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Abstract— Structured light range sensors (SLRS) like the
Microsoft Kinect have electronic rolling shutters (ERS). The
output of such a sensor while in motion is subject to significant
motion blur (MB) and rolling shutter (RS) distortion. Most
robotic literature still does not explicitly model this distortion,
resulting in inaccurate camera motion estimation. In RGBD
cameras, we show via experimentation that the distortion
undergone by depth images is different from that of color
images and provide a mathematical model for it. We propose
an algorithm that rectifies for these RS and MB distortions. To
assess the performance of the algorithm we conduct an extensive
set of experiments for each step of the pipeline. We assess the
performance of our algorithm by comparing the performance of
the rectified images on scene-flow and camera pose estimation,
and show that with our proposed rectification, the performance
improvement is significant.

I. INTRODUCTION

There are two types of shutters used in digital cameras.
One is the global shutter (GS) where the entire image is
captured simultaneously, the other is the rolling shutter (RS)
where the image is captured row-by-row at slightly displaced
time instances as shown in Fig. 2. Recently cameras equipped
with ERS have become popular due to their low cost, low
power consumption. This, however, comes at the cost of
a more complicated camera projection model. Due to this
RS cameras capture distorted images when the camera is
moving. Unless these distortions are modelled and rectified
the use of SLRS are limited to slow motions, when these
effects are negligible.

Another distortion introduced in image data, due to camera
motion is motion blur. Much like the RS distortion, MB
negatively impacts the camera pipeline during exposure time.
Motion blurring causes the smearing of edges and distinct
points, which are image primitives on which all subsequent
vision algorithms rely. MB is modelled as a convolution
of a latent image l with a kernel k giving a blurred
image b= k∗l. The job of a de-blurring algorithm is to
recover l from b. This is an ill-posed problem and requires
sophisticated priors to be solved.

We discovered while capturing data from the Kinect that
the nature of blur affecting the depth sensor is substantially
different from the one affecting color images. In color images
blur has an averaging effect on the image where the value of
a pixel at a point is the weighted average of it?s surroundings.
For depth images, we found that blur causes a much greater
loss of high-frequency information. More specifically we
found that the depth observed by the pixel was the minimum
of all the depths it was exposed to during the row exposure
period. We call this the min-filter effect. This effect has
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Fig. 1. Rolling shutter effect in consumer depth cameras. (a) shows a color
image captured from a Kinect. In addition to the motion blur, the camera
motion also causes a slanting of all the vertical lines in the image. (b) shows
a color map of the corresponding depth image. RS distortion here causes, in
addition to the slanting, fattening of the depth map at the edges of objects,
as seen clearly for the box. (c) Shows the point cloud corresponding to
(a) and (b). The color and depth images are misaligned, and some of the
background from the floor and table project onto the box.

an edge-fattening effect which causes the boundaries of the
depth map to extend beyond the actual boundaries of the
object.

A vast majority of the computer vision literature has
algorithms designed for slow-moving cameras. The paradigm
of fast motion is as of yet widely unexplored. The algo-
rithms that deal with high-level robotic vision tasks, like
object recognition and viewpoint estimation work on images
taken from slow-moving cameras. So, to make use of these
algorithms in their current form, we would like to be able to
completely remove RS+MB distortion, from both the depth
and intensity images. Also, we would like to have a perfectly
aligned depth map.

An algorithm capable of providing this would be ideal,
but is unlikely, given the severely ill-posed nature of blur
removal, in both the intensity and depth images. In this paper,
we propose an algorithm that is a step in this direction.

We start off by rectifying for RS in depth maps. As depth
information is more accurate than image intensity in camera
motion estimation, we use it to estimate the camera trajec-
tory. This is done by first estimating the time continuous
3D camera trajectory, and then transforming the 3D points
to where they would have been, if the camera had been
stationary. We adopt the new SE(3) spline parametrization
proposed in [1] for the camera trajectory. Once the depth map
is rectified, using the spline coefficients, we can interpolate
the camera trajectory to the intensity image time-stamp and
rectify for it as well. This solves the RS distortion, which
is the easy portion of our problem. To solve for MB we
project the estimated camera motion, from the previous step
during camera exposure onto the image plane. This serves as
the blur kernel for the intensity image deblurring. The min-
filter is far too lossy an operation on the original depth map
for recovery. So instead we settle for giving a probabilistic
labelling of the uncertain pixels in the edge fattened depth
map. This can be thresholded to give a depth map, with
reduced edge fattening.



A. Related Work

There have been several works that address rolling shutter
rectification. Due to space constraints, we focus only on the
ones relevant to us. Most approaches for monocular cameras
[2, 3, 4, 5] assume the availability of additional sensors
(IMU’s) / certain scene structures (planes). We don’t need
any such assumption due to the availability of depth map
information. Also, they focused only on RS correction and
did not address the problem of MB.

Recently, in [6], both RS and MB were addressed in a
joint formulation, and showed that estimation RS rectification
helped in de-blurring. Again, in our case access to the
depth map allows for improved camera pose estimation, and
subsequently improved deblurring.

For SLRS cameras, within the literature, we found only
one work addressed RS removal in depth cameras [7]. In it
they used a linear spline parametrization (via Spherical Lin-
ear Interpolation, SLERP) [8] for the camera trajectory, and
formulated an ICP like algorithm for depth map correction.
In it they enforce a uniform camera velocity during exposure.
Rather than enforcing a constant velocity, we choose to add
it as a regularizer in our formulation, resulting in improved
camera trajectory estimation, as shown in section IV-D. Also,
Ringaby et al. restrict their discussion to RS rectification
only.

B. Contributions

• We present a mathematical model for depth image blur-
ring that explains the edge-fattening and loss of high-
frequency information observed in depth maps taken
from a fast moving camera. We give a method to correct
for the edge-fattening.

• We present a pipeline that rectifies for both RS and MB
in both intensity and color images, and show that it
is able to reduce RS+MB in both depth and intensity
images. To the best of our knowledge this is the first
attempt made to rectify footage from a fast moving
SLRS camera.

• We will release a new calibrated RS+MB correction
dataset taken under a calibrated set-up, for large mo-
tions, which is a first of it’s kind.

• We show a practical robotic application of our algorithm
in a camera trajectory estimation task. The rectified
output of our algorithm has a far more accurate camera
trajectory, than the other methods compared against.

II. CAMERA MOTION MODEL

For the purposes of this paper, we assume that our scene
is stationary. Fig. 2 illustrates the mechanism of capture for
both the global and rolling shutter sensors. In the case of the
GS, all rows of the sensor are simultaneously exposed to the
light. In the presence of camera motion, the pixels in a GS
camera integrate over the camera motion trajectory. In a RS
camera different scan-lines integrate over slightly displaced
segments of the camera trajectory, giving rise to the rolling
shutter effect. MB in both types of sensors is caused by light
from an object striking different parts of the sensor during

Fig. 2. Illustration of GS and RS sensors. Each horizontal bar represents
the exposure time te of a scanline. In the presence of camera motion, all
pixels in a GS camera integrate over the same motion trajectory, while
different scanlines integrate over a different segment of the trajectory in a
RS sensor. The difference in exposure start times between successive scan-
lines is called line delay and is given by td

exposure. We give in sections II-B and II-C, mathematical
models describing the image capture for global and rolling
shutter respectively.

A. Notation and Terminology

For clarity and neatness of mathematical exposition the
symbols explained below are summarized in Table I

Symbol Meaning
t Time
I(p,t) :Ω ×
R+→ R+

Color Image Brightness Fn. wrt time

I(p) :Ω×R+ Color Image Brightness Fn.
D(p,t) :Ω ×
R+→ R+

Depth Image Brightness Fn. wrt time

D(p) :Ω×R+ Depth Image Brightness Fn.
K Intrinsic Calibration Matrix
pi pi in homogeneous co-ordinates
oi = K−1p̄iD(pi) 3D pt. corresponding to pi
fv = (v,ω) ∈
R6

v: Linear velocity, ω: Angular Velocity

T An SE(3) transformation
w(T,oi) warping function, transforms oi by T ∈ SE(3)

followed by projection
te,td Row exposure time, Line delay

TABLE I
NOTATION

The image domain is represented by Ω. I(p,t) is the
instance of the intensity image at time t and pixel p during
exposure. It is different from I(p) which is the intensity of
the final formed image at pixel t p after exposure. Likewise,
for the depth image D(p,t) and D(p). Homogeneous coordi-
nates are represented with a bar on top of its corresponding
symbol, like in p̄ . To avoid cluttered equations, K is used to
represent the camera calibration matrix in both homogeneous
(3 3 matrix) and non-homogeneous form (4 4 matrix).
Which use is intended should be clear from context. The
3D point oi corresponding to pixel pi is obtained by back-
projecting pi , via oi = K1p̄iD(pi). fv = (v,ω) denotes the
linear and angular velocity of the camera. T ∈ SE(3) will
sometimes be a function of time t. The warping function w

transforms oi by transformation T and then projects it onto
the image plane.
te is the time duration during which a row of the camera

is active. td is the line-delay between the start of exposure
between two successive rows of the sensor (scanlines). Fig.
2 shows these two times diagrammatically. These constants
are calibrated for using the technique from [7]. The td and



Fig. 3. Diagrammatic Illustration of the Edge-Fattening Effect for a single
point during exposure.

te are different for depth and intensity images of the Kinect.
td and te were 25.717ms and 26.231ms for intensity images.
For depth images, we calculated 30.018ms and 31.528ms for
td and te respectively.

B. Global Shutter

In a GS camera, at a particular time instance t, the image
at pixel pi , I(pi,t) depends on the light incident on the
sensor from oi . Thus I(pi,t) = I(w(T,oi)), where T is the
transformation from the world frame to camera frame.

Now, the image formed by a moving GS camera results
from integrating over all I(p, t) seen by the camera along its
motion path during its exposure period t ∈ [0, te], i.e.

I(pi) =
1

te

∫ te

0
I(w(T(tfv),oi,t))dt (1)

T(tfv) = et[fv]∧ [ fv]∧ =
[
[ω]× ν

0 0

]
∈ se(3) (2)

[.]× denotes the matrix exponential operator.
o= {oi,t|t ∈ [0,te]} represents the set of 3D points
which project to the pixel pi during camera exposure. Eqn.
1 is a many-to-one mapping from o to pi and is a result
of the moving camera seeing different 3D points during
exposure. Similarly, a 3D point oi may project to different
pixels of an image, resulting in another many-to-one
mapping. This lack of distinctness gives rise to MB. From
the equation, we can also see that when the camera is
stationary, fv is zero, I(p,t) = I(p), i.e., we recover the
original image.

C. Rolling Shutter

In RS cameras, the final image formed is a result of the
integration over different intervals of the camera trajectory.
As shown in Fig. 2, the exposure intervals for two successive
scan-lines is offset by the line delay td . Let the final rolling
shutter image for a particular row be Ir, where r is the row
number. The final image can be written as IRS = [I1, . . . ,IR].

Ir(pi) =
1

te

∫ r.td+te

r.td
Ir(w(T(−tfv),oi,t))dt (3)

Here, r is the row number. Ir is the final image of the rth

row. The integration is carried out from r.td to r.td+te ,
for this row. The transformations T(.) and set of 3D points
o are likewise dependent on the row number.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. Please zoom in. The Edge-Fattening Effect of Camera Motion on
the Depth Image. First row: (a) and (b) are the color and depth images of a
meshed plate taken by a stationary camera. In it is marked the row within a
green rectangle. In (c) is plotted the depth values at this particular row, as
a function of column number. This is for the row marked in green in (a).
Second row: (d) and (e) are the color and depth images of the same scene
taken by a camera rotating at 40 rpm, with the same row marked (f) is the
corresponding depth histogram plot. (g) gives the color coding for the maps
(b) and (e). Each pixel in the depth maps (b) and (e) encodes the depth
recorded by the camera at that location. Missing information is given zero
depth. As can be seen in the (b) and (c) for the stationary scene, the gaps
in the viewed grill are present. As they are occluded in the depth maps,
the values of the depth map at those locations are in-fact marked zero. The
dips in (c) also show this. In comparison, in the second row, edge fattening
causes the filling up of those gaps and causes a flat-lining of the histogram
(f).

D. Edge-Fattening in the Depth Map

For the depth map, we observed that, rather than having
an averaging effect (modelled as a convolution) motion blur
has an effect more akin to a min filter, i.e, the final value
registered by the depth map of the camera was the minimum
over the depth of all points observed during exposure, i.e.

Dfinal(pi) = min
t∈[0,te]

{D(oi,t)} (4)

Here, D(ok) is the depth at point ok, oi,t is defined as
in eqn. 1. The min-filter effect causes far more information
loss than the averaging filter for intensity images, thus
making depth image recovery even more ill-posed than
intensity image recovery. This phenomenon was referred to
as edge fattening in [9]. In our literature survey on this
particular topic we have found very little explanation of the
phenomenon.

Fig. 3 illustrates how the edge fattening works. During the
time a particular sensor row is active, a number of rays reach
the IR sensor of the Kinect. The minimum of these depths
is taken resulting in the image shown in the figure.

Fig. 4 (a) and (b) show the color image and depth map
taken of a high-frequency object (grill) when the camera is
stationary. In them is marked a row by a green rectangle.
(c) shows the depth plot of this row as a function of column
number, of the row marked in green in (a). (d) and (e) show
the results obtained the same when obtained by a camera
rotating at 40 rpm as measured by our calibrated set-up. (f)
is the corresponding plot to (c) for the same row. As can be
seen in (e) in addition to the rolling shutter distortion the
high-frequency image, gaps in the grill are lost due to edge
fattening. The corresponding histogram is also completely
flattened.



Fig. 5. Overview of the algorithm

III. METHOD

Fig. 5 gives the overview of our proposed method. Due
to the different exposure times and nature of distortions
introduced in the color and depth images, we compensate
for the RS effect in the depth image and color image
separately. Firstly, the depth map rectification is carried out
using four depth maps for camera transformation estimation.
Four depth maps are used instead of the usual two, to allow
for more robust camera transformation estimation. Using the
transformation and timestamp information, we rectify the
depth map. As the intensity images are captured at a different
time instances from the depth images, we interpolate the
transformation at the intensity image timestamp from the
depth map transformations and correct for RS in the intensity
image. Simultaneously, the edge fattening effect in the depth
map is corrected for, as described in section III-B. Using the
information of the camera motion as an initialization for our
deblurring algorithm, we deblur the intensity image.

A. Depth Map Rectification

Following Ringaby et al. [7], we rectify the depth map by
estimating a transformation between distorted depth images,
by parameterizing the camera trajectory to estimate the
transformation at a particular row and correct for it by
applying the desired inverse transformation.

We found during experimentation that their SLERP based
approach (which linearly interpolates between camera tra-
jectories) works well when the camera frame-rate is nearly
constant, but declines in performance when frame-rate
varies/non-uniform motion during image capture, as the
validity of linear interpolation between transformations is
violated. Frame-rate can vary as a result of the way a
processor schedules the tasks it is supposed to do. Non-
uniform motion during image capture can occur due to a
camera being mounted on a vibrating platform. To correct
for this instead of using a linear interpolation of trajectories,
we use a cubic spline which has the desired flexibility to
explicitly handle these situations.

We use the recently proposed continuous time trajectory
parametrization [1] to model the camera trajectory. We use a
cubic B-spline to parametrize time, allowing for camera pose
estimation at queried time instances via interpolation. Their
formulation allows for efficient interpolation from available
camera poses to queried camera poses. The interpolation
property is useful for un-distorting the intensity images. The
accurate pose estimates from depth images, give accurate
pose interpolation at the intensity image timestamps. These
interpolated poses are then used to un-distort the intensity
images as explained in III-C.

The continuous trajectory of the Kinect is parametrized by
camera control poses Tw,i at times ti,i ∈ ({0, . . . ,n},Tw,i
is the transformation from the Kinect frame at time ti to
the world frame w. We assume that the control poses are
uniformly distributed in time, in intervals of size ∆t. As per
the formulation of cubic splines, the value of the spline curve
at time t only depends on four control poses. The pose in
the spline trajectory at time t ∈ [ti,ti+1) is

Tw,s(u(t)) = Tw,i

3

∏
j=1

exp(~Bj(u(t))Φi+j−1 (5)

~B(u) =
1

6

6 0 0 0
5 3 −3 0
1 3 3 −2
0 0 0 1

 .
 1

u
u2

u3

 (6)

where u(t) = t−ti
∆t
∈ [0,1) is the time increment relative

to the time instance ti. The incremental pose from frame
at time tq−1 to the frame at time tq is encoded in the twist
Φq = log(T−1w,q−1Tw,q). ~B(u) are the cumulative basis functions
for B-splines, written in the De Boor-Cox notation [10].

Approach: The continuous trajectory parametrization al-
lows us to use more than 2 depth maps for trajectory
estimation. Given our choice of use cubic-splines, we use 4
successive depth maps for transformation estimation, repre-
sented here as Di,i= 1→ 4. As the depth image is captured
by an RS camera, using the timestamp information and the
line delay td value, we can estimate, with a reasonable
degree of accuracy, when a particular row of the image was
captured.

Firstly, a feature matching between the successive depth
maps is done. As descriptors the Point Feature Histograms
(PFH) [11], which are matched using the FLANN library
[12]. The points successfully tracked in all four frames are
used for trajectory estimation. Since the camera is moving
during frame capture, corresponding points in the depth maps
will back-project to different 3D points. Since, we assume
that the scene is static, this information can be used to
estimate the camera motion. Let a 3D point o1 be viewed
in row r1 of D1 . Likewise, it’s corresponding points are oi
viewed in row ri of Di for i= 2→ 4. We want to obtain
a rectified depth map, where both these points transform to
the same 3D point o0, had the entire image been captured at
the same time as the first row of the first image,

ōio = T(ti+ritd)ōi for i ∈ 1 : 4 (7)

This leads to the logical cost-function of

E(θ) =
3

∑
j=1

K

∑
k=1

||T(tj+r1,ktd)ōj,k−T(tj+1+r2,ktd)ōj+1,k||22
(8)

to be minimized, θ representing the camera trajectory.
For one 3D point, between two frames, we thus have to
estimate 12 parameters, 6 each for the transformations in
eqn. 7, if they are completely un-parametrized. However,
thanks to our cubic spline parametrization, we can rewrite
these transformations in terms of the control poses, and only
solve for the control poses, making our optimization problem
well-posed. Additionally, we set the first control pose to the
sidentity giving a total of 6× (4−1), parameters to estimate
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Fig. 6. Please zoom in. Fig (a) and (b) show an RS rectified intensity
and depth image respectively. (c) shows a probabilistic labelling of the
depth map. The red side of the spectrum indicate absence of edge fattening,
whereas the blue side indicates edge-fattening.

for each spline. As control poses, we use the transformations
taken at the camera timestamps, namely T(ti),i : 1→ 4. The
final cost function we optimize is

E(θ) =
3

∑
j=1

K

∑
k=1

||oj0,k−o
j+1
0,k ||22+

4

∑
j=1

||Dyoj0||22 (9)

The second term encourages a constant velocity model,
for points belonging to the same image. This regularizer
shows improvements in camera trajectory estimation in case
of varying frame-rates [13], which is true for the Kinect
footage.

B. Probabilistic Labelling of the Depth Map

Edge fattening is a combined effect of depth of the object,
exposure time and camera motion. To remove the fattened
portions of the depth map, we first assign a probability
measure as to how likely a pixel was to have been fattened.
We model this probability as a mixture of two contributing
factors, camera motion and depth. Large camera motion gives
rise to increased edge-fattening because a larger portion of
the scene is exposed to a particular pixel, increasing the
chances of finding a lower depth reading. Likewise, portions
of the scene at closer depth have a larger likelihood of
being fattened. This is due to larger area covered by the
camera trajectory when projected into the image plane for
nearby points, as compared to far-off points. The probability
function Pr(pi) at pixel pi given by

Pr(pi) = PrM(pi)PrD(pi) (10)

PrM(pi) = e
−||di−µi ||2

σi PrD(pi) =
di−dmin

dmax−dmin
(11)

PrM and PrD are probabilities due to un-certainty due to
motion and depth respectively. µi and σi are the mean and
std. dev. of depth values sampled by the camera trajectory
over the interval [tpi −te/2,tpi +te/2]. dmin and dmax are
the minimum and maximum depth values in the image row
corresponding to pixel pi. For both probabilities, values close
to zero indicate regions more probable to have been fattened.
PrM is highest when di = µi. Likewise, PrD is highest when
di = dmin. This term labels pixels with low-depths more
likely to have been fattened.

Fig. 6 (a) shows the color image of a scene. Fig. 6
(b) shows the RS rectified depth image captured when the
camera was in motion. (c) shows the probabilistic labelling.
Probabilities close to 1 represent values that are not influ-
enced by the min-filter effect. The bluer regions in the depth
map are eventually thresholded out of the depth map.

C. Rolling Shutter Removal in Intensity Images

Once the RS distortions of the depth map have been
rectified, the RS effect in the intensity image can be easily
rectified. For a 3D point o, the projected points pi and pj
are given by:

pi = π(KT(t(yi))ō) and pj = π(KT(t(yj))ō) (12)

π(.) being the perspective projection function. Combining
these two equations we get

p̄j = C(t(yj),t(yi))p̄i C(t1,t2) = KT(t1)T((t2)
−1K−1

(13)
Given the warping matrix C, we set the rolling shutter

duration ts to 0. We then compute C(tdesired,t(yi)) at each
image row yi of the current frame i, and apply the warp to
that row. Notice that the first term of C now only depends
on the frame time ti. This operation maps all input frames
onto the camera positioned at the start off the frame capture
and as a result, removes rolling shutter warping.

D. Image De-blurring

Having corrected the depth and estimated camera pose,
we can use this information to get a good initialization for
the blurring kernel, by projecting the motion of the camera
into the image plane.

min
k,l

1

2
||k∗l−b||22+λ1||∇l||1+λ2||k||22 (14)

The first term of the equation is a standard least squares
term stating that the calculated latent image l and kernel k
when convolved, give the resulting observed image b. The
second term is a sparsity prior on the gradient of the latent
image, it enforces sharper edges in the latent image. The
third is a penalizer on the kernel, which has been shown to
improve the de-blurring performance [6]. The optimization
is done using a modified ADMM [14] algorithm.

IV. RESULTS

We first start off by testing the efficacy of each compo-
nent of our proposed pipeline. Then, we show the benefit
our algorithm has on a robotic application, namely camera
trajectory estimation.

A. Evaluation of Rolling Shutter Rectification and Motion
Blur

Ideally, the performance of our algorithm should be eval-
uated using RMSE (Root Mean Squared Error) between
ground truth and the image we choose to compare. However,
in case of deblurring RMSE is not considered an optimal
criterion for evaluation [15], due to its excessive sensitivity
to lighting conditions and location of artifacts in the image.
The paper mentions that the artifacts in a blurred image
that are salient can be unrecognisable while having a low
RMSE for the image, when compared with the ground-truth.
Thus, we evaluate our algorithms performance indirectly via
a scene-flow algorithm [16]. We choose scene-flow because
it incorporates both visual and depth information in finding
dense correspondences between two images, thus making
use of both sensing modalities of our sensor. An additional



Input Type RS RS Correction MB MB Correction RS+MB RS+MB Correction
AAE 68.910768 8.535388 13.456721 11.456721 94.437321 23.132389

Std. Dev. AAE 16.507602 0.986454 0.396911 0.596911 24.505380 2.376848
RMS-OF 1.743003 0.155864 0.278669 0.236029 13.174825 7.591635
RMS-SF 2.276523 0.188462 0.400429 0.23294 17.591635 7.678561

TABLE II
RESULT OF ROLLING SHUTTER AND MOTION BLUR ALONG WITH THEIR COMPENSATION BY OUR ALGORITHM ON THE SYNTHETIC DATASET.

benefit of a scene-flow based evaluation is it portable. For
our set of experiments, as ground-truth we use two sets of
images, horizontally separated by a fixed distance (15cm),
taken from a slow moving camera (like in a stereo setup). For
synthetic data, we use eqn. 3 to introduce RS+MB distortion
in our data. For the real experiments, we make use of the
experimental setup shown in Fig. 12 to introduce RS+MB
distortion.

For quantitative evaluation, we use the standard scene-
flow metrics. Namely, RMS-OF (Root Mean Square Error in
optical flow computation), RMS-SF (RMS for Scene Flow)
and Average Angular Error (AAE), which is the RMS of the
difference in the orientations of optical flow vectors.

(a) (b) (c) (d)

Fig. 7. Please zoom in. Results of the proposed algorithm on a synthetic
sequence. In each figure the florescent green box indicates the position of the
box in the image if the exposure time and line delay were both infinitesimal.
(a) and (b) show the RS+MB distorted images. (c) and (d) show the results
after correction.

B. Results on Synthetic Data

In our synthetic data experiment, we took a textured
3D object and applied RS+MB distortion by applying a
discretized form of eqn. 3. We did two sets of experiments.
The 1st just by introducing RS in our data, by increasing the
line delay td. The 2nd by introducing both, by increasing
line delay td and row exposure time te. The values are
set to those mentioned in the last paragraph of II-C. Fig.
7 shows the results of our experiment. (a) and (b) show
RS+MB distorted images. (c) and (d) show the result of our
rectification algorithm. The florescent box in all four frames
shows the ground truth corresponding to the case of a camera
having a GS, with infinitesimal exposure time.Figures (a), (b)
show the RS+MB distorted input to our algorithm. (c) and (d)
show the result of rectification. As can be seen in the figure,
our algorithm is able to rectify for RS effectively, while
simultaneously reducing blur. Table II shows the quantitative
results of the experiment. In the case of only RS distortion,
our algorithm is able to reduce the error of nearly 90%
on synthetic data, for all 3 metrics. On introducing MB in
addition to RS, our algorithm manages to reduce error by
60%. The performance drop is an indicator of the severely
detrimental effect MB has.

Fig. 8. Experimental setup for camera trajectory estimation. The Kinect
is placed on an oscillating crank-shaft mechanism, which introduces high-
frequency image jitter into the Kinect data. The mechanism is placed on an
autonomous wheel chair.

Fig. 9. Labelled experimental set-up capable of precise calibrated linear
and rotational motion.

C. Results on Real Data

To evaluate our algorithm on real data, we developed an
experimental setup (shown in Fig. 9) capable of executing
calibrated motion. The setup consists of a Kinect mounted on
a motor-powered rotating platform. This platform is attached
to a linear actuator. Both the rotating platform and the linear
actuator are controlled by a PID controller. To introduce
real RS+MB distortion in our captured data, we take images
using this setup at the separation equal to the ground truth
while the camera is rotating and horizontally translating. The
motors were timed, such that the camera faces roughly the
same scene as the two ground-truth images. We use rotation
and translation, instead of just rotation, because it is known
shown in [17] to be a more pronounced source of MB than
translation.

Fig. 11 shows the results of our algorithm on a real dataset
taken at various rotational speeds. The dataset consists of
three primary objects (a box, a chair and a desk) placed
at different depths. The odd rows in the figure, show the
input taken by our algorithm. The even rows, show the
RS+MB rectified output. In the depth maps black lines are
marked roughly parallel to the box edge in the scene, to
more easily visualize the RS correction. After rectification
they are closer to the vertical than initially. This is more
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Fig. 10. Qualitative Evaluation of Deblurring Algorithm (a) and (c) show
images affected by motion blur. (b) and (d) the deblurring algorithm. The
green boxes provide a zoomed in view of the same area before and after
deblurring for visual comparison.

pronounced in the case of the camera undergoing 40rpm
rotation. The deblurring performance of our algorithm is
noticeable for 20rpm, albeit with some ringing artifacts. For
40rpm the effect is far less pronounced. This is due to the
low signal-to-noise ration in the image, making an already
ill-posed problem even more difficult. This however is an
extreme case and is unlikely to occur within a robotic setting
with SLRS cameras that are primarily indoor cameras. Future
work can possibly involve incorporating prior knowledge of
the scene and learning the location specific blur kernels for
better deblurring.

Fig. 10 shows a zoomed in view of the dataset before and
after de-blurring. As can be seen in the zoomed in green
boxes, our proposed method is able to restore the high-
frequency details of the scene-text, which can be useful for
robotic navigation.

Table III summarizes the results of our experiments on
the real-dataset. For 20 and 30 rpm, our algorithm is able
to reduce RMS-SF and RMS-OF by around 50%. For the
extreme case of 40 rpm, the performance of our algorithm
degrades gracefully, while still maintaining a 20% error
reduction across the different error metrics.

D. Camera Trajectory Estimation

In this section we show the effect RS+MB distortion and
it’s correction have on the camera trajectory estimation. To
introduce RS+MB blur into the Kinect footage we use the
setup shown in Fig. 9. It consists of a Kinect mounted on
an oscillating mechanism. The mechanism is powered by a
motor oscillating at 450rpm, sufficiently high to introduce
RS+Mb distortion. The purpose of this experiment was to
show, how our pipeline fairs in the realistic case of a Kinect
mounting on a vibrating moving platform. For ground-truth
we use the odometry taken from the wheel encoders of
the wheel-chair. We ran this fRexperiment for two sets of
trajectories, one a straight line motion, roughly 10 meters
long. The other, a loop of length nearly 32 meters around
our lab.

Dataset Method RMSE Pose Med. Pose RMSE Ori. Med. Ori.

Straight
ICP 175.939 152.038 3.754 2.891

SLERP 97.526 79.384 2.911 2.732
Ours 72.447 61.953 1.761 1.675

Loop
ICP 268.346 202.363 11.622 10.295

SLERP 227.344 223.402 7.078 6.991
Ours 155.772 138.593 3.387 2.734

TABLE IV
POSE AND ORIENTATION ERRORS FOR CAMERA TRAJECTORY

ESTIMATION IN THE TWO SEQUENCES (IN MM AND DEGREES)

Fig. 12. Trajectory Estimation Result for the loop sequence. The curve in
red, corresponding to the ground-truth. The curve in green corresponding
to the camera trajectory computed without RS correction. The curve in
black, corresponding to the smoothed trajectory, computed after correction.
Measurements are in mm.

Fig. 12 shows the camera trajectory plots on the loop
sequence, for different algorithms. The units in the figure are
in mm. In red, is plotted the ground-truth. In green is shown
the trajectory computed using only ICP, it starts to deviate
from the ground-truth significantly at the curved section of
the trajectory. The trajectory in blue, shows the result of
SLERP interpolation, like the kind proposed by [7], which
is much better than the ICP based trajectory, but still suffers
from drift. Our proposed approach, in black, on the other
hand is able to deal with the RS+MB distortion effectively,
yielding a trajectory especially close to the ground-truth. The
quantitative results of this experiment are given in table IV.
The pose error is measured in millimetres and orientation in
degrees.

For the straight line sequence, the cubic spline interpola-
tion give is a 28% improvement in terms of pose error on
the linear spline (SLERP), while beating conventional ICP
by 50%. The orientation is low for all three methods which
is expected, given that the sequence is a straight line. For the
loop sequence similarly our algorithm, is noticeably better,
having substantially lower orientation error than the other
two methods. This is due to the flexibility of the cubic spline
formulation.

V. CONCLUSIONS

In this paper, we presented an algorithm for RS and MB
distortion rectification for SLRS cameras capable of dealing
with large distortions. In doing so we introduced a novel
mathematical model to describe the blurring experienced by
a depth map. This model explains the edge-fattening effect
seen in depth maps taken from moving cameras as a result
of the min-filter effect. To test our algorithm we created
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Fig. 11. Results of the proposed algorithm on real data. The first row contains input data. The second row contains rectified output data. The dataset
consists a box, a chair and a desk at different depths. As can be seen in row 2, the proposed algorithm is able to rectify the RS and MB effects giving
more coherent shapes in the depth map. The edges of the box and desk are nearly vertical.

Input Type 20 rpm Rectified 30 rpm Rectified 40rpm Rectified
AAE 9.515508 3.709758 34.17264 23.515508 129.291094 109.848781

Std. Dev. AAE 4.382542 3.935804 23.81221 14.17264 98.789264 79.194166
RMS-OF 11.910281 8.250955 48.152351 23.81221 89.696 78.107836
RMS-SF 22.298120 11.211356 47.278201 28.152351 181.983099 168.483439

TABLE III
RESULT OF ROLLING SHUTTER AND MOTION BLUR ALONG WITH THEIR COMPENSATION BY OUR ALGORITHM ON THE REAL DATASET

a dataset of RS+MB distorted images of varying severity,
and showed that depth rectification achieved more than 60%
rectification. In addition, we showed the effect on two robotic
applications, namely the evaluation of scene-flow, as well as
camera trajectory estimation. For scene-flow, the images after
rectification by our algorithm gave significantly less error in
all standard error metrics. The camera trajectory outputted by
our algorithm is significantly better than the one done using
standard ICP or SLERP interpolation. For future work, we
intend to improve our overall pipeline by learning betters
priors for deblurring. We also intend to incorporate object
information to improve the probabilistic labelling of objects.
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