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Abstract— Recently, quadcopters with their advance sensors
and imaging capabilities have become an imperative part of
the precision agriculture. In this work, we have described a
framework which performs plantation monitoring and yield
estimation using the supervised learning approach, while
autonomously navigating through an inter-row path of the
plantation. The proposed navigation framework assists the
quadcopter to follow a sequence of collision-free GPS way
points and has been integrated with ROS (Robot Operating
System). The trajectory planning and control module of the
navigation framework employ convex programming techniques
to generate minimum time trajectory between way-points and
produces appropriate control inputs for the quadcopter. A new
‘pomegranate dataset’ comprising of plantation surveillance
video and annotated frames capturing the varied stages of
pomegranate growth along with the navigation framework are
being delivered as a part of this work.

I. INTRODUCTION

The current farming practices for yield estimation are
labour intensive and expensive. They scale poorly for large
commercial farms and are not consistent. Whereas, precision
agriculture utilizes real time processing of a site-specific
farming information to minimize the input cost, improve
efficiency and is scalable for large farms. Satellite images [1]
have played a major role in such real time deployments
and are being massively used in the present day agricultural
infrastructure. However, in recent times we have witnessed
a surge in use of quadcopters in agricultural assistance.
They have overcome some of the traditional challenges of
satellite imagery – low resolution, infrequent revisit times
and distortions due to cloud cover. Quadcopters are seen as
one of the potential platforms for precision agriculture in
near future.

The solution presented in this work is applicable to diverse
plantations, with its capabilities being demonstrated over
organic pomegranate plantation. The capabilities of the pro-
posed approach could be described as a twofold framework
(1) plantation monitoring and yield estimation: life cycle
stage grading and yield estimation of pomegranate while
autonomously navigating through inter-row paths of the
plantation using a monocular camera as its primary sensor.
(2) Autonomous navigation framework: a novel navigation
and control framework, which uses GPS way-points as input
provided by a farmer and employs convex optimization for
generating minimum time trajectory and control.

First, the plants in the farms are mostly planted sys-
tematically in row arrangement resulting in parallel paths
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Fig. 1: Top Image: Various rows of the pomegranate plantation and the quadcopter
flight (yellow box). Bottom image: Trajectory traversed by the quadcopter in two rows
of the pomegranate plantation (Blue line). Red circles correspond to GPS ways points
whereas green and black dots are used to mark reference points computed by ORB-
SLAM.

of uniform width between the plants rows (inter-row) to
facilitate the movement of workers around the farm, Fig. 1.
Pomegranates have two major life cycle stages – flower bud
and ripened fruits. The curation of later provides current
yield estimates and the former correspond to future yield
estimates. Current practices for yield estimation focus mainly
on ripened fruits population estimation [2]. Earlier methods
for yield estimation were either restricted to laboratory [3] or
used color [4] for estimating yield. Cihan et. al [5] presented
pomegranate yield estimation using segmentation based on
the color and shape features. Their method falls short in
scaling to cases that involves variations in lighting and
occlusion. However, Calvin et. al [2] did fruit segmentation
using special RGB-IR camera setup, making them expensive
and hard for real time deployments.

One of the major contributions of our work, it specifically
addresses these issues by using color and texture cues [6]
as feature vector calculated over each of multiple gener-
ated candidate objects [7] and employ supervised learning
framework using SVM (Support Vector Machine) for de-
tection. Moreover, quadcopter flies autonomously through
the inter-row path using GPS way-points at the average
height of pomegranate plants while estimating the yield of
pomegranates and flower buds using a monocular camera.

Second, precise navigation and control is the core of all
automation. We developed a novel navigation framework for
Bebop quadcopter by Parrot Corporation [8]. This quadcopter
is specifically selected due to its low cost, high stability,



Fig. 2: Process flow of pomegranate and flower bud detection: The input image is
segmented into various candidates boxes. CEDD features computed over these candidate
selections are subjected to a multi-class classifier which segregates each the candidates
into flower, pomegranate or NA.

inbuilt GPS and ability to adjust the angle of the high
resolution camera independent of the quadcopter motion [8].
The framework is able to navigate quadcopter autonomously
using collision free GPS way-points provided over the plan-
tation by a farmer. Moreover, it is capable of handling the
unplanned drift and maintain heading along the middle of an
inter-row path.

Another notable contribution of our work is the de-
velopment of the autonomous navigation framework for
Bebop, which uses convex optimization for generating a
minimum time trajectory between way-points over Robot
Operating System (ROS) middle-ware, “first to release in
Open Source”. This we believe could facilitate further re-
search by providing standard interface and documentation
for efficient maintenance and integration with the third party
modules. To the best of our knowledge, such a solution for
plantation monitoring and yield estimation with autonomous
navigation framework using commercial quadcopter has not
been presented in literature before.

We begin by describing the utility of quadcopters in
precision agriculture. Monitoring and yield estimation of
pomegranate plantation and various associated challenges are
discussed in Section II-A. In Section III, we discuss details
of the proposed autonomous navigation framework for the
quadcopter. The experiments and results described in Section
IV demonstrate the robustness and utility of our solution.

II. QUADCOPTER IN PRECISION AGRICULTURE

This section describes an overview of the proposed frame-
work which performs plantation yield forecasting using
generic monocular quadcopter. The proposed framework has
been evaluated on a low cost commercial quadcopter Bebop
[8] equipped with frontal 14 Mega pixel “fish-eye” camera
and records video in an 180o field of view with 1920×1080
resolution in its on-board memory. We specifically use this
for yield estimation of pomegranates and its flower buds. At
the same time it even transmits the video stream of 640×468
resolution over Wifi link which is used by navigation module
for the perception of environment and sate-estimation.

A. Plantation Monitoring and Yield Estimation

The proposed framework follows three main stages for
yield prediction – segmentation, feature extraction and clas-
sification. Existing fruit segmentation algorithms [9]–[12]

Fig. 3: Variations in selected candidate objects: The candidate bonding boxes extracted
from images are of varied shapes and sizes. They don’t follow a standard shape pattern
making the classification task challenging.

work either on color or shape, which is susceptible to
both lighting and occlusion. Moreover, object recognition
algorithms either follow the sliding window [13] approach
or use segmentation techniques to extract multiple candidate
objects which are analysed later. Our proposed framework
is motivated by research of Philipp et al. [7] which uses au-
tomatic segmentation to generate multiple candidate objects
N, shown in Fig. 3. The state of art method initially, for an
image, computes superpixels and a boundary probability map
that associates a boundary probability with each superpixel
edge. Set of seed superpixels are calculated amongst them
and based on these foreground and background masks are
calculated. Afterwards, signed geodesic distance transform
is calculated over the masks with critical set among them
becoming the candidate objects [7], later used for recognition
in our paper. These candidate objects are provided as input
to the trained system and classified as either fruit, flower bud
or others with respective label L and confidence index CI as
output.

To make the detection resilient to lighting, occlusion and
direction our framework extracts monocular cues, viz. color
and texture features, from each candidate object and stores
in the form of the histogram- Color and Edge Directivity
Descriptor (CEDD) [6]. The size of the histogram is 144
bins with each bin represented by 3 bits (144×3 = 432bits).
The histogram is divided into 6 regions, each determined
by the extracted texture information. Each region is further
divided into 24 individual sub regions each comprising color
information 6×24= 144. The HSV color channel is provided
as input to a fuzzy system to obtain color information. The
texture information is composed of edges characterized as
vertical, horizontal, 45o, 135o and non-directional [6]. This
histogram is used as a feature vector to describe the candidate
object and provided as input to the learning framework.

Due to the unavailability of the standard training set,

Fig. 4: Detected pomegranates and flowers (in Green boxes). False negative are marked
(with red box) and False positives (with blue box) (manually for visualization)



comprehensive training and testing set are created using real
quadcopter monitoring video. The framework uses a semi-
supervised method to label the dataset by annotating every
fourth frame and then propagating the results to remaining
frames. In all 5000 frames are manually annotated and
subsequently the annotations are propagated on rest of the
15000 frames. Adjustments to the annotations (if any) are
done by visiting and verifying annotations of each frame.
To increase the robustness of the training data towards
occlusion, for every positive annotation additional annotated
boxes are generated by repositioning them by 3pixels across
8 directions around original bounding boxes. In this way
partially occluded fruits and flower buds dataset is created.
Overall, 25400 labeled ‘pomegranate’, 5000 labeled ‘buds’
and 54000 ‘NA’ are there in our dataset, we use 4:1 split for
training and testing purpose in experiments.

Plantation monitoring and yield estimation is conceptu-
alized as a multi-class classification problem. The learning
framework determines label Li = {pomegranate, flower bud
or ’NA’ (leaves, sand, trunk etc.)} of candidate object with
confidence index CIi, ∀i = 1. . . .N of the respective label.
The system is trained using libSVM package with Radial
Basic Function (RBF) kernel model capturing the non-linear
characteristics of the training dataset, Fig.2. Training is done
in an iterative manner, starting with small training dataset,
part of false positives and negatives of previous training
iterations are appended to training dataset for subsequent
cycles till training accuracy stagnates. This results in im-
proved accuracy and faster convergence with the system
capable of handling diverse environments. The model files
thus generated are used for classification score computation.

For a given frame of an input video, the multiple can-
didate objects identified by [7] are used as an input to
the supervised learned system. These sets of candidates
are thereafter classified into pomegranate, flower bud or
others labels Li, ∀i = 1, . . . ,N. Candidate objects which are
labeled either as fruit or flower bud are represented by a
bounding box {Pos j,Ar j,L j,CI j},∀ j = 1 . . .K and K <= N,
where K number of objects classified as pomegranate or
flower bud, Posi is top-left corner position bounding box
for candidate object, Ar j is the area of the box, L j label of
object and CI j confidence index of label. Candidate objects
below a threshold of confidence index are rejected to reduce
false positives. Non-maxima suppression, NMS is applied
on overlapping regions with similar labels and only highest
scoring boxes are retained Fig. 4.

III. AUTONOMOUS NAVIGATION FRAMEWORK

Autonomous navigation is a paramount requirement for
precision agriculture using quadcopters. This section dis-
cusses the novel navigation framework developed for au-
tonomous navigation of Bebop quadcopter in an outdoor
environment. Bebop quadcopter is a low cost, self stabilizing,
with inbuilt Wifi Hotspot, GPS, IMU and ability to adjust the
orientation of the high resolution monocular camera digitally,
independent from the motion of the quadcopter. It also
provides efficient communication for control commands and

Fig. 5: Navigation framework: Each block represents individual component of the
navigation framework. Information flow across the components is represented by
arrows between the blocks.

data (video and IMU) over 2.4 Ghz Wifi link with host de-
vice [8]. It provides two video streams at different resolution
captured from the same monocular camera, high resolution
1920× 1080 video is directly saved in on-board memory
of the quadcopter and is primarily used for monitoring and
yield estimation of pomegranate plantation. Lower resolution
640×438 video is streamed real time over Wifi connection
to host device and used primarily for navigation and state
estimation. The navigation framework is developed over ROS
middle-ware and released in Open Source to allow efficient
maintenance and integration with the third party modules.
The framework development involved software interface for
communication link to quadcopter, state estimation, percep-
tion, and trajectory planning and control modules over ROS
middle-ware.

The proposed framework for ROS has three
major packages–bebop autonomy, bebop control and
bebop perception, Fig. 5. bebop autonomy handles the
execution of the low level control commands, wifi
networking, transfer of IMU data and transfer of the decoded
video stream from quadcopter to the host device in real
time. bebop control is the most comprehensive package
which provides an interface for the teleoperation for manual
control in emergency conditions, sate estimation using IMU,
GPS and ORB SLAM [14] along with trajectory planning
and control for autonomous navigation. bebop perception
manages local way-point generation and acts like an
interface for ORB SLAM. More details are available on ROS
wiki: http://tinyurl.com/oc4uwlm.

A. State Estimation

Accurate state estimation is imperative for autonomous
navigation. Especially in the case of aerial vehicles where
absence of odometry data from moving wheels makes the
state estimation extremely challenging. This problem is ad-
dressed either at the global level using GPS, or local level
using GPS and IMU [15] or visual SLAM [16]. The proposed
framework utilizes fusion of data from IMU and visual
SLAM with extended Kalman filter (EKF) to address the



limitations of systems using only GPS or IMU, Fig. 7. Initial
monocular visual SLAM implementation such as PTAM [16]
had limitation such as instability and breakage due to sud-
den camera motion, human intervention required for map
initialization and restricted to small scenes and distances.
These limitation have been successfully overcome with ORB
SLAM implementation by Rau’l et.al [14] and is used in
our application for state estimation. ORB-SLAM utilizes fast
ORB features instead of SIFT-SURF for tracking, mapping and
is more robust to breakage due to the camera movement.
It is also highly stable and scalable across the outdoor
environment. Monocular visual SLAM including ORB-SLAM
provides relative odometry position data {Xmap,Ymap,Zmap}
in its map coordinate frame:

{Xw,Yw,Zw} = α ∗{Xmap,Ymap,Zmap} (1)

where {Xw,Yw,Zw} are real world local coordinates and α

being respective scaling factor. Determining the scaling fac-
tor requires manual human intervention in PTAM, therefore
an automatic algorithm was developed and integrated with
ORB-SLAM by using IMU data from the quadcopter. At the
time of the initialization of ORB-SLAM, quadcopter hovers
at height hlow and later increases its height to hhigh before
reducing height again to hlow. Real world heights obtained
from IMU Zw(low) and Zw(high) are recorded at (hlow,hhigh)
along with relative Zmap(low) and Zmap(high) generated by the
ORB-SLAM in its map coordinate frame to calculate scaling
factor:

α =
(Zw(high)−Zw(low))

(Zmap(high)−Zmap(low))
(2)

Scaled odometry data obtained from ORB-SLAM which
corresponds to the real world local coordinates is fused
with IMU data. Altitude from ultrasonic sensor and velocity
obtained using optical flow from secondary downward facing
camera using Extended Kalman Filter (EKF) and later used
with GPS way-points to obtain more refined state estimation.

Globally GPS navigation is the main constituent of any
computer aided navigation either in the air, over land or
sea. Quadcopter used in the experiment has an inbuilt GPS
module and provides real time latitude and longitude data in
the degrees form representation. Both longitude and latitude
information needs to be converted into a global coordinate
system before using it for navigation. There are multiple
global coordinate systems available East-North-Up (ENU)
coordinate system, Earth-Centered-Earth-Fixed (ECEF) coor-
dinate system and most commonly used Universal Transverse
Mercator (UTM) Cartesian coordinate system for navigation.
The UTM cartesian coordinate system is used in our proposed
framework as it is a horizontal position representation, i.e.
identify locations on the Earth independent of vertical po-
sition and require simple euclidean metric calculations to
determine the distance between any two points. The UTM
system divides the Earth into sixty zones, each being a six-
degree band of longitude with each zone following East-
North frame representation. The UTM coordinates are then
converted to local navigation coordinates by rotating each

co-ordinate value with (δ )-yaw of the quadcopter, which
corresponds to angle with magnetic north.Xlocal

Ylocal
Zlocal

=

 cosδ sinδ 0
−sinδ cosδ 0

0 0 1

 E
N
Zw

 (3)

Where (E, N) represents east, north in the horizontal frame
of the UTM and (Xlocal , Ylocal , Zlocal) corresponds to a
GPS way-point in local navigation coordinate frame. These
are periodically fused with IMU and ORB-SLAM generated
odometry using Extended Kalman Filter (EKF) to obtain
refined odometry and applied in the trajectory planning and
control of the quadcopter.

B. Way-Point Navigation

Based on the area of interest in the plantation, the farmer
provides GPS way-points in an ordered manner of visit- first
point corresponds to start location and last to destination.
In between the intermediate way-points define the path of
the quadcopter. The navigation framework autonomously
navigates quadcopter from the current position to the next
way-point using trajectory planning and control module
which uses convex optimization to generate minimum time
trajectory, which is based on our previous work [17].

Monitoring and yield estimation of pomegranate plantation
requires the quadcopter to navigate autonomously at an
average height of pomegranate plants, through the inter-row
path. Due to unplanned drift in motion or error in state
estimation prevalent in quadcopters, the drone may lean and
crash into plantation rows. To avoid such a situation, a visual
feed back mechanism was developed to align the drone
to the middle of the inter-row path while moving towards
destination GPS way-point. Quadcopter monocular camera
video feed of 640× 468 is processed and the inter-row
path is segmented from it surroundings using Expectation-
Maximization (EM) based unsupervised learning algorithm.

Fig. 6: Path Segmentation: (a)Image captured from quadcopter. (b) Segmented path
from image with unwanted segmented objects (c) filtered image using morphology
transformation with path clearly segmented from surroundings and vanishing point
after kalman filter visible (blue dot) shown in figure for visibility.



Fig. 7: State estimation of the quadcopter using ORB Slam and IMU with (Black line)
ground truth, (Blue line) ORB slam visual odometry, (Green line) IMU state estimation
and (Red Line) ORB slam and IMU fused Odometry

.

It estimates the parameters of the multivariate probability
density function in the form of Gaussian mixture models.
The segmented image contains inaccurately segmented small
surrounding objects which are filtered by applying Mor-
phology transformations, shown in Fig. 6. The proposed
framework exploits the proven concept of vanishing point
to maintain quadcopter along the middle of the inter-row
path while navigating towards next GPS way-point. Initial
lines are detected in the segmented path using LSD-Line
Segment Detector [18]. The path segmentation improves both
the accuracy and speed of the lines detections. The LSD
algorithm when applied directly (without path segmentation)
over an image, has far too many noisy lines detections
when compared to LSD on the segmented path. The lines
should converge towards a point but because of noise, all
the lines do not intersect at exactly one point. The region
in the image which has the highest density of pair-wise line
intersections, indicates a high confidence index and contains
the vanishing point. To achieve this, the image plane is
divided into a M×M grid G and middle of grid element
Gp,q with maximum intersections is selected as the vanishing
point.

(p,q) = arg max(p,q)Gp,q (4)

The confidence index and presence/absence of vanishing
point in the previous frame is used to compute the vanishing
point in the current frame. The current frame vanishing
point is likely to be close to the previous frame. Using
this information, a linear motion model for Kalman Filter
is constructed to suppress the noise in the vanishing point
estimation. The deviation (∆x,∆y) in vanishing point from
the center of the image corresponds to the change heading
angle γ .

γ = tan−1(∆x∗ f ield o f view o f camera
width o f image

) (5)

The variation in the heading angle (γ) thus computed is fed
to the trajectory planning and control module to recalculate
the intermediate way-point, described in next section.

C. Trajectory Planning and Control

Autonomous flight of the quadcopter following sequence
of way-points require fast, real-time trajectory planning

TABLE I: State Estimation Error

Trajectory x (cm) y(cm) z(cm)
Short <30m 92 102 12
Long >30m 96 105 12

and control command generation. The GPS way-points pro-
vided by a farmer are converted into local reference frame
and provided as input to trajectory planning and control
module. Moreover, quadcopter used in the experiment is
described by six degrees of freedom of the rigid body
as Q= [x,y,z,θ ,φ ,ψ]T , where the tuple (x,y,z) represents
the position of the center of mass of quadcopter and roll-
pitch-yaw (θ ,φ ,ψ), set of Euler angles which represents
the orientation in the same reference frame. The proposed
trajectory planning and control module generates minimum
time trajectory from the current way-point (xw,yw,zw) to the
next way-point (xw+1,yw+1,zw+1) using convex optimization
[17]. The trajectory is recalculated from the current posi-
tion in every update cycle of the navigation framework.
This closed loop control allows the framework to handle
unplanned drift from planned trajectory during the motion of
the quadcopter. Optimum trajectory generation is presented
as an optimization problem:

Minimize : Ω = |Vmax− vtk|2

Sub ject to : vtk <=Vmax, atk <= Amax and
jtk <= Jmax, ∀k = 0, . . . ,n

where vtk, atk, jtk are instantaneous velocity, acceleration and
jerk of quadcopter at time tk and Vmax, Amax, Jmax are the
maximum velocity, acceleration and jerk constraints, details
in [17]. The trajectory generation and planning is carried out
using generic parameters-acceleration (ẍ, ÿ and z̈) whereas
the quadcopter control parameters are (θ ,φ ,ψ). Therefore
a numerical average of the (ẍ, ÿ and z̈) over a typically
small interval (determined experimentally) is computed in
each update cycle and transformed into control commands:

φ =
arctan(ẍcosψ + ÿsinψ)

z̈+g
< 90o (6)

θ =
arctan(ẍsinψ− ÿcosψ)

z̈+g
< 90o (7)

Where θ and φ are motion commands along forward and
lateral direction along with z̈, which is another control
command for height. The proposed navigation framework
works with an assumption of fixed yaw (ψ =0). The inter-row
path may slightly curved as discussed in the previous section,
hence to avoid drone crash into plantation rows, the quad-
copter is required to maintain its path along the middle of the
inter-row path while moving towards (xw+1,yw+1,zw+1). The
heading angle γ generated during vanishing point detection
in each control update cycle provides direction of middle
of the inter-row path. This is utilized for re-calculating
(xw+1,yw+1,zw+1), which is used as a new destination of
quadcopter to ensure (θ ,φ ,z̈) generated in next update, posi-
tions the quadcopter towards the middle of the path.



Fig. 8: Vanishing point computation with and without GMM based path segmentation. (Above) - Vanishing point (VP) computed directly on original image with (Red lines)
depicting computed candidate lines. (Below) - Vanishing point computed on path segmented image. (Green circle) VP of current frame and (Blue circle) depicting VP after
Kalman Filter.

TABLE II: Quantative Results of Autonomous Navigation

Navigation Results Row1 Row2 Row3 Row4 Row5 Row6 Row7 Total
Success 3 3 4 2 3 3 4 22
Failure 1 1 1 2 0 0 1 6

D =
√

(xw+1− xw)2 + (yw+1− yw)2 (8)xw+1
yw+1
zw+1

=

sinγ 0 0
0 cosγ 0
0 0 1

D
D
zw

 (9)

IV. EXPERIMENTS AND RESULTS

We have evaluated our proposed framework on Bebop
quadcopter [8] with 180o field of view ‘fish eye’ (wide angle)
camera. The captured image stream by ‘fish eye’ camera has
barrel distortion which is auto-rectified. The rectified image
are digitally oriented using ‘tilt-pan’ feature of the camera
to get a (wide-angle) view. Frames at 640× 468 resolution
along with orientation information are transmitted to the host
device in real time, while frames around (0o) orientation are
used for navigation. Video at 1920× 1080 is stored in the
quadcopter and later applied for yield estimation.

Experiments were conducted in an organic pomegranate
plantation with over 400 plants and around 2000 ripened
fruits at the time of experiments. For all the experiments
state estimation, trajectory generation and other purposed
framework computations are carried out on a conventional
desktop computer running ROS (Robot Operating System)
as middle-ware with Ubuntu 14.04 LTS with an Intel Core
i5 processor @3.2 GHz and 8GB of RAM. Antecedent to
autonomous navigation of quadcopter, accuracy and robust-
ness of the state estimation was established. The quadcopter
was flown in the close path of approx 300 meters and the
state estimation results were compared with ground truth.
Fig. 7 depicts the ground truth, IMU and ORB SLAM
fused state estimations along the path. The state estimation
errors shown in Table I. The quadcopter was flown in 7

Fig. 9: Pomegranate yield Estimation: Experiments conducted in 7 rows of plantation
with manually counted (dark blue) pomegranate fruits yield and (light Blue) determined
by our framework. (light brown) manually counted flower buds in plantation and (dark
brown) counted by our algorithm.

TABLE III: Yield Detection Baseline

Yield Estimation Max
(Manually)

Min
(Manually)

Average
(Manually)

Our
Process

Pomegranate 72 47 64 69
Flower Buds 37 19 29 25

rows of pomegranate plantation multiple times to establish
the navigation framework robustness. As shown in Table
II the quadcopter was able to reach its destination without
crashing with a success rate of 78.2%. The overall system
response time of Bebop quadcopter is about 400 milliseconds
with the execution time for navigation framework of 300
milliseconds, which makes it suitable for our application.

Pomegranate and flower yield estimation is baselined man-
ually before comparison with our proposed work. This was
done by selecting small set of images at random from dataset
and provided to a group of 25 people unrelated to our work
for detecting fruits and flower buds manually. On similar
set of images our framework was executed and resulted
in similar yield estimates, as shown in Table III, where
first three columns depict (maximum, minimum and average
of all manual detection by 25 people). The quadcopter
autonomously navigated through multiple pomegranate plan-
tation rows with trajectory for two rows shown in Fig. 1 and
results of yield estimation are shown in Fig. 9. The overall
accuracy achieved for pomegranate fruit yield is 89.9% and
88.4% for flower buds.

V. DISCUSSIONS

Our path segmentation scheme uses GMMs to model the
intensity distribution. The strength of this scheme lies in
fast and accurate computation leading to significant better
path segmentation. Fig. 10 demonstrates the variations in
outputs with changes in the number of Gaussians. Exper-
imentally, we find that bi-model Gaussian is sufficient to
model the intensity distribution for path segmentation. The
module runs at 5 fps when implemented serially on 3.2 GHz
CPU. Fig. 8 illustrates the performance improvement in
finding ‘Vanishing point’ (used for navigation) with GMM
based path segmentation. We gain considerable performance
improvements with ∼ 15 times decrease in computation
time for computing vanishing points because of less number
of computed candidate lines in path segmented image. In
comparison to direct VP computation on the original image,
we obtain less false variations in the vanishing point position
using our path segmentation approach.

The challenges in detection of pomegranates and flowers
include occlusions by other objects and limited field of view



Fig. 10: GMM based path segmentation: Qualitative results of path segemetation using 2,3 and 5 gaussians (L to R) respectively. Both cases of undersegmementation and
oversegmentaton could result in noisy path segemenation. A justified selection of number of gausssians is desired to gaurantee correct VP computation.

.

Fig. 11: Some success and failure cases of pomegranate and flower detection. First two images represent success cases whereas others two images are the failure cases.

of the camera. Shapes which are occluded by the leaves,
twigs and other foreign objects are extremely challenging to
detect. Even in case of humans counting the desirable objects
(as depicted in Table III) we see significant differences in
the reported counts. We thus require special care in building
a robust solution. Fig. 11 depicts some the challenging
cases. The output (count of pomegranate and flowers) of the
present frame depends on the previous frames hence we have
modeled our system as an order-n Markov. We display the
count of ‘objects’ after every n frames . With an increase
in order ‘n’ of the system, the complexity grows making
our system slow without any significant improvements in the
results. Our system performs best in the case of n= 3. Since,
we work with the video as an input to our system, a missed
or an incorrect detection at frame level is compensated by
taking average over ‘n’ previous frames.

The system response time of the quadcopter had to be de-
termined experimentally since internal software architecture
is undocumented and wireless communication channel has
unpredictable lag. The quadcopter is unstable in high wind
conditions which is handled (to certain extend) by trajectory
planning and control module due to its closed loop control.
Our proposed navigation framework has been designed with
fixed yaw (ψ = 0) due to unavailability of information
and software interface related to dynamic and kinematic
constraints of the quadcopter from the manufacturer.

VI. CONCLUSION AND FUTURE WORK

A novel approach which performs monitoring and yield es-
timation for pomegranate plantation is presented. An efficient
and robust autonomous navigation framework generating
minimum time trajectory between sequence of GPS way-
points using convex optimization was developed over ROS.
The paper demonstrates the performance of the proposed
approach on the pomegranate plantation, but it has promising
capabilities applicable to varied plantations. Pomegranate
dataset along with navigation framework which would facili-
tate further research are being delivered to Open Source. Fur-
ther extensions include integration of Near Infrared Sensor
(NIR) over quadcopter to perform more diverse and accurate
predictions along with livestock monitoring in plantation.
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