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Abstract— In an object search scenario with several small
objects spread over a large indoor environment, the robot
cannot infer about all of them at once. Pruning the search
space is highly desirable in such a case. It has to actively
select a course of actions to closely examine a selected set of
objects. Here, we model the inferences about far away objects
and their viewpoint priors into a decision analytic abstraction
to prioritize the waypoints. By selecting objects of interest, a
potential field is built over the environment by using Composite
Viewpoint Object Potential(CVOP) maps. A CVOP is built
using VOP, a framework to identify discriminative viewpoints
to recognize small objects having distinctive features only in
specific views. Also, a CVOP helps to clearly disambiguate
objects which look similar from far away. We formulate a
Decision Analysis Graph(DAG) over the above information, to
assist the robot in actively navigating and maximize the reward
earned. This optimal strategy increases search reliability, even
in the presence of similar looking small objects which induce
confusion into the agent and simultaneously reduces both time
taken and distance travelled. To the best of our knowledge,
there is no current unified formulation which addresses indoor
object search scenarios in this manner. We evaluate our system
over ROS using a TurtleBot mounted with a Kinect.

I. INTRODUCTION

With the advent of indoor mobile robots for assistance
and service, it is imperative to equip them with intelligent
decision making frameworks to perform tasks optimally. One
such scenario is where a robot searches for a set of small
objects(3-10cm) among many lying scattered on floor in
a large unstructured indoor environment. Here, the robot
cannot comprehend the whole scene in a single attempt since
all the objects would not appear clearly in a single view. Due
to the small size of objects, it has to iteratively check various
objects while traversing the environment. An active decision
making algorithm helps since an exhaustive search over the
whole space would be extremely expensive(Fig. 1).

In this work, the robot makes an initial guess about various
far away objects, to prune the search space and reach them in
an optimal manner for closer recognition through a decision
analytic framework. Visible objects are detected using our
approach in [1] and an estimate of similarity to each of
the query objects [2] is computed to select interest objects.
Through a Bayesian Belief Network, it computes the Exis-
tential Probability(EP) of an interest object and its pose/angle
with respect to its similar query object’s reference.

It navigates towards the interest objects to recognize them
from a closer proximity through discriminative viewpoints
for recognition. We propose Composite Viewpoint Object
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Fig. 1: The robot is required to search for objects among multiple similar looking
objects spread all over the floor. It should be enabled with an efficient search strategy.

Potentials(CVOPs), constructed from VOPs(III-D.1) of all
query objects to which an interest object is similar. It
efficiently represents all common discriminative viewpoints
for recognition, with respect to all the objects that an interest
object is similar to.

Through CVOPs, we identify potential viewpoints to
reach, to check if the interest objects are indeed the query ob-
jects as anticipated from far. Using the above information, we
propose a formulation of a Decision Analysis Graph(DAG) to
compute the optimal order of waypoints/viewpoints to max-
imize the reward earned by the agent. Using the existential
information about an object from far away to combine it
with the object priors(VOP) for efficient decision theoretic
planning is the corner stone of this paper.

A. Contributions:
• We propose a formalised adoption of human strategy

of guessing about objects from far followed by planned
visit to interest objects to recognize them. We propose
a DAG which encapsulates the uncertainties to envisage
the risk involved in various control actions to actively
guide the robot and recover the query objects through
a minimal cost.

• We build an efficient object modelling abstraction called
Composite VOPs based on our earlier proposal of VOPs
in [2]. CVOPs aid in choosing common high accuracy
viewpoints with respect multiple similar looking objects
helping in clearly disambiguating objects.

II. RELATED WORK

The problem of object search was first addressed in
1976 in [8] where Garvey proposed validation of object
hypotheses and reducing the search space. The term ’Active
Perception’ by Bajcsy in [7]. Most of the recent works
exploit the spatial topological relations between the object
and structure of its surrounding environment. In [4], Sjöö
et al. address the problem by identifying possible locations



of objects in a room and further look closer towards them
using a monocular camera with zooming capability. In [5],
Joho et al. approach object search in structured indoor
environments like supermarkets through a maximum entropy
model which ascertains possible locations of a target object
using attributes and spatial contexts. In [6], Kunze et al.
model the semantic relations between objects and their
locations to evolve decision theoretic approach to search
for objects in large scale environments. Recently [9][10][11]
show extensive work on how strong correlations between
3D structure of the surrounding environment and object
placement can be exploited for object search. [10] models
a POMDP, making use of uncertain semantics between the
object and its location. In it, a probabilistic semantic mapping
framework is proposed, defining joint distribution between
each object category and room to estimate possible object
locations. Most of these works (except [4]) make use of
semantic relationships between object-object or object-scene
through pre-built knowledge maps or learning the semantic
relations. Also, the objects that are dealt within these scenar-
ios are large enough to get reliable feature points to clearly
discriminate them from other objects from a substantial
distance.

That being said, semantic relations could sometimes be
diffused or completely breakdown, leaving the robot in a
state of confusion. This could happen in two cases.
• In a case where the robot reaches a large room which it

believes is the plausible location of a small object. The
object could be anywhere in the room, which makes it
expensive to examine each of them closely.

• Agents often encounter completely unorganized and
chaotic scenes leading to the breakdown of semantic
relationships. Further objects like bottles, toys etc. might
not share a semantic relationship with the environment.

Our approach solves certain complimentary aspects in
object search which have not been specifically addressed
in the earlier mentioned works in accordance to the afore
mentioned points.

III. OUR APPROACH

Let O = {oi}N1 be the set of N objects that exist in the
environment. A robot is given the task of searching for a set
of queried objects Oq ⊆ O among the set of visible objects
Ov at a particular instance in the scene. The robot has prior
information of the objects(O) in the form of their appearance
models and the VOP maps.
A. System Pipeline:

The system pipeline is as follows (Fig. 2)
1) All the objects as far as 6m around are detected using

Sec. III-B presented in [1](Fig. 2(a)). Let Ov denote
the set of such objects.

2) For each object in Ov , a likelihood of it being similar
to each of Oq is ascertained(Fig. 2(b)). The likelihoods
further develop into Existential Probabilities(EP), over
a sequence of instances through a Bayesian Belief
Net(BBN). EP defines the strength of belief that an

object is similar to a query object. Objects which show
EPs less than a certain threshold(0.45 in our case) with
respect to the query objects, are filtered out. The pose
of each of Ov with respect to Oq is estimated through
a similar BBN.(Sec. III-C)

3) The early inferences on objects, i.e. the EPs and poses
are used to construct the Composite Viewpoint Object
Potential(CVOP) which helps identify the discrimina-
tive viewpoints for an object(Fig. 2(c)).(Sec. III-D)

4) A potential map over the environment is built using
the CVOPs of all objects to choose discriminative
viewpoints(Fig. 2(d)). These viewpoints are used to
construct a DAG which guides the robot through a set
of strategic viewpoints.(Sec. III-F)

5) Once the robot is close to a viewpoint, a path is
planned on the CVOP towards the object over which
it recognizes the object.[12].(Sec. III-E)

Below we present various modules of the system.

B. Object Detection:

Small objects(1-5cm) on the floor, as far as 6m can be
detected using our algorithm presented in [1](Fig. 2(a)). It
superpixels an image, followed by a Graph Cut over the MRF
formulation using the superpixels.

C. Inferring from far:

When a robot observes objects from far away, some
objects might look similar to multiple query objects. In
our findings in [2], we showed that a reliable inference
about such objects can be made using multidimensional
Gaussian Mixture Models(GMMs) learnt independently over
each object in O. We have a set G = {G}N1 , containing
GMMs(G) of each object in O.

1) Existential Probability of an object: The GMMs are
continuous Probability Distribution Functions which give the
likelihood of a visible object being similar to any of Oq .

If Fvi is the feature vector of a visible object, the likelihood
LF of F being similar to an object in Oq is G(F). Hence,
for a visible object ovi ⊆ Ov We obtain the set

Lv
i = {G1(F), G2(F), . . . , Gq(F)} (1)

which contains the likelihood of Fvi being similar
to each query object in Oq . We estimate Existential
probability(p(Eoqov )) for a visible object over a sequence of
images through our Bayesian Belief Net formalism. I1 and
I2 are instances of a visible object ov . Eoqov is a binary
random variable which takes 1 when ov’s likelihood Gq(F)
with respect to a query object is greater than a threshold.
p(E

oq
ovi
) is the probability that the object ovi is similar to oq ,

typically given by Gq(F) which computes the probability
that the object ov exists in the given image I1. Several
such likelihoods are integrated over a BBN. The conditional
distribution p(Eoqov |I1, I2) can be expressed as

p(E
oq
ov
|I1, I2) =

p(I2|E
oq
ov , I1)

p(I2|I1)
(2)

Using the Markov assumption and the independence be-
tween sequence of images,



Fig. 2: Object search system overview.

P (E
oq
ov
|I1, I2) = ηp(E

oq
ov
|I2)p(Eoq

ov
|I1) (3)

through Bayes’ expansion of p(I2|E
oq
ov ), where η is the

normalization constant.
In general when there are several images,

P (E
oq
ov
|I1, I2, . . . , In) = ηp(E

oq
ov
|I1)p(Eoq

ov
|I2) . . . p(Eoq

ov
|In) (4)

where each term on the right hand side computes the
likelihood of object ov being oq in that view. Hence, we
obtain the Existential probability of ov with respect to oq
over several views. For a visible object ov , define Svq as the
set of query objects that the visible object is similar to.

2) Pose estimation: For each object in O, there are
uniformly distributed dictionary images representing various
poses. For a visible object with high p(E

oq
ov ) for a query

object, we compare its shape with dictionary images of
oq and find the best match. The shape is obtained using
Probability Boundary edge detector and match the shapes
using Fast Directional Chamfer Matching(FDCM) [3]. Since
we know Svq for all objects in Ov we can estimate the pose
of each visible object with respect to each query object. We
build a belief on o′vs pose over several images using a similar
BBN as proposed above. This process helps us recover the
pose reliably with an error of 1-6◦.

D. CVOP based Viewpoint sampling:

The construction of CVOPs is as follows(Fig 3).
1) Construction of CVOPs: Viewing angle of an object

plays a vital role in small object recognition[2] since they do
not provide enough 3-D points from certain views. In case
of asymmetric objects the recognition accuracy could vary
drastically with viewing angle. In [2] we presented Viewpoint
Object Potential(VOP) of an object, a polar map which gives
the belief values for correct object recognition as a function
of viewing distance and angle. This helps us reach optimal
discriminative viewpoints.

A visible object similar to multiple query objects from far
away, has a different pose with respect to each of them. The
robot has to view an object from different viewpoints specific
to various query objects for disambiguation. To avoid this
cumbersome task, we propose a Composite VOP map for
an object. Effectively, a CVOP contains the combined high
accuracy viewpoints related to all the similar query objects,
hence saving the robot from visiting numerous viewpoints.

Fig. 3: Figure shows the formation of CVOP of an object which appears to be both
shampoo and cookie pack from far, rotated at 0◦ and 30◦ with reference to their base
frames. The VOPs of them are weighed by existential probability, rotated and merged
to form the CVOP. v1, v2 are high accuracy regions from shampoo and so are v3,
v4 for cookie pack. v3 has a low potential to recognize shampoo bottle(From its own
VOP) and so is the case with v4. These viewpoints cannot cater to be high accuracy
viewpoints since they help in reliably recognizing only one of the objects. On the other
hand, v1 and v2 are high accuracy viewpoints in both the VOPs which means they
have to be retained in the CVOP.

CVOP(Fig. 3) is a weighted composition of VOPs of all
query objects similar to the visible objects. The weight of
each VOP is decided by p(Eoqov ), the existential belief of ov
being oq . Further, the VOPs being polar plots are oriented
according to the pose of ov with respect to oq and merged.
Say ov is similar to o1, o2, . . ., ot ∈ Oq with existential
probabilities, p(Eo1ov ), p(E

o2
ov ), . . ., p(E

ot
ov ) and its angles

estimated with respect to the query objects are θ1, θ2, . . .,
θt. A CVOP is calculated as

CVov (Vo1 (θ1),Vo2 (θ2), . . .) = min( p(E
o1
ov

)Vo1 (θ1), (5)

. . . , p(E
ot
ov

)Vot (θt))

where Voi(θi) is the VOP of query object oi oriented at
angle θ and the function min(.) assigns the minimum value
from the VOPs at each viewpoint to that in CVOP.

The advantages of using a CVOP for an object are two
fold. Firstly, CVOP generates a new potential field, where a
viewpoint indicates the minimal probability of recognizing
an object as one of the query objects it was anticipated to be.
Secondly, it models a generative abstraction of the structural
and discriminative properties of the object in the probability
space which can be used for any kind of active recognition
or manipulation tasks.

2) Trajectories towards objects: High potential(red)
points in a CVOP form clusters with clear boundaries(Fig.
3). Initial Viewpoints are sampled over such outer bound-
aries(e.g. v2 and v4). With these viewpoints as the start, a
trajectory (v1, v2, . . . , vn) is computed towards the object,
constraining the robot to contain the object in the camera
frame always. From a viewpoint vi on the boundary, select
one of its 8 neighbours with the constraint that the object is
contained in the camera view and the neighbour either has a



higher or equal potential compared to the current viewpoint
and proceed iteratively towards the object(Fig 8(b),(f)).

3) Recognition Belief of a viewpoint: We use a BBN
similar to what is proposed in Sec. III-C.1 to build a
Recognition Belief(RB) for an object, over the trajectory
starting from vi. For an object ov , which appeared similar to
oa from far, the Recognition Belief, p(Roaov |{v}

n
1 ) is

P (R
oa
ov
|v1, v2, . . . , vn) = ηp(E

oa
ov
|v1)p(Eoa

ov
|v2) . . . p(Eoa

ov
|vn) (6)

where p(Eoaov |{v}
n
1 ) comes from VOP of oa which indicates

the probability of recognizing ov as oa from that viewpoint.
This RB is used while calculating the success and failure
probabilities of a chance node for the DAG(Sec. III-F).

E. Recognition from near:

In the current context, active object recognition[15] is
beneficial over static recognition techniques. In our previous
work [2], object recognition was based on single frame RGB-
D data from Kinect, where recognition is highly dependent
on viewpoint selection. In this work, we use multiple frames
to form a well aligned dense cloud of the object.

While the robot approaches an object, it starts at a strategic
viewpoint on the outer boundary of high potential region
where it initiates the ICP module and travels towards the
object over the trajectory calculated in Sec. III-D.2. The robot
incrementally registers pair of clouds of the object using ICP
[16][14]. This results to an aligned dense point cloud of the
object with several new ones added in the updated 3D cloud
for robust recognition.

F. DAG based exploration planning:

After finding the interest objects, the robot has to navigate
to various viewpoints to recognize them as anticipated. Some
objects showing high Existential Probabilities(EP) might be
far away, some showing lower probability might be close
by and vice versa. The robot might go all the way to a far
object and fail to find the object while it could have gone to
a closer object with lower EP for a successful recognition.
Here, we propose a Decision Analytic framework through a
Decision Analysis Graph(DAG)[13] which helps us find an
optimal set of waypoints to maximize the reward earned by
the agent.

Fig. 4: Decision Analysis Graph depicting the various nodes and controls. The
rectangular nodes are decision nodes where the next best control action is chosen to
the next viewpoint(chance nodes) with highest utility. The circular nodes are Chance
nodes and the leaves are reward nodes. Blue shows a path incurring success edges all
along. The path in orange incurs two failures. Waypoints are nothing but the viewpoints
of different objects the robot has to reach.

1) Construction of DAG: A DAG(Fig 4) is a Directed
Acyclic Graph, D = (V, E) with nodes V and Edges E .
wherein V = Vc∪Vd∪Vr is the union of Chance Nodes(Vc),
Decision Nodes(Vd) and Reward/Leaf Nodes(Vr). E = Ep∪
Eu is the union of Result Edges(Ep) and Control Edges(Ec).
• Chance Nodes represent the discriminative viewpoints

sampled from the outer boundary of the high potential
area of a CVOP(Fig. 3). For the visible object ov
similar to query objects Os = {o1, o2, ..., ok} ⊆ Oq ,
the success probability at a node is given by

P
V
s = p(R

o1
ov
|vn1 ) ∪ p(Ro2

ov
|vn1 ) . . . ∪ p(Rok

ov
|vn1 ) (7)

which indicates the probability of recognizing oa as
either of the anticipated objects, where p(Ro1ov |v

n
1 ) is

the probability of recognizing ov as oa at the end of the
trajectory. The failure probability Pf is 1-Ps

• Result Edge-Success(REs) is an edge from a Chance
node which indicates successful recognition of the ob-
ject as one of Os with a probability Ps.

• Similarly, Result Edge-Failure(REf ) is an edge from a
Chance node which indicates the failure to recognize
the object as one of Os as anticipated from far away.

• Decision nodes are where the decision about the next
control action to reach a new object/viewpoint is de-
cided. At every vd, that next viewpoint is chosen which
has the highest amount of utility through the Control
Edge(Ec) leading to it.

• Reward/Leaf Nodes are leaf nodes of the DAG which
indicate the reward earned by the robot at the end of
exploration through the set of waypoints from the root
node to vr.

The root node(Start) is a Decision node which propagates
a set of Control edges leading to a reward(vr) finally. The
reward at a vr is inversely proportional to the distance
travelled by the control actions to reach it. A failure edge
leads to a penalty for choosing a control action that led
to a failure. For instance, in Fig. 4, the reward at R1 for
the path(Fig. 4(blue)) via Start → U1 → Ps(2) → U2 →
Ps(5)→ R1 where it passes through two success edges(P1,
P2) consecutively is

R1 = 1/d(Start, V2) + d(V2, V5) (8)

where d(Start, V2) is the distance travelled from Start
node to viewpoint V2 when it executed the control action
U1. In other terms, reward at R1 is

R1 = 1/d(U1) + d(U2) (9)

Whereas the reward through a path that failed to detect
one or more objects progressively reduces with increasing
number of non-detected objects along the path. For example,
the reward along the path(Fig. 4(orange) start → U1 →
Ps(2) → U2 → Pf (5) → U4 → Pf (7) → R3 is computed
to be

R3 = 1/d(U1) + k1(d(U2) + k2d(U4)) (10)

where k is a penalty to reduce the reward for failing to
recognize the object from V5 as an anticipated object from



Fig. 5: Pose estimation error for a slim sidelined-wide bodied object, for samples from
0◦-180◦ each differing by 4◦. A single instance of the sample is considered for
estimation. The estimated pose is close to actual pose.(Best viewed when zoomed in.)

the query objects. However, the object viewed from V2 was
successfully recognized as one of query objects and hence
there is no penalty with the distance d(U1).

Now that the reward nodes are computed, the expected
reward at each chance node(from where the object needs to
be viewed) is recursively computed bottom up from each leaf
node. For instance, the utility at V5 would be

UV5
= Ps(5)R1 + Pf (5)(UV7

) (11)

which recursively simplifies to

UV5
= Ps(5)R1 + Pf (5)(Ps(7)R2 + Pf (7)R3) (12)

Starting from the ’Start’ node, at every vd, control to that
viewpoint is chosen which has the highest utility to get the
set of waypoints for the robot to navigate.

2) Advantages of DAG: Firstly, the DAG provides a mech-
anism for integrating failure probabilities into the expected
reward and hence eventual decision making. Secondly, it
provides for alternative best paths, which can be computed a-
priori. DAG efficiently encapsulates the possibility of failure
in recognizing the object as it was anticipated.

IV. EXPERIMENTS AND RESULTS

A. Pose Estimation from far:

In Fig. 5 shows that the error incurred in estimating the
pose for an object over a single instance is 3◦-10◦. Fig 6
depicts the increase/saturation in the belief of the object
being in pose 48◦, while moving towards the object and the
actual pose is 45◦, with an error of 3◦.

Fig. 6: Here the objects is oriented at 45◦ and we build the belief on pose through
BBN over multiple instances while moving towards it. The belief over dictionary image
12(at 48◦) is the highest after 7 iterations.(Best viewed when zoomed in.)

B. Analysis of ICP based recognition:

When registering multiple point clouds, it is important to
determine the optimal angular shift between two images and
the number of such frames to be considered. Fig 7 shows
that the recognition accuracy is the best when 4 consecutive
frames were registered with an angular shift of 5◦ between

Fig. 7: A visible increase in recognition accuracy through ICP based recognition. The
best accuracy is achieved when 4 frames are registered each with a shift of 5.3◦

between them.(Best viewed when zoomed in.)

Fig. 8: (a),(e)Robot detects the interest objects and segments them. (b),(f)Robot
identifies the strategic viewpoints and the paths from them for ICP. (c),(g)Robot moves
to the viewpoints for recovering the objects as decided in(d),(h).

them. It can be seen that the overall recognition accuracy for
a typical small object of size 11x6x2cm is increased from
69% to 89% when number of registered from is increased
from 1 to 4 frames.
C. Analysis of our approach:

Here, we demonstrate the functioning of the pipeline(Fig.
8) over a scene where there are multiple similar objects.
Fig. 8 shows the first two iterations of the search. There are
three query objects (Red Shampoo Bottle(SB), Red Cookie
Pack(RC), Blue Tool Pack(BP )) that need to be recovered.
SB and RC are similar looking from far and BP is different
from the other two(Fig. 9). The robot discovers objects A1,
A2(Fig. 8(a)) both of which have high Existential Probabil-
ity(EP) for SB and RC(using Sec.III-C). After calculating
their pose, it constructs CVOPs for A1, A2 using the VOPs
of SB and RC to compute the high accuracy viewpoints
VA1

and VA2
(Fig. 8(b),(f)). Through a DAG built over the

viewpoints as in Fig. 8(d), it decides to reach VA2
(as it

has the highest utility value) and recognizes it(Sec.III-E) as
SB, disambiguating it from RC(Fig. 8(c)). Here, it further
discovers B1 and B2, both of them are similar to BP and
hence the robot now has to explore among A1, B1 and B2.
The DAG is reconstructed(Fig. 8(h)) with the inclusion of
the new found objects’ viewpoints. Following this, it further
navigates to A1(Fig. 8(g)) since its viewpoint has the highest
utility among those for A1, B1 and B2. Following the same
recognition strategy, it recognizes A1 as RC, as anticipated.
Following the control from the DAG, among B1 and B2, it
traverses over to VB1

where it fails to recognize it as one
of the query objects and moves towards B2 to recognize it
as BP. Fig 9(a).(our approach), shows the path traced by the
robot in the whole search mission. In 10 trials, the robot
covered an average of 11.65m and recovered all the queried
objects 8 times. Over all we conducted experiments in 5



Fig. 9: (Left)Paths traced by the robot through various strategies are shown. The path
traced by our approach is on similar lines with the human approach. (Right)Paths traced
during various human based experiments. Almost all the human subjects approach the
objects that are similar to query objects. A1, A2, B1, B2 are Red Cookie Pack, Red
Shampoo, Multimeter and Blue Tool Box respectively. The arena is of the size 12m x
7m (Best viewed when zoomed in.)

Fig. 10: (Left) Distance travelled by robot to reach a search object in each case for
the above scenario. The distance travelled in our case is considerably less. (Right) The
accuracy of recognizing different objects in various cases over all 50 experiments.

different setups, each with 10 trials where the robot could
recover all the queried objects in 92% of the trials(Fig. 10).

D. Comparison with various strategies:

1) Case 1: Here, the robot greedily searches through
every object present in the scene until the query objects
are found. The robot ends up covering a large distance
of 20.28m(Fig. 10). Over several runs, the reliability is
76%(Fig. 10), which means were successfully recovered only
in 76% of the cases. This is due to the poor viewpoint
selection in many cases(Fig. 9.case1).

2) Case 2: When the robot is equipped with the GMM
module, it eliminates most of the dissimilar objects in the
scene. In this case, while the average trajectory length
is reduced to 11.31m(Fig. 10, 9.case2), the reliability of
recovering objects is still very low(75.3%) due to the poor
viewpoint selection. Although the GMM predicts the pres-
ence of an object, the robot cannot choose a strong viewpoint.

3) Case 3: Here, the robot is equipped with both the
GMM module and VOP maps. The 3-D analysis module
uses only a single point cloud. The robot infers about an
object from far and moves to a strategic viewpoint. But the
robot does not do this through a DAG and hence does not
know what steps need to be taken when it fails to recognize
an object as anticipated. The reliability of recovering objects
increases to 84.3%(Fig. 10) here and the distance traversed
also increases by a small amount(13.36m)(Fig. 9.case3)
since the robot reaches specific viewpoints. The reliability

is still bounded since it checks an object only once in which
it could fail.

4) Case 4: Here, we demonstrate the performance of an
approach proposed by us in [17]. For object A2, it moves
to multiple viewpoints to recognize it. This leads to a lot
of redundancy. So is the case with B1. This leads to an
increased distance traversal(15.51m)(Fig. 9.case4) compared
to the approach proposed in this paper. The object recovery
accuracy is higher than the above specified cases(84.3%) but
still remains lower compared to our approach.

E. Human based experiments

We explored how humans perform in a similar setting
with same visual and motion capabilities as the robot. In
this experiment, the person was not exposed to the arena
and had remotely controlled the robot while watching the
live video stream from the robot’s camera. We observed
that humans try to guess about objects from far and go
closer to recognize it. Also, the paths traced by humans
are very similar to the robot as shown in Fig. 9(right).
This experiment comprises 20 trials, each with a different
person. Although, the object recognition ability of humans
marginally outperforms our algorithm, the average distance
travelled by humans is 14.63m as compared to 11.65m by
robot for the same setup. The paths are plotted in Fig. 9
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