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Abstract— In this paper we introduce a novel framework
of generating trajectories which explicitly satisfies the stability
constraints such as no-slip and permanent ground contact on
uneven terrain. The main contributions of this paper are: (1).
It derives analytical functions depicting the evolution of the
vehicle on uneven terrain. These functional descriptions enable
us to have a fast evaluation of possible vehicle stability along
various directions on the terrain and this information is used
to control the shape of the trajectory. (2) It introduces a novel
paradigm wherein non-linear time scaling brought about by
parametrized exponential functions are used to modify the
velocity and acceleration profile of the vehicle so that these
satisfy the no-slip and contact constraints. We show that non-
linear time scaling manipulates velocity and acceleration profile
in a versatile manner and consequently has exceptional utility
not only in uneven terrain navigation but also in general in any
problem where it is required to change the velocity of the robot
while keeping the path unchanged like collision avoidance.

I. INTRODUCTION

Trajectory generation for mobile robot on uneven terrain
is a challenging problem because the notion of the vehi-
cle stability governed by the vehicle-terrain interaction has
to be included in the planning framework. The primary
requirement for calculating stability on uneven terrain is
to calculate the position and attitude of the vehicle as it
evolves on the terrain. However for a passive suspension
car-like vehicle, not all states can be directly controlled. The
proposed work gives closed form functional relations which
gives the evolution of the vehicle’s passive state in terms
of actively controlled states. With this important feature in
place, it becomes possible to quickly analyse the velocity and
acceleration profiles of the trajectories and check whether
they satisfy the stability constraints. This forms the crux of
the proposed trajectory generation framework which follows
a two-step process.

At the first step the vehicle trajectory between a start
and a goal location is generated in the form of parametric
functions, without considering the vehicle dynamics. At the
second step the vehicle dynamics is considered and a non-
linear scaling transformation is proposed for trajectories such
that those satisfy the stability constraints. A single parameter
called smin is proposed whose existence decides whether
a given trajectory can be modified by non-linear scaling
transformation to satisfy the stability constraints.
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For Trajectories which cannot be modified to satisfy the
stability constraints, a trajectory replanning framework is
embedded in the planner. The replanning framework builds
on the fact that the parametric trajectory generation frame-
work proposed in this paper generates multiple trajectories
between a given start and goal location. Moreover as shown
in section III the shape of the trajectories can be controlled
to pass through stable regions.

II. RELATED WORK

The problem of generating stable trajectories on uneven
terrain has been addressed in the past by many researchers.
For example in [3,4] the planner produces trajectories con-
sidering postural stability. However we have shown in [5]
that postural stability measured in terms of variation of pitch
and roll angle proves to be inadequate for motion planning
purposes.For this reason a new metric was proposed in [5]
which measures vehicle stability by noting how well the
current velocity and acceleration profile satisfy the no-slip
and permanent contact constraint. The idea of using no-
slip and permanent contact constraint in the motion planning
algorithm has been exploited in the past in [6,7]. However the
key novelty of the current proposed work is that it provides
vehicle dynamics in 3D. This is in contrast to the point mass
[6] and planar model of[7].

The non-linear scaling transformation mentioned in the
previous section is an improvement over the constant scaling
transformation proposed in [1]. Scaling transformation is
an elegant mathematical technique which brings about a
transformation in the independent variable of the function
affecting its derivative while keeping the path taken by the
function unchanged. Due to this mathematical elegance, it
finds its way naturally in controlling the vehicle dynamics
along a given path. Hence in [1], it was exploited to make
the velocity and acceleration profile of the manipulator
trajectories satisfy the actuator bounds.In [2] the scaling
concept was used to generate stable trajectories for mobile
robots on planar uneven terrains. Both [1,2] however use a
very simple scaling concept which can be represented in the
following form:

du

dt
= s⇒ u = st (1)

(1) gives a transformation from the variable u to t. It
can be seen that t is just a scalar multiple of u and hence
derivative of any function g(u) gets scaled by a constant
factor s. However there is a critical problem with such
transformations which severely limits its use. To understand
this further, suppose that some function g(u) shown in
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Fig. 1. (a):Problem with constant scaling. (b) System overview

figure.1(a) describes the velocity of a vehicle and we employ
the above scaling transformation to modify it. It can be seen
that the scaled and unscaled velocity profile does not start at
the same point which means that the a constant scaling will
bring a discontinuity in the velocity space at the initial point.
Another interpretation of this can be that it is only possible to
use constant scaling transformation at a planning level and
not in a reactive manner while executing a trajectory. For
example midway while executing a trajectory, if it is required
to change for any reason the velocity and acceleration
profile while keeping the path unchanged, constant scaling
[1] cannot be used. Non-linear scaling transformation on
the other hand can adequately handle situations like these.
Obviously the problem of velocity discontinuity does not
arise when the initial unscaled velocity profile starts from
zero which is exactly what is being used in [1,2]. However on
a 3D uneven terrain a trajectory generation framework which
requires the vehicle to first de-accelerate to zero velocity is
not appropriate.

To get rid of the above problems we propose a scaling
transformation of the following form

du

dt
= k1e

−k2u (2)

We provide in later sections analytical expressions to deter-
mine constants k1 and k2 which controls the manipulation
of velocity and acceleration profile in a far more flexible
manner as compared to constant scaling described in (1).

Figure.1(b) gives an overview of the framework proposed
in the current work. The parametric trajectory generation
module shown in the figure is explained in section III. The
derivation of vehicle 3D states and dynamics is provided in
section IV. Non-linear time scaling is explained in section
V along with trajectory replanning. Simulation results are
presented in section VI.

III. PARAMETRIC TRAJECTORY GENERATION

For a passive suspension car-like vehicle,only the yaw
plane components i.e position x, y and heading α can be
controlled. All the other vehicle states are a function of yaw
plane components and in later sections we derive the exact
functional relationships between them. In this section we

derive the yaw plane trajectories as parametric functions like
[8,9,10] for a given a start and goal location. Let us being
with parametrizing the derivatives of the states as

ẋ(u) =

2∑
i=1

ai cos(iωu) + bi sin(iωu) (3)

ζ(u) = tanα =

2∑
i=1

ci cos(iωu)+di sin(iωu)⇒ α̇ =
ζ̇

1 + ζ2

(4)
By the non-holonomic constraint of the robot we have

ẏ cosα− ẋ sinα = 0⇒ ẏ = ẋ tanα = ẋζ (5)

Integrating (3) and (5)we get the parametrised trajectory as
χ(u) = (x(u),y(u) The parameters ai, bi, ci, di can be
obtained by solving the following two point boundary value
problem 

x(u0) = x0, y(u0) = y0, ζ(u0) = ζ0
dx
du (u0) = vi,

dα
du (u0) = αi

x(uf ) = xf , y(uf ) = yf , ζ(uf ) = ζf

(6)

(6) can be solved by putting it as an equality constraint in
an optimization routine with the objective function as

L(x(u), y(u)) =

∫ uf

u0

√
ẋ2 + ẏ2du (7)

Figure 2 shows a sample output of optimisation routine.The
various trajectories between the start and goal point are
generated by varying the value of ζf in (6).An important
thing to note about figure 2 is that there are two sets of
trajectories C+ and C− approaching the goal from two
different sides. The C+ trajectories corresponds to ζ > 0 and
C− corresponds to ζ < 0.Another important aspect is that
the shape of the trajectory can be controlled by the magnitude
of ζ with radius of curvature increasing with increasing |ζ|.
This feature is utilised to make the trajectory bend towards
stable regions of the terrain. We have observed that defining
the states as in (3)-(5) has improved the convergence of
the optimization problem for large ζf as compared to the
performance of similar parametric function definitions found
in [19].Since range of tangent function is infinite,ζf can
attain any real value.



Fig. 2. Figure how paths with varying radius of curvatures can be generated
by changing ζ.Two distinct sets of shapes can be seen corresponding to
ζ > 0 and ζ < 0

IV. DERIVATION OF VEHICLE 3D STATES AND
DYNAMICS

Fig. 3. A Car-like Vehicle

From the yaw plane trajectory just obtained in the previous
section, we obtain the 3D trajectory of the vehicle as it
evolves on an uneven terrain. We assume that the terrain
equation can be known in the following form

a = f(b, c) (8)

Where ’a’ represents the terrain height at the x and y
coordinate (a, b). The assumption of known terrain equation
in this form has been used in the past by many researchers
[6,11,12,13] primarily because of the fact that such terrain
equation can be generated by Data Elevation Models (DEM).
Some significant paper addressing this issue can be found
in [14,15,16]. With the help of terrain equation this section
derives analytical functions relating x, y, α to vehicle’s z
coordinate, roll β and pitch γ.To this effect consider the holo-
nomic constraints defining the geometry of the vehicle(refer
figure.3) −→

P OG +
−→
P Gci =

−→
P Oci (9)

where
−→
P Gci = −→r f

−→r f = R
[
δh 2.5−i

|(2.5−i)|w −(li + r)
]
,∀i = 1, 2, 3, 4

δ = 1, i = 1, 4
= −1, i = 2, 3
R is the rotation matrix describing the orientation of the

body fixed {G} with respect to frame moving with the body
{L} .{G} has the same orientation as the inertial frame
{0}.(2.5 − i) and δ has been incorporated to ensure proper
sign of w and h corresponding to each vertex of the chassis.
li are the leg lengths.h and w are half width and breadth of
the chassis and r is the radius of the wheels.(9)written for all

the wheels represents 12 equations in 15 variables. They are
twelve wheel ground contact points xci,yci,zci,roll β,pitch
γ and z coordinate of the vehicle. It is observed that for a
passive/rigid suspension car-like vehicle, tip over instability
is initiated for roll and pitch angle beyond 0.5 radian and the
vehicle cannot remain in contact with the ground.In other
words the variation of the roll and pitch angle along a stable
path will be less than this limit and hence with this fact in
mind, we linearise (9)with respect to βand γ for each wheel
as:

xci = x− 2.5− i
|(2.5− i)|

w sinα−liγ sinα−δh cosα−liβ cosα

(10)

yci = y+
2.5− i
|(2.5− i)|

w cosα−liβ sinα−δh sinα+liγ cosα

(11)

zci = z +
2.5− i
|(2.5− i)|

wγ − li + δhβ (12)

xci,yci,zci satisfy (8) and to explicitly solve for β and γ as a
function of x,y,α it is required that (8) could be represented
as a combination of piecewise linear hyperplanes. In case
when the fitted terrain equation to the DEM is non-linear we
can linearise the terrain equation about the vehicle centre
of mass.This linearisation is justified since any terrain can
be locally represented by a linear plane having a particular
orientation in 3D space. Linearising (8) about the current
chassis centre coordinate gives

zci = k3 + k1(xci − x) + k2(yci − y) (13)

where k3 = f(x, y),k1 = ∂(f)
∂b , b = x, c = y, k2 = ∂(f)

∂c , b =
x, c = y.

Substituting xci,yci,zci values from (10),(11),and (12),
four equations represented by (13) can be written in the
matrix form as

1 w + p1 h+ q1
1 w + p2 −h+ q2
1 −w + p3 −h+ q3
1 −w + p4 h+ q4


zγ
β

 =


H1

H2

H3

H4

 (14)

pi, qi, Hi are given in the appendix. The coefficient matrix in
(14) can be pseudo-inverted to solve for z, β, γ. However if
the suspension travel length is small which essentially means
that p1 = p2 = p3 = p4 = p, and q1 = q2 = q3 = q4 = q ,
with small matrix manipulation (14) can be reduced to0 2w 0

0 0 −2h
1 −w + p h+ q

zγ
β

 =

H2 −H3

H3 −H4

H4

 (15)

Inverting coefficient matrix in (15) gives z, γ, β as analytical
functions of x, y, α. Figure.4 shows that linearised posture
determination model agrees well with that obtained from
solving (9) in the non-linear form. These relations and their
derivatives are imperative for obtaining 3D dynamics of the
robot and estimating stable velocities and accelerations.

(10)-(12) will allow us to have wheel ground contact points
also as a function of x,y and α. Wheel ground contact points
location are important because they decide contact surface
unit normals nxi, nyi, nzi and with the help of that the



Fig. 4. Comparison of posture parameters obtained by (15) with that
obtained by solving (9) in non-linear form along an arbitrary path on a 3D
terrain. Good agreement between the linear and non-linear model justifies
our linearization

traction unit vectors can be calculated. The details of these
derivations can be found in [5]. The equations of motion of
the vehicle can be presented in the form similar to [5,17].

A ∗ C = D (16)

where C =
[
Ti Ni

]T
2n×1 D =

[
−→a

−→
Ω
]T
6×1

Ti,Ni,−→a ,
−→
Ω are the traction,normal forces, linear and angular

accelerations respectively. n is the number of wheels of
the vehicle. The elements of A6×2n matrix depends on
vehicle posture,geometry and terrain dependent parameters
like surface contact normals and traction unit vectors. It is
to be noted that because of the derivation presented from
(10-15) matrix A can also be known in closed form as a
function of x, y, α. Ideally if matrix A could be inverted
symbolically, we could have analytical functional description
of the variation of Ti, Ni with respect to −→a ,

−→
Ω and in theory

we could have gradient descent based algorithm to generate
a one shot stable path. Vehicles operating on uneven terrain
generally have 4-8 wheels which makes A under-constrained
and have to be pseudo-inverted.Some algorithms like [18]
computes symbolic pseudo inverse for small matrices having
one or two independent variables. However pseudo-inverting
matrix A, whose dimension will increase with the number of
wheels can turn into a complex problem. It should be noted
that this problem is not unique to the framework proposed
in this paper but is fundamental with modelling vehicle
dynamics in 3D and relating traction and normal forces to
velocity and acceleration in closed form. Hindered by this
critical problem,a two step process of trajectory generation
stated earlier in section I is followed which utilises the
fact that it is relatively easy to compute the pseudo inverse
numerically at any point on the terrain and by doing so we
get

Ti = ai1(max) + ai2(may)

+ai3(mg +maz) + ai4(IxxΩ̇x)

+ai5(IyyΩ̇y) + ai6(IzzΩ̇z) (17)

Ni = aj1(max) + aj2(may)

+aj3(mg +maz) + aj4(IxxΩ̇x)

+aj5(IyyΩ̇y) + aj6(IzzΩ̇z)

(18)

∀ i = {1, 2, 3, 4},∀ j = {5, 6, 7, 8}.m is the mass
of the vehicle and g is acceleration due to gravity.
ai1,ai3,aj2..ain,ajn,are the elements of the pseudo inverse
matrix of A. A feasible set of linear and angular accelerations
is determined by the elements of the pseudo-inverse matrix
and is defined as one which satisfies the following constraints
.

Ni > 0 (19)

|(Ti)| < ρNi (20)

ρ is the coefficient of friction in (20).By noting (17) and (18)
it can be seen that configuration x, y, α which lead to aj3 > 0
are promising candidate for satisfying (19) and (20) (since
this coefficient decides the contribution of the weight).These
coefficients can be rapidly evaluated for some look ahead
distance along various directions and this information is fed
to the trajectory generation described in the previous section
to control the shape of the trajectory between start and a goal
location.

Once a parametric trajectory has been obtained it is fed
to (17) and (18) and check for the satisfaction of (19) and
(20). Let smin denote the minimum magnitude by which the
velocity and acceleration profile of the trajectory needs to be
scaled so that they satisfy (19) and (20). Unfortunately not
all trajectories can be scaled to satisfy (19) and (20) and this
fact gives rise to a novel definition of stability.

Definition:A Trajectory can be modified to satisfy the (19)
and (20) if at all points along the trajectory a smin could be
found. Those trajectories will be referred to as stable.

Trajectories for which smin could be found at every point,
a transformation is brought in the parametric definition such
that the velocity and acceleration profile is scaled by the
amount suggested by smin.This is explained in detail in the
next section.

V. NON-LINEAR TIME SCALING

A transformation from u to t in the independent variable
of the function, following the definition of (2) brings about
the following change in the derivative of the states.

ẋ(t) = ẋ(u)
du

dt
, ẍ(t) = (

du

dt
)2ẍ(u) + ẋ(u)

d2u

dt2
(21)

The changes in the derivatives of y, α follow the same form
as (21).If du

dt < 1, the velocity and acceleration profile is
scaled down and vice versa for > 1. The scaling function
du
dt should be such that the following inequality is satisfied.

du

dt
≤ smin(u), if, smin(u) ≤ 1 (22)

du

dt
≥ smin(u), if, smin(u) ≥ 1



(23) should be read with respect to scaling the velocity and
acceleration profile up or down. In case of scaling down, the
scaling function should be such that it scales down the profile
by magnitude atleast equal to smin. Similarly for scaling up.

To construct the scaling function du
dt , the key ingredients

are the constants k1and k2.To have an insight into the
construction of the scaling function, consider a simple case
where it is required to scaled the velocity profile at two places
i.e let smin = s1, u = ua and smin = s2, u = ub.If the
constants k1 and k2 are chosen as below, we have a scaling
function which scales the velocity and acceleration profile at
the mentioned two points.

k2 =
ln( s1s2 )

ub − ua
, k1 = ek2ua (23)

To build a more complicated scaling function which scales
velocity and acceleration profile at any number of required
points,a combination of continuously connected functions of
the same form as (2) is chosen with the constants k1, k2
determined in the same way as explained above.

A. Trajectory Replanning

As stated earlier, if for some portions of the initial planned
trajectory, no smin which would lead to satisfaction of
(19)and (20), then the path is considered to be unstable.In
such cases it is required that the planner quickly re-plans the
infeasible portion of the trajectory.Let ur correspond to some
point on the trajectory before the point till which we can find
a scaling factor. From that point onwards the optimization
problem represented by (6-7) is solved in the domain ur ≤
u ≤ uf ensuring the continuity in the velocity and position
space. Multiple paths are generated similar to figure. 2. Here
also the possible vehicle stability along various directions as
measured by the variation of the coefficient aj3 described
in section IV is used as a guiding factor to control the
shape of the trajectory.. We generate multiple paths passing
through the regions having appropriate aj3.The final feasible
trajectory will be a concatenation of many continuously
connected stable trajectories.

VI. SIMULATION RESULTS

The framework described above has been used here to
generated trajectories on 3D uneven terrain.A small vehicle
model with m = 3kg,ρ = 0.7 and with dimension 1 ×
1 × 1m3 was used in the simulation. The value of ω in
parametric trajectory definition was chosen as π/10. The
terrain is modelled as z = 3.5(0.4cos(0.3x) + 0.5sin(0.2y))

A. Example

At the first step the coefficient aj3 were evaluated along
various directions which provided good initial guess for
stable regions of the terrain. Multiple trajectories were
generated through the stable regions as can be seen from
figure. 5(a). Then along the points of the obtained trajecto-
ries existence of smin was checked. Figure.5(b) shows the
smin profile along the trajectories. As can be seen that for
trajectories 1,2 smin does not exist at all points and hence by
definition these are un-stable. For trajectory 4 on the other

hand smin exists at all points and hence is stable. Figure.5(c)
shows the evolution of the vehicle on the uneven terrain.
Corresponding to the smin profile obtained for trajectory 4.
two scaling functions shown in figure.5(d) were created. The
two scaling functions are defined in the following manner.
Scaling function 1

du

dt
=

{
e−1.42u, 0 ≤ u ≤ 2

1
17 , 2 ≤ u ≤ 10

(24)

Scaling function 2

du

dt
=



e−1.42u, 0 ≤ u ≤ 2
1
17 , 2 ≤ u ≤ 3.1

0.0011e1.27u, 3.1 ≤ u ≤ 4.6
31.61e−0.95u, 4.6 ≤ u ≤ 6.6

1
17 , 6.6 ≤ u ≤ 8.1

6.4110−6e1.12u, 8.1 ≤ u ≤ 10

(25)

To understand how these scaling functions were created
note from figure.5(d) that smin = 1, u = 0 ,smin =
0.059, u = 2. To satisfy these requirements and also (22),
we use equation (23) to calculate k1 and k2 as 1 and -
1.42 respectively. From that point onwards a constant scaling
function can be used i.e du

dt = 0.059 satisfies (22) for the
concerned smin profile. Figure.5(f) shows the velocity profile
with scaling function 1. By comparing it with the unscaled
velocity profile shown in figure.5(e), it can be seen that the
time required to execute the trajectory has increased from
10s to 147.3s (u = (0, 10)→ t = (0, 147.3)).

A more optimum velocity profile can be obtained if
multiple exponential functions are used as in scaling function
2.As can be seen from figure.5(d), at intervals where smin =
1(3.1 ≤ u ≤ 6.6, 8.1 ≤ u ≤ 10), the scaling function is al-
lowed to increase. As a direct consequence of the magnitude
of the velocity profile becomes higher as can be seen from
figure.5(g).It is to be noted that the time required to execute
the trajectory has decreased from 147.3s to 96.3s. Thus
non-linear scaling provides a greater level of flexibility in
modifying the velocity and acceleration profile as compared
to the constant scaling [1]. It is also to be noted that the
unscaled velocity profile(figure.5(e)) starts from non-zero ve-
locity and the scaled velocity profiles(fig.5(f) and figure.5(g))
also starts from the same point. Hence unlike constant scaling
[1], non-linear scaling proposed here does not result in any
discontinuity in the velocity space. Figure.5(h) and figure.5(i)
shows the satisfaction of permanent contact and no-slip
constraint for the velocity and acceleration profile obtained
with scaling function 2.

B. Trajectory Replanning

In this example we show how unstable portions of the
trajectory is re-planned while keeping the stable portions
intact.Figure.6(a) shows an initial planned path (χ(u)) for
which at some places no sminexist (figure.6(b)). The portion
in black represents the unstable portion of the trajectory
while the portion in red denotes the stable portion of the
trajectory. So keeping the stable portion intact a new tra-
jectory (χr(u)) is planned (shown in blue). So the final
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Fig. 5. (a) Multiple Trajectories between a start and goal location. (b) Variation of smin along the obtained trajectories. (c) Vehicle’s Evolution along
stable trajectory 4. (d) Scaling function for the stable trajectory 4. (e) Unscaled Velocity Profile for trajectory 4. (f) Velocity profile for trajectory 4 with
scaling function 1. (g) Scaled velocity for trajectory 4 with scaling function 2. (h) Satisfaction of (19). (i) Satisfaction of (20)

trajectory from start to the goal will be a concatenation
of χ(u) and χr(u). Let it be called as χc(u). Figure.6(b)
shows the plot of smin for the combined trajectory and the
scaling function constructed corresponding to it. The scaling
function is defined in the following manner:

du

dt
=

 1, 0 ≤ u ≤ 5
468.71e−1.23u, 5 ≤ u ≤ 7.3

1
17 , 7.3 ≤ u ≤ 10

(26)

It can be noted from this definition that for the first
5 sec. the du

dt is constant at 1 which means that for the
first 5 sec. the scaled and unscaled velocity profile are the
same. This can be confirmed from figure.6(e). This shows
how velocity and acceleration profile can be scaled down

midway while executing a trajectory. This is a very important
feature of the proposed non-linear scaling method which was
not possible with constant scaling [1]. Figure.6(d) shows
the scaled velocity profile and figure.6(f) and figure.6(g)
confirms the satisfaction of permanent contact and no-slip
constraint with the scaled velocity and acceleration profile.

C. Comparison of quality of parametric trajectories with
that obtained from smpling based motion planners

The computational gain of parametric trajectory generation
over sampling based motion planners are well known but the
former can possibly introduce sub-optimality in the quality
of the path. Since the addressed problem is of uneven terrain
trajectory generation, quality of the path is measured by



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6. (a) Trajectory Re-planning. (b) First half shows smin variation along initial trajectory χ(u). Second half shows improvement of smin along the
combined trajectory χc(u). (c) Unscaled Velocity Profile of χc(u). (d) Scaled velocity profile of χc(u). (e) Confirmation that for the first 5 seconds the
scaled and unscaled velocity profile are the same. This shows it is possible to apply non-linear scaling transformation midway while executing a trajectory.
(f) Satisfaction of (19). (g) Satisfaction of (20). (h) Vehicle’s evolution along χc(u)

the stability metric FAC proposed in [5]. FAC denotes the
measure of the space of feasible accelerations for the current
velocity profile which satisfies (19) and (20). It was shown to
be a better metric than the more commonly used Tip-Over
metric [20]. Table I summarises the FAC comparison for
five terrains averaged over 20 different paths with different
start and goal location.Optimization based trajectory have
on an avergae FAC 0.9 times that of sampling based planner
which means that the quality of parametric trajectories are
comparable to that obtained from sampling based motion
planner involving exhaustive search.

Figure.7 shows the number of iterations required for opti-
mization to converge, averaged for 200 paths with particular
ζf and different start and goal location . Arbitrary initial

guess was given to the optimization routine and the tolerance
for the error was kept as 10−6. The number of iterations
taken are comparable to that reported in [3]. For every path
produced by the optimization, smin needs to be evaluated
along the points on the trajectory. However resolution of the
search space for smin is not critical and the conclusion about
its existence can be made by evaluating 10 to 20 scale factors.
In our case we evaluate 20 values in the interval (1,80) as
possible smin and if none of them leads to the satisfaction of
(19) and (20 at any particular point, we conclude that smin
does not exist for that point.The optimization then produces
a new trajectory through the replanning framework and the
process is repeated till a completely stable trajectory from
start to the goal has been constructed. The total time taken for



each path comes out to be 3-5 seconds while for a sampling
based planner it is usually around 30 min, primarily because
the dimensional of the search space will be 2 (linear and
angular acceleration) and the resolution of the search space
will have a telling effect on the output. Moreover for each
point in the linear and angular acceleration search space the
constraints (19) and (20) would have to be evaluated and
for all those satisfying them,vehicle forward evolution would
have to be computed through numerical integration.The time
taken by the optimization and for the smin search can be re-
duced significantly by using C++ platform or by parallelizing
the computation in a GPU.

TABLE I
PATH QUALITY COMPARISON BETWEEN SAMPLING BASED PLANNER

AND PROPOSED OPTIMIZATION BASED TRAJECTORY GENERATION

Terrain FAC(sampling) FAC(optimization)
Terrain 1 0.67 0.56
Terrain 2 0.62 0.59
Terrain 3 0.59 0.53
Terrain 4 0.75 0.67
Terrain 5 0.81 0.72

Fig. 7. Number of Iterations required for optimization to converge plotted
as a function of ζ

VII. APPENDIX

pi = k1li sinα− k2li cosα (27)
qi = k1li cosα+ k2li sinα (28)

H1 = k1x− k1w sinα− k1h cosα

+k2y − k2h sinα+ k2w cosα+ k3 + l1 (29)
H2 = k1x+ w(k2 cosα− k1 sinα)

+h(k1 cosα+ k2 sinα) + k3 + l2 + k2y (30)
H3 = k1x+ w(k1 sinα− k2 cosα)

+h(k1 cosα+ k2 sinα) + k3 + l2 + k2y (31)
H4 = k1x+ w(k1 sinα− k2 sinα)

+h(−k1 cosα− k2 sinα) + k3 + l2 + k2y (32)

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We presented a novel framework for trajectory generation
capable of handling strict stability constraints. A rigorous
analysis of the challenges and requirement for uneven terrain
trajectory generation was presented. A relatively simple
framework was proposed which owes great deal of its
simplicity to the fact that it is possible to obtain trajecto-
ries without worrying about complicated vehicle dynamic
constraints and then apply non-linear scaling transformation
to satisfy the stability constraints. Trajectory replanning was
embedded in the framework for trajectories which cannot be
modified to satisfy the stability constraints.

B. Future Work

The performance of the planner with incomplete infor-
mation about the terrain and vehicle dynamics is currently
studied. A probabilistic framework which depends upon
terrain information and vehicle’s 3D states can be developed
to handle noises in terrain and vehicle dynamics information.
Implementing the planner on outdoor robot platform is also
part of the future work.
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