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Abstract— We present a novel Multi-Relational Graph Con-
volutional Network (MRGCN) based framework to model on-
road vehicle behaviors from a sequence of temporally ordered
frames as grabbed by a moving monocular camera. The input to
MRGCN is a multi-relational graph where the graph’s nodes
represent the active and passive agents/objects in the scene,
and the bidirectional edges that connect every pair of nodes
are encodings of their Spatio-temporal relations.

We show that this proposed explicit encoding and usage of
an intermediate spatio-temporal interaction graph to be well
suited for our tasks over learning end-end directly on a set
of temporally ordered spatial relations. We also propose an
attention mechanism for MRGCNs that conditioned on the
scene dynamically scores the importance of information from
different interaction types.

The proposed framework achieves significant performance
gain over prior methods on vehicle-behavior classification tasks
on four datasets. We also show a seamless transfer of learning
to multiple datasets without resorting to fine-tuning. Such
behavior prediction methods find immediate relevance in a
variety of navigation tasks such as behavior planning, state
estimation, and applications relating to the detection of traffic
violations over videos.

I. INTRODUCTION

We consider dynamic traffic scenes consisting of po-

tentially active participants/agents such as cars and other

vehicles that constitute the traffic and passive objects such as

lane markings and poles (see example in Fig. 1). In this work,

we propose a framework to model the behavior of each such

active agents by analyzing the Spatio-temporal evolution

of their relations with other active and passive objects in

the scene. By relation, we refer to the spatial relations an

agent/object possesses and enjoys with other agents/objects,

such as between the vehicle and lane markings, as shown in

Fig. 1(c).

Here, we model both objects and agents, and thus for

convenience, we commonly refer them as objects and specif-

ically as agents when referring to active vehicles. The evo-

lution of the spatial relationship between all pairs of objects

in a scene is essential in understanding their behaviors.

To this end, we propose an Interaction graph that models

different agents and objects in the scene as nodes. This graph

captures the Spatio-temporal evolution of relations between

all-pair of objects in the scene with appropriate bi-directional
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Fig. 1. The figures (a) and (b) show two cars and three lane-markings from two

different time frames. The evolution of the whole scene is captured in the Interaction

graph (c). Our proposed model infers over such Interaction graphs to classify objects’

behaviors. Here, the car on the left is moving ahead of lane markings and the car on

the right. With the Interaction graph (c), our model can predict that the car on the left

is overtaking the right-side car.

asymmetric edges with annotations reflecting their evolution

(see Fig. 1(c)).

The dynamic traffic scene modeled as an Interaction graph

is then inputted to a Multi-Relational Graph Convolutional

Network (MRGCN), which outputs the overall behavior

exhibited by all the agents and objects in the scene. While

the MRGCN maps the input graph to an output behavior for

every graph node, we are only interested in active and not the

passive objects. Hitherto by behavior, we denote the overall

behavior of an active agent in the scene. For example, in

Figure 1, the behavior of the car on the left is Overtaking,

and the car on the right is moving ahead.

The choice of Graph Convolutional Networks (GCN) [1]

and the use of its Multi-Relational Variant as a choice for

this problem stems from the recent success of such models

in learning over data that does not present itself in a regular

grid like structure and yet can be modeled as a graph such

as in social and biological networks. Since a road scene can

also be represented as a graph with nodes sharing multiple

relations with other nodes, a GCN based model is apt for

inferring overall node (object) behavior from a graph of

interconnected relationships.

The decomposition of a dynamic on-road scene into its as-

sociated Interaction graph and the classification of the agent

behavior by the MRGCN supervised over labels that are

human-understandable (Lane Change, Overtake, etc.) form

the main thesis of this effort. Such behavior classification of

agents in the scene finds immediate utility in downstream

modules and applications. Recent research showcase results

that understanding on-road vehicle behavior leads to better

behavior planners for the ego vehicle [2]. In [2], belief states
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over driver intents of the other vehicles where the intents take

the labels “Left Lane Change”, “Right Lane Change”, “Lane

Keep” are used for a high-level POMDP based behavior

planner for the ego vehicle. For example, the understanding

that a car on the ego-vehicle’s right lane is executing a

lane change behavior into the current lane of the ego-vehicle

can activate its “Change to Right Lane” behavior operation

option for path planning. Similarly, modeling an agent’s

behavior such as a car in a parked state can make the ego

vehicle use feature descriptors of the parked car to update its

state accordingly, which would not be possible if the active

object was engaged in any other behavior. Understanding

on-road vehicle behaviors also lend itself to very pertinent

applications such as detecting and classifying traffic scene

violations such as “Overtaking Prohibited”, “Lane Change

Prohibited.”

Our contributions are as follows:

1) We propose a novel yet simple scheme for spatial behavior

encoding from a sequence of single-camera observations

using straight forward projective geometry techniques. This

method of encoding spatial behaviors for agents is better than

previous efforts that have used end-to-end learning of spatial

behaviors [3].

2) We demonstrate the aptness of the proposed pipeline

that directly encodes Spatio-temporal behaviors as an in-

termediate representation into the scene graph G, followed

by the MRGCN based behavioral classifier. We do this

by comparing with two previous methods [3], [4] that are

devoid of such intermediate Spatio-temporal representations

but activate the behavior classifier on per frame spatial rep-

resentations sequenced temporally. Specifically we tabulate

significant performance gain of at-least 25% on an average

vis a vis [4] and 10% over [3] on a variety of datasets

collected in various parts of the world [5], [6], [7] and our

own native dataset (refer Table IV-B).

3) We signify through a label deficient setup, the need for a

neural-attention component that integrates with the MRGCN

and further boosts its performance to nearly perfect predic-

tions, as seen in Tables III and V. Critically incorporating

the attention function leads to high performance even in a

limited training set, which the MRGCN without attention

function cannot replicate.

4) We also show seamless transfer of learning without further

need to fine-tune across various combinations of datasets for

the train and test split. Here again, we show better transfer

capability of the current model vis a vis prior work, as shown

in Table IV.

II. RELATED WORK

1) Vehicle Behavior and Scene Understanding: The prob-

lem of on-road vehicle scene understanding is an important

problem within autonomous driving. Most earlier works

relied on multiple sensor-based data to solve this task. Rule-

based [8] and probabilistic modeling [9], [10], [11], [12],

[13], [14], [15] where the goto approaches for classification

of driver behavior with sensor data. Also, many of these

works [11], [14] were concerned only with predicting future

trajectories rather than classification. Herein, we chose a

simpler and challenging set up to understand the scene and

predict vehicle behaviors with observations from a single-

camera in this work. While there are few works based on

a single-camera data feed, they only focus on ego-centered

predictions [16]. Here we focus on classifying other vehicles’

behavior from an ego-vehicle perspective. Learning other

vehicle behaviors can be helpful in behavior planning, state

estimation, and applications relating to the detection of traffic

violations over videos

2) Graph based reasoning: Graphs are a popular choice

of data structures to model numerous irregular domains. With

the recent advent of Graph Convolutional Networks (GCNs)

[1] that can obtain relevant node-level features for graphs,

there is a widespread adaption of graph-based modeling of

numerous computer vision problems such as in situation-

recognition tasks [17]. [18] encodes object-centric relations

in an image using a GCNS to learn object-centric policies for

autonomous driving. [4] and [3] models objects in a video

as Spatio-temporal graphs to make predictions of Spatio-

temporal nature. It is common to model the temporal context

of objects with recurrent neural nets and spatial context with

a graph-based neural net.

In this work, we focus on the task of on-road vehicle be-

havior and show that a proposed intermediate representation,

called an Interaction graph, can yield better performance over

working with a raw set of spatial graphs as done traditionally.

This also portrays current models’ incapacity to learn end-

end and derive such useful features as with the Interaction

graph from the raw spatial graphs. The closest works to

ours are [16] and [19]. They generate an affinity graph that

captures actor-objects relationships. A simple GCN is then

used to reason over this graph to classify ego-car action

and not other vehicles. In our work, we use a richer multi-

relational graph and a corresponding multi-relational GCN

to work on the same. Further, we propose an attention based

model that can leverage different relation types depending

on the scene context.

III. PROPOSED METHODOLOGY

Dynamic scene understanding requires well modeling of

the different Spatio-temporal relations that may exist between

various active objects in a scene. Towards this goal, we

propose a pipeline that first computes a time-based ordered

set of spatial relations for each object in the video scene.

Secondly, it generates a multi-relational interaction graph

representing the temporal evolution of the spatial relations

between entities obtained from the previous step. Finally,

it leverages a graph-based behavior learning model to pre-

dict behaviors of vehicles in the scene. Fig 2 provides an

overview of our proposed framework.

Our proposed pipeline leverages and improves the data

modeling pipeline introduced in [3] (MRGCN-LSTM). Our

pipeline’s performance gains primarily stem from two of

our contributions: (i) the interaction graph that provides

useful and explicit temporal evolution information of spatial
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Fig. 2. Overall pipeline of our framework: The input (a) to the pipeline is monocular image frames. Various object tracking pipelines are used to detect and track objects,

as shown in (b). (c) denotes the tracked objects. Tracklets for each object are projected to 3D space, Bird’s eye-view at each time step, as shown in (d). Spatial relations from

Bird’s eye view are used to generate Interaction graphs (e). This graph is passed through a Rel-Att-RGCN (f) to classify objects in the scene as shown in (g).
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Fig. 3. Temporal Interaction Graph Generation: The top row contains image frames at t=0, t=5, t=10 time step with tracked objects. The bottom row shows the

corresponding bird’s eye view. In the scene, a car and two lane-markings are tracked at each time step. The thick red, blue edges between car, L1 in first, and the final frame

denote their spatial relations. The car moves forward with respect to L1 and has no relational change with L2, as shown with thick edges in the Interaction graph. Temporal

relations are represented with dotted lines, while spatial relations are represented with thick edges. Corresponding color coding is shown in legends.

relations. (ii) the proposed Multi-Relational Graph Convolu-

tional Network (MRGCN) with our novel multi-head relation

attention function, which we name Relation-Attentive-GCN

(Rel-Att-GCN).

A. Spatial Graph Generation

For dynamic scene understanding, we need to identify

different objects in the scene and determine the atomic

spatial relationships between them at each time-step. This

phase of the pipeline closely follows the spatial scene graph

generation step of [3]. refer to the same for mode details.

1) Object Detection and Tracking: Different vehicles in

the video frames are detected and tracked through instance

segmentation [20] and per-pixel optical flow [21] respec-

tively. The instance-level segmentation of an object obtained

from MaskRCNN are projected to the next frame and are

associated with the highest overlapping instance using optical

flows. Apart from tracking vehicles in the scene, static

objects such as lane markings are also tracked with semantic

segmentation [22] to better understand changing relations

among static and non-static objects. [3] has shown that

performance improvement can be obtained by leveraging a

higher number of static objects in the scene.

2) Bird’s Eye View: The tracklets of objects obtained

in the image space are re-oriented in the Bird’s eye view

(Top View) by projecting the image coordinates into 3D

coordinates as described in [23]. This reorientation facilitates

determining spatial relations between different entities. Each

object is assigned a reference point to account for the

difference in heights. The reference is at the center for lane

markings, and for vehicles, it is the point adjacent to the

road.

3) Spatial relations: At all T frames of the video, the

spatial relations between different entities are determined

using their 3D positional information in the Bird’s eye view.

Specifically, the spatial relations are the four quadrants, {top

left, top right, bottom left, and bottom right}. For a subject

entity, i, its spatial relation with an object entity, j at time-

step, t is denoted as St
i,j .

B. Temporal Interaction Graph Generation

Modeling object interactions as a time-based ordered set of

spatial graphs is a popular approach in many Spatio-temporal

problems. such as [24], [25], [26], [27] where spatial graphs

are constructed over object interactions to classify actions in

a video stream. [4], [3] use a similar approach for predicting

on road object behaviors. We found that it is harder for

models learned with such data to learn some of the simple

temporal-evolution behaviors needed for the end task, specif-

ically in our problem of interest. In our problem of focus,

8281



behavior prediction, it is important for the model to learn

the nature of some simple temporal evolution of interac-

tion between entities such as move-forward, move-backward,

moved left to the right, moved right to the left, no-change.

However, we found that explicitly modeling such information

was highly beneficial. A simple rule-based model with such

interaction information outperformed learned models on the

primitive information at the level of spatial relations. Having

motivated by this insight, we propose a way to define an

Interaction graph with temporal evolution information and a

new model that can benefit from such information.

The Interaction graph summarizes the temporal evolution

of spatial relations from T frames into a single multi-

relational graph with temporal relations, Rd = {move-

forward, move-backward, moved left-to-right, moved right-

to-left, no-change}. The edge, Ei,j ∈ Rd, denotes the tempo-

ral relation between subject entity, i and object entity, j. Ei,j

is computed by deterministic rule based pipeline, that takes in

their spatial relations over T frames, i.e, {S1
i,j , S

2
i,j , ..., S

T
i,j}.

For example, an object entity, j that is initially in the

bottom-left quadrant with respect to subject entity i, changes

it’s atomic spatial relation to top-left with respect to i at some

time t, will have its temporal relation Ei,j as move-forward.

Similarly, an object entity, j that is initially in bottom-left

quadrant changes to bottom-right quadrant with respect to

subject i at some time t, will have temporal relation Ei,j as

moved left-to-right. Since these temporal relation annotated

edges have a proper direction semantics, we can’t treat the

graph is undirected. Thus, we also introduce inverse edges

for complementary relations suchs as moved forward and

backward and moved left-to-right and moved right-to-left.

An overview of the temporal interaction graph generation is

presented in Fig. 3.

C. Behavior Prediction Model

We propose a Multi-relational Graph Convolution Network

(MRGCN) with a relation-attention module that conditioned

on the scene, automatically learns relevant information from

different temporal relations necessary to predict vehicle

behaviors.

1) Multi-Relational Graph Convolution Networks: Re-

cently Graph convolution Networks [1] has become the

popular choice to model graph-structured data. We model our

task of maneuver prediction by using a variant of Graph Con-

volutional Networks, Multi-Relational Graph Convolutional

Networks (MRGCN) [28] originally proposed for knowledge

graphs with multiple relation types. MRGCN is composed

of multiple graph convolutional layers, one for each rela-

tion between nodes. A Graph Convolution operation for a

relation r here is a simple neighborhood-based information

aggregation function. In the MRGCN, information obtained

from convolving over different relations is combined by

summation.

Let us formally define the temporal Interaction Graph as

G = (V,E) with vertex set V and edge set, E, where Ei,j ∈
Rd is an edge between node i and j. The ith node feature

obtained from a graph convolution over relation, r in lth

layer is defined as follows:

hl
r[i] =

∑

j∈Nr[i]

1

cr[i]
W l

rh
l−1[j] (1)

where, Nr[i] denotes set of neighbour nodes for vi under

relation r, Nr[i] = {j ∈ V | Ej,i = r} and cr[i] = |Nr[i]|
is a normalization factor. Here, W l

r ∈ Rd′∗d is the weights

associated with relation r in the lth layer of MR-GCN; d′, d

are dimensions of (l − 1)th and lth layers of MRGCN.

Neighborhood information aggregated from all the rela-

tions are then combined by a simple summation to obtain

the node representation as follows:

hl[i] = ReLU(W l
sh

l−1[i] +
∑

r∈Rd

hl
r[i]) (2)

where, the first terms correspond to the node information

(self-loop) and Ws ∈ Rd′∗d is the weight associated with

self-loop. To account for the nature of the entity (active or

passive), we learn entity embeddings, Ei ∈ R
|O|∗d for node

vi, where O = {V ehicles, Lane Markings}. The input

to the first layer of the MRGCN, h0[i], is the embedding Ei
based on type of node i.

2) Relation-Attention MRGCN (Rel-Att-GCN): The

MRGCN defined in Eqn: 2 treats information from all the

relations equally, which might be a sub-optimal choice to

learn discriminative features for certain classes. Motivated

by this, we propose a simple attention mechanism that scores

the node information’s importance along with individual

neighborhood information from each relation.

The attention scores, α are computed by concatenating

the information from the node (hl−1) and its relational

neighbors (hl
r) and transforming it with a linear layer to

predict scores for each component. The predicted scores are

softmax normalized. The attention scores are computed as

defined below.

αl[i] = softmax([hl−1[i] ‖ hl
1[i] ‖ hl

2[i]... ‖ hl
|Rd|

]W l
u)

(3)

where, ‖ represents concatenation and αl[i] ∈ R|Rd+1|

with W l
u being the linear attention layer weights. These

probabilities depict the importance of a specific relation

conditioned on that node and its neighborhood.

The attention scores are used to scale the node and neigh-

bor information accordingly to obtain the node representation

as follows.

hl[i] = ReLU(αl
node[i]h

l−1[i] +
∑

r∈Rd

αl
r[i]h

l
r[i]) (4)

where, αl
node is the attention score for self-loop. The node

representation obtained at the last layer is used to predict

labels, and the model is trained by minimizing the cross-

entropy loss.

IV. EXPERIMENT AND ANALYSIS

A. Dataset

Numerous datasets have been released in the interest of

solving problems related to autonomous driving. We choose
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four datasets for evaluating our framework, of which three

are publicly available: ApolloScapes [6], KITTI [29], Honda

Driving dataset [7] and one is a proprietary Indian dataset.

These datasets provide hours of driving data with monocular

image feed in various driving conditions. We use the same

dataset Train/Test/Val splits from [3] for Apollo Scape,

KITTI, and Indian dataset and extend the setup to Honda

dataset and manually annotated accordingly for our task.

1) Apollo Dataset: We choose Apollo-scapes as our primary

dataset as it contains a large number of driving scenarios that

are of interest. It includes vehicles depicting overtake and

lane-change behaviors. The dataset consists of image feed

collected from urban areas and contains various objects such

as Cars, Buses, etc. The final dataset used here contains a to-

tal of 4K frames with multiple behaviors. 2) KITTI Dataset:

It consists of images collected majorly from highways and

wide open-roads, unlike Apollo-scapes. We select 700 frames

from Tracking Sequences 4, 5, and 10 for our purpose. These

chosen sequences contained a variety of driving behaviors

compared to the rest. 3) Honda Driving Dataset: This dataset

consists of multiple datasets in itself. From among them,

we choose the H3D dataset for our task as it contained

lane change behaviors. H3D comprises driving in urban city

conditions where lane changes are prominent. We excluded

overtaking behavior here due to its fewer occurrences in the

dataset. It consists of a total of 1.5K frames. 4) Indian Dataset

Although the datasets mentioned above are widely used and

include wide vehicle behaviors, they mostly contain standard

vehicle frames only. To showcase models’ transfer learning

capabilities on less standard vehicles, we also use an Indian

driving dataset that includes vehicles such as auto-rickshaw,

trucks, tankers, etc. This dataset contains 600 frames.

Class labels: The vehicle behaviors predicted in these

datasets are: (i) Moving Away from Us (MAU), (ii) Moving

Towards Us (MTU), (iii) Parked (PRK), (iv) Lane Change

from Left-right (LCL), (v) Lane Change from left-Right

(LCR) and (vi) Overtake (OVT).

B. Experimentation details

All the models, both learning and rule-based, use the

same pre-processing steps to identify and track objects in

the scene, as explained in section: III-A.1 for T = 10 time-

steps (frames). The Spatial graphs at each time frame are

constructed by considering a maximum of 10 vehicles in the

scene nearest to the ego-vehicle for classifying them. Then,

an Interaction graph is independently generated from the set

of T temporally ordered spatial graphs. The MRGCN used

is identical in both models MRGCN and Rel-Att-GCN. Note

that the input and output dimensions of attention are equal.

We empirically found that using 3 layers of MRGCN with

dimensions 64, 32, and 6 (number of classes) respectively

works best for our task. In the case of Rel-Att-GCN, simple

attention is applied over the output of MRGCN for each node

individually with 2 heads. Outputs of the heads are concate-

nated across relations and projected back to the MRGCN

layer’s output dimension with a linear transformation. We

Graph used Methods

Moving
away

(MAU)

Moving

towards
(MTU) Parked

Lane change

L-R (LCL)

Lane change

R-L (LCR) Overtake

Temporally St-RNN [4] 76 51 83 52 57 63
ordered set

of Spatial graphs MRGCN-LSTM [3] 85 89 94 84 86 72

Spatio-Temporal Rule Based 90 99 98 81 87 90

Interaction MRGCN [28], [3] 94 95 94 97 93 86

graphs Rel-Att-GCN 95 99 98 97 97 89

TABLE I

VEHICLE BEHAVIOR PREDICTION ON APOLLO SCAPE DATASET.

found adding skip connection from every layer l to (l+2)th

layer to be beneficial.

The inference time for the models: MRGCN-LSTM,

MRGCN, and Rel-Att-GCN averaged over 1K graphs are

0.02, 0.03, and 0.04 seconds respectively. Note that the latter

two models inference time also includes the creation of the

Interaction graph. All the training and testing was done on a

single Nvidia Geforce Gtx 1080 GPU. More details regarding

the implementation can be found on our project website 1.

C. Baseline Comparisons

In Table: IV-B, we compare our models with Spatio-

temporal approaches as well as a rule-based method on the

Interaction graph. Table IV-B reports class-wise Recall scores

of these methods. The results reported here in all the tables

are averaged over 5 runs.

1) Spatio-Temporal approaches: To depict the importance

of encoding Spatio-temporal information as an Interaction

graph, we compare our model with Structural-RNN [4] and

MRCGN-LSTM [3] that processes a time based ordered set

of spatial graphs. Structural-RNN (St-RNN) encodes the spa-

tial representation for each frame in a graph and then reasons

over the temporal evolution of these graphs by feeding it to

a Recurrent Neural Network. We adapt St-RNN’s pipeline

to our problem by replacing humans and objects in their

model with vehicles and stationary landmarks, respectively.

A similar methodology is employed for MRGCN-LSTM [3].

We show a quantitative comparison with our

pipeline/model variations in Table IV-B. St-RNN that

doesn’t have any GCN components fare the worst. In

Table IV-B, we observe that our method outperforms

the traditional temporal based approach, St-RNN, by a

significant margin. The gap is even more prominent when

comparing the harder classes such as lane changing and

overtaking, where we observe an average difference of 40%

and 26%, respectively. A comparison between MRGCN-

LSTM that uses a set of spatial graphs vs. MRGCN that

uses the proposed interaction graph clearly shows the benefit

of the proposed interaction graph. MRGCN outperforms its

counter that learns in an end-end manner. This shows how

such simple inherent behaviors are still hard for GCNs to

learn. Further, with the addition of the attention mechanism,

the Rel-Att-GCN model achieves an additional absolute

3-4% improvement on a few hard classes.

2) Rule Based Baseline: To showcase the effectiveness of

an information-rich Interaction graph over traditional Spatio-

1code:https://github.com/ma8sa/Undersrtanding-Dy

namic-Scenes-using-MR-GCN.git.
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Model Rel-Att-GCN Rule-Based

perf. measure precision recall F1 precision recall F1

MAU 97 95 96 97 91 94

MTU 95 99 97 100 99 99

PRK 100 98 99 100 99 99

LCL 94 97 95 96 81 88

LCR 97 97 97 97 88 92

OVT 71 89 79 36 90 52

micro avg 97 97 97 95 95 95

macro avg 92 96 94 88 91 87

TABLE II

REL-ATT-GCN VS RULE-BASED MODEL ON APOLLOSCAPE DATASET.

BOTH THE MODELS USE THE PROPOSED INTERACTION GRAPH.

temporal modeling with a set of spatial graphs, we propose a

rule-based approach to infer over the Interaction graph as one

of our baselines. We use the Interaction Graphs generated by

our pipeline (ref section:III-B) and employ an expert set of

rules carefully framed to classify between behaviors. The

deterministic classification is a simple max function over

different relations a vehicle is associated with.

Relational behavior with majority count decides to which

class the object belongs to from the following, {moving

away, moving towards us, and lane changes}. For example, a

node having the highest count for behavioral relation moved

left to right would have its class as Lane change (Left to

right). To obtain classification for overtake behavior, we

iterate over all pair of vehicles, i and j, that are not classified

as parked or moving towards us in the first iteration and then

we observe if there exists ei,j = move-forward, in which

The quantitative comparison in Table IV-B, clearly depicts

the advantage of a rich temporal Interaction graph over

models that directly utilize a set of spatial graphs, especially

in the complex behavior class overtaking where it shows an

18 % and 27 % over MRGCN and St-RNN respectively.

Though the rule-based model performs well compared to

the Spatio-temporal approaches, it falls short against the

learning-based models trained on the Interaction graph. The

rule-based model is not powerful enough, especially on

lane-change classes. This clearly explains the need for a

learnable model to learn complicated patterns. On a closer

look in Table II, it is clear that the rule-based method is

not consistently better, especially on precision and recall

metrics of Overtake and lane-change classes, respectively.

The proposed Rel-Att-GCN clear outperforms the rule-based

model on aggregate Micro and Macro average scores.

Train Ratio 0.05 0.1 0.2

Method MRGCN
Rel-Att
GCN MRGCN

Rel-Att
GCN MRGCN

Rel-Att
GCN

MAU 61 94 91 95 89 97

MTU 47 99 75 99 85 99

PRK 90 98 86 98 86 98

LCL 36 98 69 98 89 98

LCR 54 94 73 95 88 96

OVT 50 60 58 65 76 77

TABLE III

RECALL ON APOLLOSCAPE DATASET FOR DIFFERENT AMOUNT OF TRAINING DATA

D. Analysis of Relation-Attention MRGCN (Rel-Att-GCN)

The Rel-Att-GCN model is the MRGCN model with

an additional attention component. The proposed Attention

function factors into account that different types of relations

in the interaction graph may have different relevancy to

predict different classes. The varying importance of the

relations in classifying vehicle behaviors can be visualized

by analyzing normalized attention scores across relations

for each class. One such visualization for the Apollo Scape

dataset is depicted in Fig. 4. Higher values in each class (row)

denote higher importance given by the attention function to

that particular relation (column) to predict that class. The

attention map clearly shows how classes such as overtake

and lane changes depend on moving forward and moved

left to right or right to left respectively. Despite how both

MVA and OVT classes have high probability mass on move-

forward relation, they can distinguish themselves based on

the attention score spread over other relations.

Fig. 4. Figure shows attention scores between class labels (rows) and types of

spatio-temporal interactions (columns). Higher scores for a particular relation indicates

a higher dependence of the class on that particular relation.

Such reasoning helps the network to learn effectively

under label scarcity, as given in Table III. Herein, we report

results for models trained with 5% , 10% and 20% of training

data. Rel-Att-GCN is able to show fidelity even when only

5% percent of data is present in contrast to a normal MR-

GCN trained on the same interaction graph, which finds it

difficult to learn from the smaller dataset. A similar trend

is observed as we increase the size of training data to

10% and 20% of the actual dataset. In Table V, where the

model is learned with 70% data, we observe that Rel-Att-

GCN achieves superior performance across all datasets when

compared with plain MR-GCN as well as temporal based

methods.

E. Transfer Learning

To showcase our proposed pipeline’s generality, we trained

the model only on the Apollo dataset and tested it on

validation sets of Honda, KITTI, and Indian datasets. At the

testing phase, we removed the classes which were not present

in corresponding datasets. As the proposed pipeline does

not rely upon any visually learned features, we can achieve
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Trained on Apollo

Tested on Honda KITTI Indian

Method
MRGCN

LSTM MRGCN
Rel-Att
GCN

MRGCN
LSTM MRGCN

Rel-Att
GCN

MRGCN
LSTM MRGCN

Rel-Att
GCN

Moving away from us 55 92 92 99 99 99 99 98 99

Moving towards us 79 60 92 98 98 98 93 94 97

Parked 91 65 99 99 98 99 99 95 99

Lane-Change(L) 65 73 94 - - - - - -

Lane-Change(R) 87 83 92 - - - - - -

TABLE IV

TRANSFER LEARNING RESULTS: WE TRAIN THE MODELS ON APOLLO SCAPES DATASET AND TEST ON HONDA, KITTI AND INDIAN DATASETS.

Trained and
Tested on Apollo Honda KITTI Indian

Method
MRGCN
LSTM MRGCN

Rel-Att
GCN

MRGCN
LSTM MRGCN

Rel-Att
GCN

MRGCN
LSTM MRGCN

Rel-Att
GCN

MRGCN
LSTM MRGCN

Rel-Att
GCN

Moving away from us 85 94 95 83 97 99 85 92 98 85 90 97

Moving towards us 89 95 99 79 86 90 86 91 98 74 91 97

Parked 94 94 98 85 88 99 89 95 99 84 93 99

Lane-Change(L) 84 97 97 75 91 91 - - - - - -

Lane-Change(R) 86 93 97 60 81 85 - - - - - -

Overtake 72 86 89 - - - - - - - - -

TABLE V

PERFORMANCE OF METHODS ON DIFFERENT DATASETS. THE MODELS HERE ARE TRAINED AND TESTED ON THE SAME DATASET.

fidelity across all datasets, as seen in Table IV. Evaluation

results for the model trained and tested on validation sets of

the same dataset can be found in Table V. From a comparison

between Table IV and Table V, the transfer learning model

though not better than models that are trained and tested on

the same dataset, is on par with them. Notably, in the Honda

dataset, the Rel-Att-MRGCN performs better in transfer for

all classes than the model trained and tested on Honda. We

attribute this behavior to high variation present in the Apollo

dataset, which the other datasets lack.

F. Qualitative

A video demonstration of the qualitative performance of

our model on different datasets can be found here2. In Fig.

5 and 6 we showcase few qualitative results from different

video snapshots. We follow a consistent convention for color-

coding to depict behaviors. Red depicts vehicles Moving

Away From Us, Green for Moving towards Us and Blue for

Parked vehicles and Yellow and Orange depict Lane Change

Left to right and Lane Change Right to left respectively while

Magenta corresponds to overtaking vehicles.

In Fig. 5, sub-figures (a) and (b) show instances of vehicles

Moving Away From Us and Moving towards on the KITTI

dataset. On the same Fig. 5, sub-figures (c) and (d), showcase

results from the Indian Dataset, wherein image (c), we see a

bus and truck parked and in (d) we see Lane change behavior

depicted by the car on the right.

In Fig. 6 (a) we see a car changing lane and in Fig. 6

(b) we observe a car classified as overtaking. Fig. 6 (c) and

(d) show fidelity of our pipeline in traffic scenarios. In Fig.6

(c) we observe a car changing lane and merging into the

2video:https://youtu.be/TT4J-uH4xqI

road on the right and two cars coming towards us, in (d)

we see a car changing a lane (on the right), a car parked on

the left and two pickup trucks moving away from us. The

qualitative results validates the proposed model’s near-perfect

classification and generalizability across datasets even in the

presence of less (or not) observed test vehicles.

V. CONCLUSIONS

This paper proposed a novel pipeline for on-road vehicle

behavior understanding and classification. It decomposed an

evolving dynamic scene into a multi-relational Interaction

graph whose nodes are the agents/actors in the scene, and

edges are Spatio-temporal encodings that signify the agents’

spatial behaviors. The interaction graph was further acted

upon by a Multi-Relational Graph Convolution Network

(MRGCN) to learn and classify the vehicle’s overall behav-

ior. The key takeaway is this two-stage classification that

showed much-improved performance over end-end learning

frameworks. The improved performance is attributed to edge

encodings of the interaction graph being an accurate inter-

mediate representation of spatial behaviors between agents

that are difficult to characterize in an end-end learning

framework. The MRGCN is integrated with an attention

layer that further improved the performance, often near-

perfect performance. Significant performance gain on various

datasets that are consistent across several metrics confirms

the efficacy of the proposed framework. Seamless data trans-

fer across datasets further showcases its reliability. Future

directions include integrating the proposed framework with

a behavior planner.
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