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ABSTRACT
Frontier detection is a critical component in indoor mobile
robot exploration, wherein the robot decides the next best
location to move in order to continue with its mapping pro-
cess. All frontier detection algorithms to the best of our
knowledge require 3D locations of occupied regions as its
input. In a monocular setting this entails a backend VS-
LAM algorithm that reconstructs the scene as the robot
moves. Most monocular SLAM algorithms however pro-
vide sparse scene reconstruction from which frontiers cannot
be reliably detected and estimated. In this effort we pro-
vide an alternate method of detecting frontiers during the
course of robot motion that circumvents the requirement of
dense mapping. Based on the observation that frontiers typ-
ically occur around vertical edges of walls, doors or tables we
propose a novel linear chain CRF formulation that is able
to detect the presence or absence of such frontier regions
around such vertical edges. We used cues like increase in
number of ground plane pixels and change in the spreading
of optical flow vector, around those vertical edges. We also
demonstrate that this method gives us more relevant fron-
tiers as compared to methods based on reconstructing the
scene through state-of-the art such SLAM algorithms such as
PTAM. Finally, we present results in indoor scenes wherein
frontiers are reliably detected around wall edges leading to
new corridors, door edges leading to new rooms or corridors
and table edges that opens up to a new space in rooms.
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1. INTRODUCTION
Frontier exploration was first introduced [11] as a means

by which the robot expands its mapping process. While
there have been several extensions and variants of it [2], [9],
[4], all of them involved densely reconstructed maps of the
scene with range sensors. Where vision has been involved, it
has been an extension of frontier detection to a stereo setting
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[8] or through a combination of laser and monocular camera
such as in [13]. The bottomline being the requirement of
dense planar or spatial reconstruction of the scene has been
inevitable in such approaches.

Herein, we present a novel method of frontier detection
that operates over images bypassing the need for dense re-
construction with a monocular camera. Thus, this method
can ideally complement a VSLAM backend [3] for expanding
the mapping process without resorting to dense techniques
such as [6]. We observe that frontiers typically occur around
vertical edges in a scene such as doors, walls and tables. The
proposed method tracks patches around such vertical edges
and ascertains the spread of floor area and the spread of
flow vectors over an image sequence obtained by the moving
robot. A linear chain CRF uses the above spread to form its
node and edge potentials and infers the presence or absence
of frontiers around such edges. For example, vertical edges
that do not lead to new areas around them such as closed
doors are correctly detected as non-frontier regions (figure 1
depicts such situations). Extensive quantitative results that
vindicate the efficacy of the proposed methods are shown in
section 3. Specifically, the ability of the formulation to de-
tect frontiers is shown to be largely invariant to the angles
of approach of the robot to the edges. This is crucial for ef-
fective map building, for in realistic workspaces the robot’s
heading need not always be orthogonal to the normal of the
plane that contains the edge. This is true even in case of
corridors wherein due to odometry drift, the robot’s heading
is not always parallel to the corridor walls.

The approach closest to the current that uses monocular
images for exploration appeared in [7]. Here, the frontiers
were detected as the boundary of the segmented floor re-
gions. The difficulty with such a formalism is that such
frontiers could prove difficult to track over images and the
ones that contain maximum information such as those lead-
ing to new corridors, rooms or openings can be potentially
missed. Formulating the detection mechanism as a proba-
bilistic state variable through probabilistic graphical models
is another novelty of the proposed work.

2. SYSTEM OVERVIEW
Our method mainly consists of three basic modules. Firstly,

LSD based line detection [10] to extract the vertical lines
from an Image. Secondly, we use optical flow based tracking
[1] to track feature points around the the extracted vertical
lines and lastly, estimate the probability that whether the
tracked vertical line is a possible frontier or not using Linear
chain CRF (Section 2.5).



2.1 Pipeline

1. In the first step of algorithm, an image frame say In
was subjected to Line Segement Detector algorithm
[10], which actually detects a significantly huge number
lines. However, we take only vertical lines that are
touching the ground plane as non vertical lines do not
serve any purpose of harboring frontier regions in an
indoor environment.

2. Further, we track a patch containing features points,
around those retrived vertical lines in the consecutive
image frames(say for T frames). This helps us in de-
termining the change in magnitude of optical flow vec-
tor around every region of interest, because a possible
opening(a region to explore) will undergo a significant
change in magnitude of flow vector over time.

3. In addition to this, we used ground plane segmentation
algorithm [5], which adapts to the environment, and
gives a good ground plane segmentation. So, we can
easily keep track of change in number of ground plane
pixels around each vertical lines obtained after step 1.

4. Lastly, we give these data obtained after step 2 and
step 3 to Linear CRF framework to come up with a
robust estimate of a frontier. A Linear Chain Con-
ditional Random Field is formulated with its clique
potential pertaining different states and observations.

2.2 Line Detection
Extremely homogenous environment always suffers from

a featureless situations. With the advent of algorithms like
LSD [10] we are able to detect lines even under extremely
homogenous environmental conditions. LSD [10] algorithm
gives us numerous line segments of an image. Of all these
lines we consider only vertical or near vertical line segments
as a possible candidates for frontier.

2.3 Feature Tracking
For tracking features around a vertical lines, we are using

Large Displacement Optical Flow (LDOF) algorithm . Since
indoor environment mainly consists of homogenous regions,
it is indeed difficult to track sparse features around it. So,
we are using a dense optical flow based tracking. However
we find with LDOF [1] we are able to secure tracks reliable
and effective enough to facilitate accurate frontier detection.
While it is computationally expensive to densely track the
entire image by tracking only few patches around vertical
lines makes it a computationally feasible task.

2.4 Ground Plane Segmentation
Segmenting ground plane in an indoor environment suf-

fers from various limitations like different texture of floor
or it may have same color as of walls. Floor Segmenta-
tion algorithm described in [5], overcomes such difficulties
and provides extremely satisfactory results for ground plane
segmentation in an indoor environment. By using this al-
gorithm it’s easy to keep record of change in ground plane
pixels over time.

2.5 Linear-chain Conditional Random Field
Linear chain Conditional Random Field (CRF) is an undi-

rected graphical model, which considers the conditional de-
pendencies among the random variables. This undirected

graphical model is not confined to normalised conditional
dependencies rather, its dependencies between the nodes can
be any non-negative function. We pose our problem for fron-
tier detection, as a distribution over hidden states of CRF by
means of nodes and clique structures shown in Figure 1. Our
model consists of two clique structure (st, st−1, st−1) and
(st, zt, zt−1) respectively, for each time step t. In these struc-
tures, the conditional distribution over the hidden states s0:T
factorizes into the product of clique potentials defined as:

p(s0:T |z1:T ) =
1

Z(z1:T )

T∏
t=1

Ψp(st, st−1, zt−1).Ψm(st, zt, zt−1)

(1)

Ψp(st, st−1, zt−1) = e
∑2

k=1 λk.gk(st,st−1,zt−1) (2)

Ψm(st, zt, zt−1) = e
∑2

k=1 λk.fk(st,zt,zt−1) (3)

g(.) and f(.) is given by,

g(st, st−1, zt−1) = p(st|st−1).p(st−1|zt−1) (4)

f(st, zt, zt−1) = p(zt|st).‖h(zt)− h(zt−1)‖2 (5)

Here, a state st can either be a frontier or a non-frontier
st = {frontier, non−frontier} , zt is the observation data.
In our case we consider two observations ( k = {1, 2}) that
are increase in the number of ground plane pixels around a
vertical line and spread of optical flow tracks around that
vertical line over a time sequence. k = 1 correponds to in-
crease in number of ground plane pixels and k = 2 considers
spread of optical flow vector. Ψp(.) contains the informa-
tion about the transition of one state to another, given the
prior state probability (equation 2) where as, Ψm(.) holds
the clue about the likelihold of observation given the state
(equation 3) and change in the observation we get from pre-
vious observation. λ is a tuning parameter which was fixed
after inferencing. h(zt) is an operator that computes the
change in number of floor area around a patch discussed in
2.7.

2.6 Inference
In a CRF, sequences of output variables lead to enormous

combinatorial complexity. A naive solution to this prob-
lem consists in marginalizing over all the state variables
S1.....ST , which is equivalent to enumerating all the pos-
sible state sequences of length T . The computation has an
O(NT) complexity, which, in most cases, is clearly infeasible.
Thus, a dynamic programming approach is applied, known
as the Forward-Backward Algorithm originally described for
Hidden Markov Models. This algorithm can also be used for
linear-chain Conditional Random Fields in a slightly modi-
fied form.

φ(s, s′, t) = Ψp(s, s
′, zt−1).Ψm(s, zt, zt−1) (6)

Forward pass,

α1(s) = P ([S1 = s]).P (z1|[S1 = s]) (7)

αt(s) =

2∑
s′=1

αt−1(s′).φ(s′, s, t) (8)



Figure 1: a)Shows the cliques of the graphical models used for our framework. b) Shows the state transition
diagram that we used for frontier classification.

Figure 2: Flow Diagram of the proposed method. a) line detection using [10]. b), c) consecutive image
pairs In, In−1. d) Filtered vertical or near vertical lines . e) dense optical tracks around the vertical line. f)
Ground plane segmentation obtained by using [5]. g) final result of frontier detection. h) result obtained
after combining e), f). i) CRF framework. i) Image sequence.



Figure 3: a)Result around wall edges leading to new rooms. b)& d)Result around table edges leading to new
open area. c) Result around wall edges leading to new corridor.

Backward pass,

βT (s) = 1 (9)

βt(s) =

2∑
s′=1

βt+1(s′).φ(s, s′, t+ 1) (10)

Z =

2∑
s=1

αt(s) (11)

State probability is computed as follows,

P ([St = i]|z1...t) = (αt(i)βt(i))/Z (12)

The Forward-Backward Algorithm has a run-time ofO(S2.n),
so it is linear in the length of the sequence and quadratic in
the number of states.

2.7 Our Approach
We come up with a very elegant approach to solve the

problem of frontier detection using monocular camera. Given
a set of consecutive images say {In, In−1}, we first extract
possible vertical lines in the image In−1 using [10]. After
the vertical line are extracted faithfully, we find dense opti-
cal flow track in the subsequent image In around all vertical
lines extracted from the image In−1. The same set of images
were also used to obtain ground plane segmentation [5].

The key idea behind doing this preprocessing step for fron-
tier detection is that, if there is a place for exploration we
should get a significant change in the magnitude of opti-
cal flow vector around vertical lines. Figure 2e) shows the
dense flow vector obtained after tracking the features in the
consecutive images. The color changes indicates the change
in optical flow vector. It can be inferred from this figure,
that there is a steep color changes around some of the ver-
tical lines. Relying on flow vector cues alone could pose
certain other challenges. For example, flow vectors could
be substantially different around window edges, which from
a robotic setting do not harbor frontiers despite giving a

perception of new areas through the window grills. Hence,
we also resort to change in the spreading of ground regions
around vertical edges as another cue for confirming the pres-
ence of frontier regions.

For estimating the spreading of ground pixels the following
is done. A number of patches are selected around a vertical
edge and the extent of the floor in those patches ascertained.
Based on robot odometry and ground plane normal the floor
regions in those selected patches are warped into the next
view of the robot and the area of the floor expected to be
seen is predicted. The difference between the observed floor
area and the predicted warp is computed for each tracked
patch and averaged over the number of patches. This aver-
aged difference constitutes the second term in the right hand
side of equation 5.

Combining the two data term, we get a substantially strong
evidence for classifying a vertical line as a frontier or not.
But it is quite obvious that, the change of ground plane pix-
els and optical flow vector around the vertical lines cannot
be observed quickly, it requires an accrual of such obser-
vations over time. Since relation between observations are
critical for accurate detection, we pose the problem as a
linear chain CRF that is able to capture relations between
observations as well as states. A liner chain CRF caters to
both the measurement potential and state change potential
information overtime Figure 1a). We also used a transition
probability distribution obtained empirically i.e p(st|st−1)
shown in Figure 1b).

Using the CRF framework to capture the relation between
states as modeled in equation 4 and 5, we are able to obtain
good frontier detection over time. Lets us consider an exam-
ple to explain why our formulation works in such conditions.
Intially, prior probabilities were kept equal p(so|zo) = 0.5 for
both states st = {frontier, non − frontier}. We obtained
likehood of observation i.e p(zt|st) and state transition ma-
trix p(st|st−1) by training data set. Now suppose we are
tracking a vertical line over a T time horizon. Ψp(.) is an
indicator of how likely you will observe a state st given prior
state probability and transition probability. So, at t = 0 we
will not get much information about how likely it a frontier



or not. Whereas, Ψm(.) gives us a information about what is
the likehood of observation given the state. So, if the change
in observation i.e ‖h(zt)− h(zt−1)‖2 is approximately same
for both states, it automatically gets corrected by p(zt|st).
Here, h(zt) computes the observed floor area of the current
view, whereas the h(zt−1) computes the predicted area of
the warp based on the previous patch, current robot pose ob-
tained from odometry and the normal to the ground plane.
The potential of these two cliques is calculated recursively
for each vertical lines in the subsequent image frames for T
time horizon, thereby updating p(st|zt) after each iteration.
Hence, resulting in a better state estimate.

3. RESULTS
For our experiments, we use Kinect mounted on a iCreate

TurtleBot. Kinect is used only as a monocular camera and
not as depth sensor. The whole algorithm is processed on
a laptop connected to robot. Laptop runs on a 2.3 GHz
Quadcore i7 processor.

We provide insights into the working of the algorithm
through the following example (figure 3a - 3d). Figure 3c
shows the Turtlebot moving along a corridor approaching
another corridor that runs orthogonal to it. The CRF for-
mulation is expected to detect the two vertical edges that
leads to new areas into the left and right as harbouring fron-
tier regions. The vertical edges that remain after filtering are
shown in green. Initially it is difficult to estimate the state
of these edges or equivalently the state of the areas around
these edges. As the robot navigates the difference in flow
vectors around the left and right edges become prominent
as shown in Figure 2e. Concurrently, the ground plane areas
spread around the left and right edges prominently making
the corresponding potentials active (figure 2h), resulting in
correct detection of frontier regions. Figure 2g shows the
edges that harbor frontiers in green while non frontier edges
are filtered after CRF has run its course over T frames.

Results for doorways and desks are shown in figures (3d -
3d) and (4b). Figure 4b shows the door edge amongst other
edges at the first view. Figure 4c shows the result of the
CRF based state estimation. The door edge is correctly es-
timated as the frontier edge while all others are estimated to
be non frontier edges. Figure 4a shows the edge of a closed
door amongst other edges. That the edge was correctly esti-
mated to be a non frontier edge is shown in Figure4c thereby
vindicating the efficacy of the method to distinguish closed
and open doors. Figure 3b and 3d show identical results for
a table edge around which new areas to be explored reside.

Table 1-2 depicts quantitatively the performance of the
proposed formulation. Three most typical and dominant
frontier edges that occur in indoor scenes were considered.
These constitute the rows of the table. The scenes were also
composed of a number of other non frontier edges. Each
major column of the table indicates the various angles at
which the robot approached the edges. These are at orien-
tations of 15, 30, .... Each such major column is composed of
two sub columns, one depicting the false positive percentage
and the other false negative percentage. These were com-
puted by averaging over several such runs of a robot made to
move realistically in an indoor setting. The low percentage
of false positives and negatives confirm the efficacy of the
formulation.

4. COMPARISON WITH OTHER METHODS

Parallel Tracking And Mapping(PTAM) and other Struc-
ture from Motion(SfM) techniques forms a very sparse map
of an indoor environment due to lack of trackable features.
This map often leads to wrong frontier selection, subse-
quently leading to an awful exploration, some of them leads
the robot into walls. Figure 5c) shows that PTAM map gives
frontiers leading into walls. Due to lack of texture, the walls
are not mapped and are shown as openings for further explo-
ration. This shows the inability of standard frontier methods
to detect reliable frontiers from a sparse map reconstructed
by the popular SLAM framework. However, our approach
gives a faithful frontiers in all such situations. Thereby, pre-
venting the robot from several risks such as a) exploring the
same region again and again, b) crashing into walls due to
spurious frontier selection etc.

5. CONCLUSIONS
A novel linear chain CRF formulation for estimating fron-

tiers for a mobile robot equipped with a monocular camera
was presented and verified to work reliably and robustly. In
indoor scenes consisting of frontier edges from tables, door-
ways and walls the performance was found to be confirming
its accuracy and soundness. Frontier detection is critical to
automate a SLAM backend as the robot decides the next
best location to move in order to expand its mapping pro-
cess. Almost all the frontier detection algorithms known to
the authors work with densely reconstructed scenes (planar
or spatial) obtained from laser range finders or stereoscopic
systems. To the best of the author’s knowledge this is the
first such frontier detection detailed to work with monocular
camera. The authors believe that this would serve to ad-
vance the state of the art for automating monocular SLAM
systems, wherein the reconstructed scene is typically too
sparse for accurate detection of openings and frontiers. The
paper also shows the inability of standard frontier methods
to detect frontiers from a sparse map reconstructed by the
popular SLAM algorithm, PTAM. From that point of view
as well the proposed method can be considered useful.

6. REFERENCES
[1] T. Brox and J. Malik. Large displacement optical flow:

descriptor matching in variational motion estimation.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(3):500–513, 2011.

[2] W. Burgard, M. Moors, C. Stachniss, and F. E.
Schneider. Coordinated multi-robot exploration.
Robotics, IEEE Transactions on, 21(3):376–386, 2005.

[3] G. Klein and D. Murray. Parallel tracking and
mapping for small ar workspaces. In Mixed and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225–234.
IEEE, 2007.

[4] A. K. Krishnan and K. M. Krishna. A visual
exploration algorithm using semantic cues that
constructs image based hybrid maps. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 1316–1321. IEEE,
2010.

[5] S. Kumar, A. Dewan, and K. M. Krishna. A bayes
filter based adaptive floor segmentation with
homography and appearance cues. In Proceedings of



Figure 4: a) spread of ground plane pixels when door is closed. b) optical flow spread around the frontier and
spread of the ground plane pixel at the door opening. c) frontiers(green) and non-frontier(brown) obtained
after using CRF.

Figure 5: a) The original environment. b)3d reconstruction using PTAM [3]. c) Ground map of the environ-
ment with wrongly detected frontier shown by arrow mark.

Frontier Type 0◦ 10◦ 20◦ 30◦

FP(%) FN(%) FP(%) FN(%) FP(%) FN(%) FP(%) FN(%)
Corridor Edges 0.8 5.0 0.8 0.2 0.6 0.0 0.8 0.0
Door Edges 0.4 5.2 0.6 0.6 0.4 0.2 0.4 0.2
Desk Edges 0.8 4.8 0.6 0.8 0.6 0.4 0.6 0.2

Table 1: Analysis with respect to Angle of Approach at 2m

Frontier Type 0◦ 10◦ 20◦ 30◦

FP(%) FN(%) FP(%) FN(%) FP(%) FN(%) FP(%) FN(%)
Corridor Edges 1.2 6.3 0.9 0.4 0.4 0.2 0.6 0.0
Door Edges 1.5 6.0 0.3 0.3 0.2 0.4 0.4 0.1
Desk Edges 1.2 5.8 0.7 0.6 0.8 0.4 0.3 0.4

Table 2: Analysis with respect to Angle of Approach at 3m



the Eighth Indian Conference on Computer Vision,
Graphics and Image Processing, page 54. ACM, 2012.

[6] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
Dtam: Dense tracking and mapping in real-time. In
Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2320–2327. IEEE, 2011.

[7] D. Santosh, S. Achar, and C. Jawahar. Autonomous
image-based exploration for mobile robot navigation.
In Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pages 2717–2722. IEEE,
2008.

[8] R. Sim and J. J. Little. Autonomous vision-based
exploration and mapping using hybrid maps and
rao-blackwellised particle filters. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International
Conference on, pages 2082–2089. IEEE, 2006.

[9] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox,
M. Moors, S. Thrun, and H. Younes. Coordination for
multi-robot exploration and mapping. In AAAI/IAAI,

pages 852–858, 2000.

[10] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and
G. Randall. Lsd: A line segment detector. URL
http://www. ipol. im/pub/algo/gjmr line segment
detector, 2012.

[11] B. Yamauchi. A frontier-based approach for
autonomous exploration. In Computational
Intelligence in Robotics and Automation, 1997.
CIRA’97., Proceedings., 1997 IEEE International
Symposium on, pages 146–151. IEEE, 1997.

[12] R. I. Hartley and A. Zisserman. Multiple view
geometry in computer vision. Cambridge University
Press, second edition, 2004.

[13] D. Maier, M. Bennewitz, and C. Stachniss.
Self-supervised obstacle detection for humanoid
navigation using monocular vision and sparse laser
data. In IEEE International Conference on Robotics
and Automation (ICRA), May 2011, pp. 1263
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