we have multiple chance constraints
P (fi(w1,w2, u1, u2) ≤ 0) ≥ η and thus, a desired distribution
pdesfi

needs to be constructed corresponding to each of them.
Fig.9(a), 9(b) show the distributions pdesfi

and pfi(.) (for one

of the chance constraints) at iteration 60 and 69 for d = 2.
Fig.9(c) shows the torque values obtained at each iteration.
The lines in black represent the mean torque values while the
cyan shows the uncertainty around it in the form of samples.
Fig.9(d) shows the tracking performance in terms of path
deviation and optimal cost values at each iteration. Comparing
pfi(.) and pdesfi

at both the iterations, it can be seen at iteration
60, the tails of the two distributions are more closely matched
and as a result, a larger portion of pfi(.) lies to the left of
f(.) = 0. A direct consequence of this can be observed in
the torque plots. At iteration 60, we observe fewer samples
of torque that violate the torque bounds compared to what we
observe at iteration 69.

1) Comparative Results for Path Tracking: We now com-
pare our proposed RKHS based formulation with the scenario
approach and the approach based on the surrogate constraint
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Fig. 6. Snapshots of collision avoidance simulation for d = 3, 5. Note how increase in d results in increase in clearance between the robot and the obstacles.
The increased clearance translates to improvement in probability of collision avoidance.
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Fig. 7. Illustration of the effect of ρ1, ρ2 on η for collision avoidance application.

TABLE III
TABLE SUMMARIZING COMPUTATION TIME (S) FOR COLLISION AVOIDANCE APPLICATION: P (f(W1,W2, u) < 0) ≈ 0.7

Approach One Obstacle Two Obstacles Three Obstacles
Scenario 0.072 0.12 0.17
SAA [18] 0.11 0.13 0.2

E[f(w1,w2, u)] + ε
√
V ar[f(w1,w2, u)] ≤

0
0.24 0.4 0.56

Proposed RKHS embedding 0.04 0.06 0.08

(3) in the context of the path tracking application. 3. Table
3We do not compare with the SAA approach of [18] here because its

computational complexity on this application becomes too prohibitive. The
collision avoidance application involved only one decision variable, and thus,
we could do a brute force search to solve the SAA formulated problem.
However, such an approach would not be suitable for the path tracking
application. Authors in [18] suggest a mixed-integer reformulation, wherein
the number of integer variables would be equal to the number of samples of
the uncertain parameters. But, we remark that such a reformulation would be
prohibitive for high dimensional robotic systems like manipulators.

V and VI summarizes the sample complexity for η ≈ 0.7
and η ≈ 0.9 respectively for different values of τmax. As
can be seen, our RKHS based formulation enjoys better
sample complexity than both the compared approaches in this



TABLE IV
TABLE SUMMARIZING COMPUTATION TIME (S) FOR COLLISION AVOIDANCE APPLICATION:P (f(W1,W2, u) < 0) ≈ 0.9

Approach One Obstacle Two Obstacles Three Obstacles
Scenario 0.15 0.26 0.41
SAA [18] 0.15 0.41 0.6

E[f(w1,w2, u)] + ε
√
V ar[f(w1,w2, u)] ≤

0
0.24 0.4 0.56

Proposed RKHS embedding 0.1 0.16 0.3

application too. The order of improvement increases with η.
Moreover, at η ≈ 0.7, an additional trend can be observed: the
order of improvement also improves as the chance constrained
optimization becomes tighter due to a decrease in τmax.
At η ≈ 0.9, the order of improvement remains almost the
same for various τmax. It can also be noted that the sample
complexity in this application is significantly lower than that
observed in the previous collision avoidance application. We
attribute this to the fact that fi(.) for path tracking application
is affine in terms of decision variable (see (37)) while in
collision avoidance application, it is a non-convex quadratic.
Fig.10 shows the comparison of average optimal costs ob-
served across 20 different problem instances. As can be seen,
our RKHS based formulation produces significantly lower
cost solutions, and the order of improvement increases with a
decrease in τmax.

Computational time: Tables VII and VIII compares the
computation time our proposed RKHS based formulation with
approaches based on scenario approximation and surrogate
constraints (3). The improvement provided by our formulation
is clearly visible.

C. Extension to three random variables

In this section, we show that our formulation can be easily
extended to include additional random variables apart from
w1,w2. In particular, we take the manipulator path tracking ex-
ample and introduce additional random variable w3 to include
the uncertainties in link lengths, mass, and inertia properties.
Due to lack of space, we do not present the mathematical
details, but it can be found in the supplementary material.
We instead focus on the results which are summarized in
the Fig.11(a)-11(b). In Fig.11(a), we show the increase in
the optimal cost upon inclusion of more uncertainty in the
problem through w3. Fig.11(b) shows that even with an in-
crease with uncertainty, our RKHS embedding based approach
outperforms existing methods like scenario approximation and
approaches based on surrogate constraints (3).

D. Consistency and Sample Complexity

The RKHS embedding proposed in [19], [20], [27], [22] is
consistent, i.e, it improves as the number of samples of w1,w2

increases. Further, these works relate estimation error with
sample size. In this section, we show that we inherit the con-
sistency guarantees in spite of the fact our RKHS embedding
has an additional complexity of being parameterized in terms
of control.

We begin by constructing a ground truth embedding in the
following manner.

µpf (u) =
1

N2

N∑
i=1

N∑
j=1

k(f(wi1,w
j
2, u), .), (40)

where, µpf (u) represents the same embedding as µpf (u) (see
6) but is computed over a larger number of samples. That is,
N � n. We can analyze the consistency by constructing the
following error function from [19] for a fixed value of u.

L = ‖µpf (u)− µpf (u)‖
2
2, (41)

and analyzing its behavior for an increasing value of n.
The results are summarized in Fig.12(a)-12(b) for (6)-(40)
constructed with unom. As can be seen, the error reduces with
an increase in the number of samples. For collision avoidance
application (12(a)), we consistently get a very small error for
samples as low as 40. For d = 5, the number of samples
required for the same level of error is higher. The sample
requirement for manipulator example (Fig.12(b)) follows a
similar trend.

VI. CONCLUSION AND FUTURE WORK

Mathematical operations in RKHS have been the backbone
for many of the modern machine learning algorithms. Exam-
ples of these span from kernel SVM to Gaussian Process.
Recent trends in data science and programming languages
widely advocate the use of probabilistic programming. Among
the many existing approaches used in probabilistic program-
ming, Hilbert space embedding of distributions has recently
gained a lot of popularity. In fact literature along the lines
of [19] even calls it Kernel Probabilistic Programming. We
have adopted a series of recent papers [19], [20], [27] in
this field that describes what a Hilbert space embedding of
a function of random variables would actually mean. One
of the key aspects of our work is connecting the theory of
RKHS embedding of distributions to a widely studied problem
of chance constrained optimization, which has applications in
both robotics and control.

We formulated chance constrained optimization as a prob-
lem of matching higher order moments of two distributions.
The eventual structure that our formulation takes is that of a
non-linear optimization problem, which can be easily solved
with the help of off-the-shelf solvers. We validated our for-
mulation on applications like dynamic collision avoidance of
mobile robots and path tracking of manipulators under torque
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Fig. 8. Average Optimal cost obtained with different methods for collision avoidance application observed across 20 different problem instances. Our RKHS
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TABLE V
SAMPLE COMPLEXITY FOR PATH TRACKING APPLICATION CORRESPONDING TO P (f(W1,W2, u1, u2) < 0) ≈ 0.7.

Approach τmax = ±8 τmax = ±5 τmax = ±3
Scenario w1,w2 = 15 w1,w2 = 25 w1,w2 = 30
E[f(w1,w2, u1, u2)] +
ε
√
V ar[f(w1,w2, u1, u2)] ≤ 0

w1,w2 = 120 w1,w2 = 120 w1,w2 = 120

Proposed RKHS formulation w1,w2 = 10, w̃1, w̃2 = 5 w1,w2 = 10, w̃1, w̃2 = 5 w1,w2 = 10, w̃1, w̃2 = 5

TABLE VI
SAMPLE COMPLEXITY FOR PATH TRACKING APPLICATION CORRESPONDING TO P (f(W1,W2, u1, u2) < 0) ≈ 0.9.

Approach τmax = ±8 τmax = ±5 τmax = ±3
Scenario w1,w2 = 30 w1,w2 = 40 w1,w2 = 50
E[f(w1,w2, u1, u2)] +
ε
√
V ar[f(w1,w2, u1, u2)] ≤ 0

w1,w2 = 120 w1,w2 = 120 w1,w2 = 120

Proposed RKHS formulation w1,w2 = 10, w̃1, w̃2 = 5 w1,w2 = 15, w̃1, w̃2 = 8 w1,w2 = 20, w̃1, w̃2 = 8

TABLE VII
COMPUTATION TIME (S) FOR PATH TRACKING APPLICATION CORRESPONDING TO P (f(W1,W2, u1, u2) < 0) ≈ 0.7.

Approach τmax = ±8 τmax = ±5 τmax = ±3
Scenario 0.062 0.08 0.1401
E[f(w1,w2, u1, u2)] +
ε
√
V ar[f(w1,w2, u1, u2)] ≤ 0

0.6 0.6 0.6

Proposed RKHS formulation 0.02 0.02 0.02

TABLE VIII
COMPUTATION TIME (S) FOR PATH TRACKING APPLICATION CORRESPONDING TO P (f(W1,W2, u1, u2) < 0) ≈ 0.9.

Approach τmax = ±8 τmax = ±5 τmax = ±3
Scenario 0.07 0.15 0.2
E[f(w1,w2, u1, u2)] +
ε
√
V ar[f(w1,w2, u1, u2)] ≤ 0

0.6 0.6 0.6

Proposed RKHS formulation 0.02 0.03 0.05

bounds. Our benchmarking clearly establishes the improve-
ment that our formulation provides over existing approaches
in terms of sample complexity and optimal cost.

At the moment, our formulation has some limitations, which
we would be looking to rectify in our future works. Firstly, the
cost function in our formulation is assumed to be deterministic,
i.e., it does not contain the uncertain parameters. One simple
way of rectifying this would be to formulate stochastic cost
as constraints using some slack variables. We are currently

evaluating the scalability of this idea. Secondly, we are work-
ing on benchmarking our formulation with approaches, which
first fits some distribution to the non-parametric uncertainty
and then performs the subsequent analysis. Examples of such
fitting techniques include Gaussian Mixture Model, Kernel
Density Estimator, Gaussian Process, etc. Finally, we are
also looking at more complex applications like multi-agent
navigation, reinforcement learning, etc.
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Fig. 9. The simulation results for inverse dynamics based path tracking under non-Gaussian uncertainty (Fig.2(d)). In this example, we repeatedly solve the
optimization (39a)-(39b), formulated with polynomial kernel with d = 2. At each iteration, we need to construct a desired distribution corresponding to each
chance constraint. Figures (a) and (b) show the desired distribution constructed at iteration 60 and 69. The figures also show the distribution of fi(.) for
u1, u2 obtained as a solution to (39a)-(39b). Figure (c) shows the torque plots. The solid black lines represent the mean torque values, while the cyan lines
show the uncertainty around it. Figure (d) shows the tracking performance in terms of path deviation and cost plot. Refer to the text for further insight.
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