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Abstract—In the field of active perception, object search is a
widely studied problem. To search for an object in large rooms, it
would be expensive to explore and check each object’s similarity
with the object of interest. The expense could uncontrollably
bloat as the number of objects to be searched increases. If the
objects are of the order of a 2-5cm, they appear very small,
making it difficult for the present algorithms to recognize them.
A general human strategy in such cases is to sparsely identify,
from far away ( 4-6m), if the object of interest is present in the
scene. Subsequently, each of the possible objects is analysed from
closer proximity to recognize, for further manipulation. In this
work, we present a similar framework. We reduce search-space,
by identifying existential probability of a small object from a
distance followed by a closer 3-D analysis of its point cloud to
accurately recognize it. This is achieved by 2-D modelling of the
objects using Gaussian Mixture Models followed by recognizing
objects using efficient RGB-Depth based algorithm.

I. INTRODUCTION

Object search in indoor environment is a widely studied
problem with a fair amount of advancement. Alongside, there
are a lot of challenges posed which are not addressed currently.
A robot might have to search for a particular object in large
unknown environments, where the objects may lay scattered on
floor. We try to address a similar case, where the environment
is unknown, spans over 10m and objects as small as 2− 5cm
lie on the floor. In this work, we wish to accomplish active
object search using early probabilistic inferences based on
sparse images and object viewpoint selection for robust object
recognition.

The present object search paradigms cater to the aspect
where the objects may be close to the camera, large in
size and are generally lying on tables in an environment,
which is small. Since a dominant part of the image captures
the object, both 2D and 3D quality features points can be
extracted. On the contrary, for a mobile robot working in a
large indoor environment, the robot-object distance can vary
significantly, often it is too large to infer reliable information
using traditional approaches. Also, an RGB-D camera like
Microsoft Kinect, fails to render quality 3-D information for
distances more than 4m. While spatial topological relations
prove useful in large spaces with excessive partitions [2], they
might not be fully utilizable in a case where search for small
objects needs to be done in large rooms. In a large room, it
proves to be expensive to visit all spaces, checking each object.

*Equal contribution

We try to build a framework resembling what humans
generally do in such scenarios. When a particular object is
to be searched for in a large room, where many small objects
are lying on the floor, an initial inference about each object’s
similarity to the object of interest is ascertained. Of the many
objects present in the large scene, we try to move towards
the object with maximum true belief. Further, at last we
do a final check from the best viewpoint for confirmation
before performing our task with the object. We adopt a similar

Fig. 1. Very small objects on the ground are segmented(Left). An optimal
path to reach the queried object despite many objects to search for(Right).

search sequence to search for a queried object Oq through our
proposed pipeline that consists of three essential components.
Firstly, for a given scene we detect and segment out the
objects that are lying on the floor to acquire separate segmented
objects(Figure 1). This is performed using a process described
in [8], using which the floor and non-floor parts are accurately
distinguished. Secondly we find the existential probability of
the detected object O′ being a particular object Oq from far
away, from where, images with resolution as low as 20 ×
20 pixels are available. This is achieved through individual
Gaussian Mixture Models(GMM) learned for all objects(Sec.
III-B). If the existential probability of the detected object
being the object of interest poses strong belief, then the
robot is guided towards a viewpoint for that object, which
gives the maximum probability of recognition. This constitutes
the third phase(Sec. III-C). A distance and view angle is
computed based on an object recognition profile. This profile
characterizes the performance of object recognition over all
camera viewpoints with respect to the object.

We present several experiments that characterize the advan-
tage of the proposed method and verifies its efficacy in section
IV. We show that the method described in [8] is an apt and
necessary precursor to detect objects of 2-5cm height with high
fidelity. We then analyze the performance of GMMs in terms of



their effectiveness in signifying the existence of the object from
far away, which helps reducing the search space. We depict
viewpoint based recognition probability profiles obtained from
the RGB-D Visual Bag-of-Words(BOW) [13] model and its
utility in effective recognition of the object. Section IV also
discusses in detail, the criticality of the GMMs and Visual-
BOW modules together for the guided search(Figure 1).

II. RELATED WORK

The problem of object search has been studied in the past,
in various related contexts like environment summarization,
object oriented exploration, spatial semantic modelling, etc.

This problem dates back to 1976, when Garvey [3] pro-
posed an indirect object search method showcasing the need
to limit the search space. Subsequently, Bajcsy [7] introduced
the term active perception to the community. In the recent past,
works like [1], [6] argue about strong correlation between 3D
structure of the surrounding environment and object placement,
showing that organization is highly expressible in terms of
spatial topological relations. Other works like [5] study the
case where a robot simultaneously explores and searches for
objects. [4] provides another solution for search and local-
ization of objects using a monocular camera with zooming
capabilities to overcome the limitations of low resolution
images of distant small objects.

[2] gives an intensive strategy based on the probabilistic
model, POMDP, making use of uncertain semantics between
the object and its location, for prioritizing the search effort to
promising locations in a partially known environment. In this
pioneering work, a probabilistic semantic mapping framework
is proposed, defining joint distribution between each object
category and room category. Hence, at a higher level of
abstraction, we would be able to discover a plausible location
of the object Oq .

In our work, we try to bridge the voids encountered
in scenarios where semantic relations start to weaken. For
instance, when robot enters a particular room it may find a
marker pen or a water bottle, unbiased towards any location.
Since such objects do not posses any semantic relationships
with the environment or among themselves, they have to be
searched all over.

III. SYSTEM OVERVIEW

The motivation behind the system is to reduce the number
of objects to be looked closely while searching for an object
in a large room. We decide to approach a selective few,
based on prior interpretation of objects in the scene from
far away. The flow diagram(Figure 2) presents the main
idea of our framework for the object search problem. Both
RGB and Depth data from the Microsoft Kinect sensor are
exploited, maximizing its limited capabilities to our advantage.
The sequence of operations listed below play a vital role in
frictionless execution of our framework.

Let O = {Oi}N1 be the universal set of N objects that are
possible to exist in the environment. A robot is given a task
to search for a particular queried object Oq . We wish to find
the object Oq in minimum time with maximum accuracy. This
can be achieved by visiting only a few of them, which we

Fig. 2. Object search system overview

believe are close to being Oq . There are three modules which
contribute to achieve the goal of object search. The object
detection and localization module(Sec. III-A) is responsible for
detecting and segmenting the objects on the floor. This relies
on the method described in [8] where small objects on the floor
are detected through a Graph Cut on an MRF formulated using
the superpixels of the image as nodes(Figure 3). After all the
objects are extracted, a belief of each object being similar to
Oq is assigned through a probability, P . This is done using a
set of GMMs G learned over feature vectors(III-B) generated
for each of the objects in O. Now that we have a weak
inference about the objects in the scene, we go towards the
objects showing high belief. This is followed by recognizing
the objects using BOW model from the best viewpoint, derived
from the object profile.

The flow of the algorithm(Figure 2) is as follows:

1) : The robot enters a large room with objects lying
scattered on the floor. The scene is divided into small clusters
of pixels called superpixels(Figure 3). The small objects on the
floor are generally accommodated in a couple of superpixels,
whose boundaries are generally aligned with those of objects.
Each of these superpixels would act as the nodes of an MRF.
A graph cut over the MRF would give a clear labelling for
each pixel, if it is a floor or non-floor region. This module can
extract objects as far as 4-6m on a floor using a single image
from monocular kinect camera of resolution 640×480(Figure
1). The k extracted objects are in set F = {f}ki ⊂ O. Due to
unavailability or high noise in depth data, the object fails to be
localized using a Kinect depth sensor at distances greater than
∼ 4m. We localize each of the objects in F using projective
geometry. A detailed description is given in section III-A.

2) : For each object in F , a check over available point
cloud size (Ci) is performed. If Ci ≥ Ct (Figure 2) we
have a clear rendering of the object and recognition can be
performed over the RGB-D point cloud data using an SVM
classifier learned over RGB-D based Bag of Words descriptors
of all objects O(III-C). The recognition is performed by
viewing it in an appropriate pose which is analysed based on
a VOP(Viewpoint Object Potential) map(Figure 4) described
in section III-C.

3) : If Ci ≤ Ct, we do not have clear RGB-D information
about the object. Hence from far away, for each of the objects



Fig. 3. Flow chart shows different stages of object segmentation pipeline.

Fig. 4. VOP map depicts the accuracy of recognizing an object from different
viewpoints. (a)Shows the profile for an object with a slim sideline and a wide
body. (b)Shows the profile for a symmetric body.

in F , we assign a probability(Pi), of Fi being similar to Oq .
This is obtained from a GMM modelled for each of the objects
in O using the object contour and texture(III-B). Hence, we
have an early inference of Fi being Oq even before going
close to it. Even when we have an object segmented into a
few pixels, we would be able to make an inference Pi about it
in a probabilistic manner. Hence, of all the objects in F , some
objects would be completely ruled out because they have a
very low probability of similarity. And therefore we would
reduce the number of objects that we need to visit.

4) : If Pi ≥ Pt, it means there is a substantial belief in
the object, and its pose is thus estimated as described in III-B.
For all objects with Pi ≥ Pt, the robot reaches each object to
recognize it from a best viewpoint, planned from VOP map.
Further, it visits all such objects using distance based greedy
approach.

5) : If for all objects in F , Pi ≤ Pt, then the algorithm
iterates after moving a finite step towards the objects, to gather
more information about them.

Classifying objects merely based on their GMMs would be
erroneous since there would be objects with similar contours
and texture in the scene(Figure 5). Therefore, the objects need
closer inspection. The accuracy of the object being recognized
greatly depends on view angle and distance(Figure 4). The
pose estimated from the best match in step 3 transforms the
potential(VOP) map of the object to find the best viewpoint
instead of moving aimlessly towards the object. VOP map is
an intrinsic object property which describes the probability of
recognizing that object from all possible distance and angle in
2D occupancy grid space. All the decisive operations involved
in the framework are as explained below.

A. Object Detection and Localization

1) Small Object Detection using Floor Segmentation: In a
typical setting we are discussing, the first task is to classify

floor and non-floor regions so that the objects are extracted out.
One of the main hindrances to identifying the objects lying
on the floor is their small size(2-5cm). Through our previous
work [8], we are able to segment the floor area even when there
are several low lying objects present on it(Figure 3). A brief
discussion of the adoption of [8] in our context is presented
below.

The image superpixelling adopted in [8] helps in cluster-
ing a given scene along the contours and edges leading to
numerous superpixels by capturing the local features of the
constituent elements of an image. Since the objects in our
case are small, it is observed that the whole of the object gets
clustered into 1-3 superpixels, whose boundaries are aligned
with those of the objects. Simultaneously, the consolidated
homography error of all the tracked pixels in a particular
superpixel can be calculated. Thus, we can isolate areas which
differ in overall homography errors despite the individual ho-
mography errors for pixels being very low. Further, a Markov
Random Field is formulated using the homography error of
the superpixels, with the superpixels as its nodes. The MRF
helps capture the neighbourhood information of a node as
well, apart from its own homography error. The MRF is posed
such that its minimum energy configuration corresponds to the
target segmented image. Each of the superpixel is thus given a
label of being a floor or non-floor and hence the segmentation
happens. The energy function of MRF is given by

ψ(x, ξ) =
∑
i

ψi(xi, ξH) +
∑

(i,j)∈N

ψij(xi, xj , ξH) (1)

where ψi(·) is the unary term associated with ith super-pixel
and ψij(·, ·) is the smoothness term defined over neighbour-
hood system N . Here x = {x1, x2, ..., xn} is the set of random
variables corresponding to superpixels of image. Each of these
random variables, the super pixels takes a label xi ε {0, 1}
based on whether it is a floor or object.

The unary term of a superpixel would be,

ψi(xi, ξH) = (ξ2H)(1− xi) + (ξ2H)xi (2)

where ξH is the consolidated homography error associated with
each of the superpixel using KLT feature tracker.

The smoothness term is defined using Pott’s model as
follows,

ψij(x, ξH) = λ2

∑
(i,j)εN

(ξHi − ξHj)2, if xi 6= xj (3)

where λ2 determines the degree of smoothness. Post formula-
tion of MRF, the problem now is to find the global minima of
the energy function. This is defined as,

x∗ = argminxψ(x, ξH) (4)

The global minima of this energy function is computed using
a graph cut formulation. A weighted graph G = (V,E) is
constructed using the vertices as the superpixels connected to
the neighbours as the adjacent superpixels. The weights of the
edges are defined using the unary and the smoothness terms
defined above. The min-cut of this graph is computed, which
corresponds to the global minima of the energy function. Once
the minimum energy configuration is found, the labels of the
superpixels would explain if they are floor or non floor regions.
And hence, we segment out the superpixels that have a label
of non floor, thus extracting out the object.



Fig. 5. The contours of objects segmented from a typical scene.

2) Object Localization: Extraction of depth from single
image proves to be challenging task, thus making object
localization tougher even after object is detected. By using
perspective projection geometry of a pinhole camera, for
localizing objects in 2D space, we estimate the distance of
the object from the camera. Given height H of the Kinect
camera of focal length f and with normal of the floor known,
the 2D coordinates of the object can be obtained [9].

B. Probabilistic recognition and pose retrieval of small objects

As discussed earlier, we are searching for specific small
objects lying on the floor, in spacious indoor settings. Unlike
larger objects, where local features can be successfully ex-
tracted, we consider smaller objects where, local features if
found are insignificant and sparse(Figure 5). This limitation
proves to be tricky to handle in the case of object recognition
from far away. Thus we have to bank on generative models
based on other possible features of the objects.

A general human approach in such cases, is to look at the
rough shape of the object and infer about it based on the colour
composition. In [18], it is shown that contours play a major
role in recognition of objects. We build a feature descriptor
for the whole small object, based on which separate GMMs
are estimated for each of the object. GMMs have been used in
the past to build localized object models [17]. These models
would help us determine the existential probability of a specific
object in the scene and hence its probable pose as well.

The process of building the model and its application is as
follows. From O, each object Oi would be pictured at equally
spaced orientations differing by θ, from 0−2π which gives T
such images.

Such images are captured at 5 different distances in the
range 5-8m between the camera and the object. Hence for
each object Oi, we have 5T images. Each of the image is
subjected to contour detection to extract its outer shape(Figure
5).

Further, these contours are described using unique Rotation
and Translation invariant Hu image Moments [14] which
describe an image in a 7 dimensional space. Hence for a binary
image which contains a contour, we obtain a 7 dimensional
vector. This is followed by extracting the RGB histogram of the
object. Each of the channels Red, Green and Blue are assigned
25 bins each to form a 75 dimensional histogram. The 7 Hu
Moments and the 75 Dimensional histogram of Red, Green
and Blue are concatenated to form an 82 dimensional feature
vector F .

This leads to a formation of 5T feature vectors of 82
dimensions each for a given object and hence a matrix of
5T × 82 where each row is a vector corresponding to an
orientation θ of the object at a certain distance of camera. All
such vectors of N objects are stacked to form a tall 5TN×82
matrix. Let Fθi,di represent a vector that is formed for an object
with orientation θi and distance di.

Fig. 6. Object recognition pipeline for RGB-D data.

This matrix is further transformed into a new subspace
using Principal Component Analysis [15] where the domi-
nating 7 components which contribute to the variance are
identified. Hence, we obtain a new matrix of size 5TNX7
where each row corresponds to the Fθi,di projected to the new
7 dimensional space. Let the new vectors in the transformed
space be denoted by V nl , where n ∈ [1, N ], l ∈ (1, 5T ). For
each of the N objects, a Gaussian Mixture Model(GMM) [16]
Gi is built using the vectors corresponding only to that object,
V il , l ∈ [1, 5T ]. A generic GMM is given by

p(x) =

N∑
i=1

wi.g(x|µi,Σi) (5)

where, wi is the weight, µi is the mean and Σi is the
covariance of the ith Gaussian. Since we are modelling data of
7 dimensions, the Gaussians would be 7 variate and hence the
means would 7 dimensional as well. The weights W , means
µ and covariance matrices Σ of GMM of an object would
be estimated by the standard Expectation-Maximization [16]
algorithm. After modelling a GMM for each of the objects,
we obtain G = {G}N1 . To check, if an object O′ is similar
to object Oq , its image is used to extract the 82 dimensional
feature vector and transform it into the 7 dimensional Principal
Component space resulting in a vector V ′. The GMM Gq will
give the likelihood of V ′ corresponding to object Oq . Now that
we have reduced the search space, a comparison between V ′,
V ql vectors corresponding to Oq is made. Since all the vectors
V nl are spaced at equal intervals of θ, if V ′ is the closest to
V ql , its orientation in that view could probably be that of V ql .

C. Robust Viewpoint Planning based Object Recognition

1) Object Recognition Method: In this part, we evaluate
object recognition efficiency with RGB-D data using BoW
model based on two local feature descriptors, namely PFHRGB
and SHOTCOLOR available in Point Cloud Library [12]. The
Kinect 3-D data lacks quality features for small and simple
objects like cups, battery, marker pens, etc. The use of BOW
helps define all such objects in terms of feature occurrence
statistics. BOW is experimented and analysed for PFHRGB
and SHOTCOLOR descriptors as discussed below.

PFHRGB: It is the colored version of Point Feature
Histogram(PFH) [10], encoded from RGB-D information.
PFHRGB is binned into a 250-bin histogram(125 Depth+125



Fig. 7. (a) Our Small object dataset. (b) Kinect RGB-D Washington dataset(20
objects)

RGB). PFH encodes neighbourhood’s geometrical properties
by generalizing both mean curvature and surface normals.

SHOTCOLOR: This descriptor is based on the Signature
of Histograms of Orientations(SHOT) [10] descriptor. SHOT-
COLOR is binned into 1344 binned histogram(352 Depth+992
RGB) reference frame using eigenvalue decomposition around
an input point. Additional signature of 9 values encapture local
reference frame.

In the pipeline(Figure 6), we use a simple depth based
object segmentation technique. The segmentation process in-
volves numerous sub-tasks namely, dominant plane extraction
using RANSAC, denoising of the extracted plane and eu-
clidean clustering to extract the dense cloud of the object kept
on that plane.

The Object Recognition results based on BoW model
claims the novelty of an acceptable object recognition method
in terms of time and accuracy. In the results(Table I), we also
show performance over various keypoint selection methods on
our dataset. (Figure 7(a)).

TABLE I. RECOGNITION ACCURACY WITH VARIOUS KEYPOINTS ON
OUR DATASET

Keypoints Accuracy(%) Avg Time Avg no. Avg no.
(with PFHRGB BoW) (s) of keypoints of total points

SIFT 3D 78.23 0.247 49 1328
Harris 3D 71.4 0.106 42 1328

Subsample-2cm 86.5 0.142 43 1328
Subsample-1cm 91.43 0.143 136 1328

2) Viewpoint Object Potential Map: Further, this part of
the work shows that object Recognition results for a particular
object vary when viewed in different poses from different
distances. This trend is observed due to change in feature
quantity and quality of the object cloud captured from different
views. Taking a simple example, when objects viewed from
narrow side may be easily confused with other objects due to
lack of identity features in comparison to other distinct sides.

Accuracy of various simple objects with varied shapes like
objects with only single vertical axis of symmetry(Figure 4(b)),
objects with only two planes of symmetry (Figure 4(a)), etc.
were analysed for various distances and view angles. Thus,
Viewpoint Object Potential Map is obtained.

IV. RESULTS

A. Object detection and segmentation

In figure 8, it can be seen, by using a monocular camera,
objects of height 2-5cm are classified as non floor, which are
then segmented out.

Fig. 8. (a) Typical Scene (b) Superpixeled image. (c) Segmented image.

B. Probabilistic recognition using GMMs

Figure 9 shows the confusion matrix between 13 different
objects when classified using GMMs. An object Fi belongs
to a class S if the GMM corresponding to class S gives the
highest probability for Fi among all the GMMs. A confusion
can be seen where the actual object class is 6 and predicted
class is 2(Figure 9). This is because of similarity in texture
and the outer shape of those objects. If 2 is bigger in size
than 6, they would appear similar when 2 is farther than 6
from the camera. Object 12 shows minimal confusion with
2, 3, 4, 6. Object 12 may be similar in shape compared to
other objects, but its texture is clearly a differentiating feature.
Also, a confusion exists between 11 and 12 due to the texture
they share. The significance of GMM-Module in the pipeline
is that, even when the objects occupy a few pixels and appear
confusing, a probabilistically favourable decision about them
can be made. Also, when the objects are far and small, an
early weak decision about a certain object’s existence proves
to be significantly advantageous.

Fig. 9. (a) Confusion matrix for object recognition by GMM-Module

Fig. 10. Recognition accuracy analysis for a particular object (Figure 4(a)).



C. Analysis of viewpoint based recognition

Visual-BOW model based on PFHRGB-BOW descriptors
performs better than SHOTCOLOR BOW model, evaluated
over Washington dataset(Table III) and our dataset(Table II).
Along with PFHRGB-BOW model, subsampled keypoint se-
lection displays better performance over its counterparts(SIFT-
3D & HARRIS-3D) on our dataset(Table I).

Even after successful object detection, robot may land up
not recognizing the objects even from closer proximity due
to weak viewpoint selection. From the experimentation over a
particular object(Figure 10), the objects recognition accuracy
distributed over various viewpoints is found to be 87.6%
for range 75-125 cm, but by using the proposed viewpoint
planning method, accuracy level for recognition may boast up
to 98% in same settings. Figure 10 shows accuracy as high as
92-98 % from view angle lying between 270◦-315◦, whereas
from view angle 135◦-180◦, the accuracy levels may plunge as
low as 45%-60% for the same object. Therefore, if such object
maps(Figure 4) are known prior, the recognition performance
of the object categorization algorithms can be enhanced for
mobile robots applications.

D. Discussion on Results.

Here, we explain various scenarios where our pipeline
comes into play. Thus we focus on the utility of each module.

In Figure 11(a), there are several objects on the floor. There
is no prior input from the GMM-Module about the objects.
Hence, to search for an object Oq , the robot has to go close to
each of the objects aimlessly to recognize them . It covers a
lot more distance than it has to cover optimally, to reach Oq .
This proves to be expensive.

In Figure 11(b) The utility of GMM-Module(III-B) can be
observed here. A prior idea of the objects is acquired before
the robot moves towards them. As indicated by GMMs, one
of the objects has a high probability of being Oq . Thus, robot
moves towards the best viewpoint, obtained form VOP map to
recognize it.

In Figure 11(c), the robot examines more than one ob-
jects. This happens when the GMM-Module confuses between
objects which may appear similar. Here, for two objects, the
belief of them being Oq , Pq ≥ Pt(Figure 2) , due to which,
a close examination of each of them should be done. In such
a case as well, since we are able to ascertain the beliefs on
objects, the search space is thus reduced.

Fig. 11. (a) Object search by greedy approach (b) Path when one object
among others has high existential probability. (c) Path when two objects have
high existential probabilities.

TABLE II. PERFORMANCE OF RGB-D BASED BOW MODEL, ON OUR
SMALL OBJECT DATASET, FIG. 7(A)

Descriptor Accuracy(%) Avg time Avg no. Avg no.
(Subsample-2cm) (s) of Keypoints of total points
PFHRGB BoW 86.5 0.142 43 1328

SHOTCOLOR BoW 84.1 0.180 43 1328

TABLE III. PERFORMANCE OF RGB-D BASED BOW MODEL, ON
WASHINGTON DATASET (20 OBJECTS), FIG. 7(B)

Descriptor Accuracy(%) Avg time Avg no. Avg no.
(Subsample-2cm) (s) of Keypoints of total points
PFHRGB BoW 93.75 0.791 78 6302

SHOTCOLOR BoW 93.2 1.047 78 6302
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